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1 Introduction

In the context of linear regression with k regression coefficients, the Stein-rule (SR) estimator

proposed by Stein (1956) and James and Stein (1961) dominates the ordinary least squares

(OLS) estimator in terms of mean squared error (MSE) for k ≥ 3 if the predictive squared error

loss function is used. Further, as is shown in Baranchik (1970), the SR estimator is dominated

by the positive-part Stein-rule (PSR) estimator.

Recently, Shao and Strawderman (1994) proposed a family of estimators which dominate

the PSR estimator. However, Shao and Strawderman (1994) assumed that the disturbance

variance is known. Sugiura and Takagi (1996) extended their estimator to the case of unknown

disturbance variance. However, since the dominance is valid when the condition n ≥ max[9k +

10, 13k−7] holds where n is sample size, Sugiura and Takagi’s (1996) estimator needs relatively

large sample size (e.g., when k = 3, n ≥ 37).

As an improved estimator, Theil (1971) proposed the minimum mean squared error (MMSE)

estimator. However, Theil’s (1971) MMSE estimator includes unknown parameters, Farebrother

(1975) suggested an operational variant of the MMSE estimator which is obtained by replacing

the unknown parameters by the OLS estimators. As an extension of the MMSE estimator,

Ohtani (1996) considered the adjusted minimum mean squared error (AMMSE) estimator which

is obtained by adjusting the degrees of freedom of the operational variant of the MMSE estimator.

He showed by numerical evaluations that if k ≤ 5, the AMMSE estimator has smaller MSE than

the SR and PSR estimators in a wide region of the noncentrality parameter.

In particular, when k = 3, the MSE of the AMMSE estimator can be much smaller than

that of the PSR estimator for small values of the noncentrality parameter. Ohtani (1999)

considered the heterogeneous pre-test estimator such that the AMMSE estimator is used if

the null hypothesis that all the regression coefficients are zeroes (in other words, the value

of the noncentrality parameter is zero) is accepted, and the SR estimator is used if the null

hypothesis is rejected. Although the results were obtained by numerical evaluations, he showed
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that a heterogeneous pre-test estimator dominates the PSR estimator when k = 3 and the

critical value of the pre-test is chosen appropriately. This indicates that the AMMSE estimator

works effectively when the value of the noncentrality parameter is close to zero. However, when

k ≥ 6, the AMMSE estimator has larger MSE than the PSR estimator for small values of

the noncentrality parameter. This indicates that if k ≥ 6, there is no incentive to use the

heterogeneous pre-test estimator since the AMMSE estimator never works effectively when the

value of the noncentrality parameter is close to zero.

To improve the SR estimator, Tran Van Hoa and Chaturvedi (1990) suggested the family of

two-stage hierarchial information (2SHI) estimators. Namba (1998) derived the exact MSE of

the 2SHI estimator and showed that the 2SHI estimator with appropriate parameter values can

have much smaller MSE than the PSR estimator for small values of the noncentrality parameter

even when k = 8. Thus, in this paper, we consider a heterogeneous pre-test estimator which

consists of the 2SHI estimator and the SR estimator (hereafter, the PT-2SHI estimator), and

examine its MSE performance.

In section 2 of this paper we present the estimators, and in section 3 we derive the exact

formula of the MSE of the PT-2SHI estimator. It is shown analytically that the PT-2SHI

estimator dominates the SR estimator when the parameter values in the 2SHI estimator and

the critical value of the pre-test are chosen appropriately. In section 4, we compare the MSE

performance of the PT-2SHI estimator with those of the SR estimator and the PSR estimator

by numerical evaluations. It is shown by numerical evaluations that the PT-2SHI estimator

dominates the PSR estimator even for relatively large k if the parameter values in the 2SHI

estimator and the critical value of the pre-test are chosen appropriately. Finally, some concluding

remarks are given in section 5.
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2 Model and the estimators

Consider a linear regression model,

y = Xβ + ε, ε ∼ N(0, σ2In). (1)

where y is an n × 1 vector of observations on the dependent variable, X is an n × k matrix of

full column rank of observations on nonstochastic independent variables, β is a k × 1 vector of

coefficients, and ε is an n × 1 vector of normal error terms with E[ε] = 0 and E[εε′] = σ2In,

where σ is constant but unknown.

The ordinary least squares (OLS) estimator of β is

b = S−1X ′y, (2)

where S = X ′X. In the context of linear regression, the Stein-rule (SR) estimator proposed by

Stein (1956) is defined as

bSR =
(

1 − ae′e

b′Sb

)
b, (3)

where e = y − Xb, and a is a constant such that 0 ≤ a ≤ 2(k − 2)/(ν + 2), where ν = n − k. If

we use the loss function

L(β̄;β) = (β̄ − β)′S(β̄ − β), (4)

where β̄ is any estimator of β, the SR estimator dominates the OLS estimator in terms of mean

squared error (MSE) for k ≥ 3. As is shown in James and Stein (1961), the MSE of the SR

estimator is minimized when a = (k−2)/(ν+2). Thus we use this value of a hereafter. Although

the SR estimator dominates the OLS estimator, Baranchik (1970) showed that the SR estimator

is further dominated by the positive-part Stein-rule (PSR) estimator defined as

bPSR = max
[
0, 1 − ae′e

b′Sb

]
b. (5)

As an improved estimator, Ohtani (1996) proposed the adjusted minimum mean squared

error (AMMSE) estimator:

bAM =
(

b′Sb/k

b′Sb/k + e′e/ν

)
b. (6)
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He showed by numerical evaluations that if k ≤ 5 the AMMSE estimator has smaller MSE than

the PSR estimators for small values of the noncentrality parameter defined as λ = β′Sβ/σ2.

Thus, Ohtani (1999) considered the following heterogeneous pre-test estimator:

β̂AM (τ) = I(F ≤ τ)bAM + I(F > τ)bSR, (7)

where F = (b′Sb/k)/(e′e/ν) is the test statistic for H0 : β = 0, τ is the critical value of the

pre-test, and I(A) is an indicator function such that I(A) = 1 if an event A occurs and I(A) =

0 otherwise. He showed by numerical evaluations that the heterogeneous pre-test estimator

dominates the PSR estimator for k = 3 if the critical value of the pre-test is chosen appropriately.

To improve the SR estimator, Tran Van Hoa and Chaturvedi (1990) suggested the following

family of two-stage hierarchial information (2SHI) estimators:

bH =
(

1 − cω
e′e

b′Sb
− c(1 − ω)

e′e

b′Sb + c∗e′e

)
b, (8)

where c and c∗ are two non-negative characterizing scalars, and ω is a constant such that

0 ≤ ω ≤ 1. If c ≤ 2(k − 2)/(ν + 2), the 2SHI estimator is minimax since it satisfies Baranchik’s

(1970) condition. When c∗ = 0 or when ω = 1, the 2SHI estimator reduces to the SR estimator.

Also, the 2SHI estimator reduces to the AMMSE estimator when ω = 0 and c = c∗ = k/ν.

Namba (1998) derived the explicit formula of the MSE of the 2SHI estimator and showed by

numerical evaluations that the 2SHI estimator has much smaller MSE than the PSR estimator in

the neighborhood of λ = 0 even when k = 8 if the values of c, c∗ and ω are chosen appropriately.

Thus, in this paper, we consider the following heterogeneous pre-test estimator which consists

of the 2SHI estimator and the SR estimator:

β̂H(τ) = I(F ≤ τ)bH + I(F > τ)bSR. (9)

Hereafter, we call this estimator the pre-test 2SHI (PT-2SHI) estimator. The PT-2SHI estimator

is inadmissible since it is not smooth enough.
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3 MSE of the PT-2SHI estimator

The MSE of the PT-2SHI estimator is

MSE[β̂H(τ)] = E[(β̂H(τ) − β)′S(β̂H(τ) − β)]

= E[β̂′
H(τ)Sβ̂H(τ)] − 2E[β′Sβ̂H(τ)] + β′Sβ

= E[I(F ≤ τ)b′HSbH + I(F > τ)b′SRSbSR]

−2E[I(F ≤ τ)β′SbH + I(F > τ)β′SbSR] + β′Sβ. (10)

Here, we define the functions, H(p, q, r, α; τ) and J(p, q, r, α; τ), as

H(p, q, r, α; τ) = E

[
I(F ≤ τ)

(b′Sb)p(e′e)q

(b′Sb + αe′e)r

]
, (11)

and

J(p, q, r, α; τ) = E

[
I(F ≤ τ)

(b′Sb)p(e′e)q

(b′Sb + αe′e)r
β′Sb

]
, (12)

and let a1 = cω, a2 = c(1 − ω) and a3 = c∗. Performing some manipulations, we have:

MSE[β̂H(τ)]

= (a2
1 − a2)H(0, 2, 1, 0; τ) + a2

2H(1, 2, 2, a3; τ) − 2(a1 − a)H(0, 1, 0, 0; τ)

−2a2H(1, 1, 1, a3; τ) + 2a1a2H(0, 2, 1, a3; τ) + H(1, 0, 0, 0;∞)

−2aH(0, 1, 0, 0;∞) + a2H(0, 2, 1, 0;∞) − 2(a − a1)J(0, 1, 1, 0; τ)

+2a2J(0, 1, 1, a3; τ) − 2J(0, 0, 0, 0;∞) + 2aJ(0, 1, 1, 0;∞) + β′Sβ. (13)

As is shown in appendix, the explicit formulae of H(p, q, r, α; τ) and J(p, q, r, α; τ) are

H(p, q, r, α; τ) = (2σ2)p+q−r
∞∑

i=0

wi(λ)Gi(p, q, r, α; τ), (14)

and

J(p, q, r, α; τ) = β′Sβ(2σ2)p+q−r
∞∑

i=0

wi(λ)Gi+1(p, q, r, α; τ), (15)
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where

Gi(p, q, r, α; τ) =
Γ ((ν + k)/2 + p + q − r + i)

Γ (k/2 + i)Γ (ν/2)

∫ τ∗

0

tk/2+p+i−1(1 − t)ν/2+q−1

[α + t(1 − α)]r
dt, (16)

wi(λ) = exp(−λ/2)(λ/2)i/i !, λ = β′Sβ/σ2 and τ∗ = kτ/(ν + kτ).

Substituting (14) and (15) in (13), we obtain the explicit formula of the MSE of the PT-2SHI

estimator.

Differentiating Gi(p, q, r, α; τ) with respect to τ , we have:

∂Gi(p, q, r, α; τ)
∂τ

=
Γ ((ν + k)/2 + p + q − r + i)

Γ (k/2 + i)Γ (ν/2)
kk/2+p+iνν/2+qτk/2+p+i−1

(kτ + αν)r(ν + kτ)(ν+k)/2+p+q−r+i
. (17)

Utilizing (17), and performing some manipulations, we obtain:

∂MSE[β̂H(τ)]/2σ2

∂τ

=
∞∑

i=0

wi(λ)
Γ ((ν + k)/2 + i + 1)
Γ (k/2 + i)Γ (ν/2)

kk/2+iνν/2τk/2+i−1

(ν + kτ)(ν+k)/2+i+1

×
[
(a2

1 − a2)
ν2

kτ
+ a2

2

kν2τ

(kτ + a3ν)2
− 2(a1 − a)ν − 2a2

kντ

(kτ + a3ν)

+2a1a2
ν2

(kτ + a3ν)
− λ(a − a1)

ν

k/2 + i
+ λa2

kντ

(k/2 + i)(kτ + a3ν)

]

=
∞∑

i=0

wi(λ)
Γ ((ν + k)/2 + i + 1)
Γ (k/2 + i)Γ (ν/2)

kk/2+iνν/2+1τk/2+i−1

(ν + kτ)(ν+k)/2+i+1
D1(τ)D2(τ), (18)

where

D1(τ) = a − a1 − a2
kτ

kτ + a3ν
, (19)

and

D2(τ) = −a
ν

kτ
− a1

ν

kτ
− a2

ν

kτ + a3ν
+ 2 − λ

k/2 + i
. (20)

From (18), a necessary condition of MSE[β̂H(τ)] to be monotone decreasing on τ ∈ (0, τ0)

is:

D1(τ)D2(τ) ≤ 0, (21)
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and a sufficient condition is:

D1(τ)D2(τ) ≤ 0 and D1(τ) ≥ 0. (22)

If a − a1 − a2 > 0, D1(τ) > 0. Also, if a − a1 − a2 < 0 and a − a1 > 0, D1(τ) ≥ 0 for

0 ≤ τ ≤ τ1, where τ1 is the positive solution of D1(τ) = 0.

Also, if we define

D∗
2(τ) = −a

ν

kτ
− a1

ν

kτ
− a2

ν

kτ + a3ν
+ 2

=
2k2τ2 + νk(2a3 − a − a1 − a2)τ − ν2a3(a + a1)

kτ(kτ + a3ν)
, (23)

then D∗
2(τ) ≥ D2(τ). Since a quadratic equation

2k2τ2 + νk(2a3 − a − a1 − a2)τ − ν2a3(a + a1) = 0 (24)

has one positive solution and one negative solution, D∗
2(τ) ≤ 0 for 0 < τ ≤ τ2, where τ2 is the

positive solution of (24).

Thus, the MSE of the PT-2SHI estimator is a monotone decreasing function of τ for 0 ≤ τ ≤

τ2 if a−a1 −a2 > 0. Also, if a−a1 > 0 and a−a1 −a2 < 0, the MSE of the PT-2SHI estimator

is a monotone decreasing function for 0 ≤ τ ≤ min[τ1, τ2]. Since the PT-2SHI estimator reduces

to the SR estimator when τ = 0, we obtain the following two theorems.

Theorem 1 If a − a1 − a2 > 0, the PT-2SHI estimator dominates the SR estimator for 0 <

τ ≤ τ2. Particularly, the PT-2SHI estimator with τ = τ2 has the smallest MSE among the class

of the PT-2SHI estimators with 0 < τ ≤ τ2.

Theorem 2 If a − a1 > 0 and a − a1 − a2 < 0, the PT-2SHI estimator dominates the SR

estimator for 0 < τ ≤ τ3, where τ3 = min[τ1, τ2]. Particularly, the PT-2SHI estimator with

τ = τ3 has the smallest MSE among the class of the PT-2SHI estimators with 0 < τ ≤ τ3.

Since further theoretical analysis of the MSE of the PT-2SHI estimator seems to be diffi-

cult, we compare the MSE’s of the PSR estimator and the PT-2SHI estimator by numerical

evaluations in the next section.
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Table 1: Values of τ4 for ω = 0.0 and cH = 30.0

k

n 3 4 5 6 8 10 12 15
20 .3310 .4923 .5870 .6463 .7125 .7392 .7396 .6880
25 .3390 .5060 .6042 .6681 .7433 .7820 .8003 .8010
30 .3440 .5142 .6153 .6815 .7613 .8053 .8305 .8471
35 .3480 .5202 .6230 .6905 .7730 .8200 .8486 .8722
40 .3501 .5250 .6285 .6971 .7813 .8300 .8606 .8880

4 Numerical analysis

In the numerical evaluations, we used the values of c = c∗ = cH(k − 2)/(ν + 2), where cH is a

positive constant. Also, the numerical evaluations were executed for k = 3, 4, 5, . . . , 15, n = 20,

25, 30, 35, 40 and λ = various values. The numerical evaluations were executed on a personal

computer, using the FORTRAN code. In evaluating the integral in Gi(p, q, r, α; τ) given in (16),

we used Simpson’s rule with 500 equal subdivisions. The infinite series in H(p, q, r, α; τ) and

J(p, q, r, α; τ) were judged to converge when the increment of the series got smaller than 10−12.

To compare the MSE performances of the estimators, we evaluated the values of relative

MSE defined as MSE(β̄)/MSE(b), where β̄ is any estimator of β. Thus, the estimator β̄ has

smaller MSE than the OLS estimator when the value of relative MSE is smaller than unity.

In a similar way to Ohtani (1999), we found the critical value of the pre-test, τ4, such that

MSE[β̂H(τ4)] = MSE[bPSR] down to five decimal places at λ = 0.

We found by trial and error that the relatively small value of ω (e.g., ω ≤ 0.1) and the

relatively large value of cH (e.g., cH ≥ 8.0) work effectively. Thus, we use the values ω = 0.0

and cH = 30.0 in the following numerical evaluations. The values of τ4 for ω = 0.0, cH = 30.0,

k =3, 4, 5, 6, 8, 10, 12, 15 and n = 20, 25, 30, 35, 40 are shown in Table 1.

The results for k = 5 and n = 20 are shown in Table 2. Since these results are qualitatively

typical, we do not show the results for the other cases. Though the PT-2SHI estimator with

τ = τ2 dominates the SR estimator from Theorem 2, it has slightly larger MSE than the PSR

8



Table 2
Relative MSE’s of the SR, PSR, and the PT-2SHI estimators

for k = 5 and n = 20

λ SR PSR PT − 2SHI
τ = τ1 τ = τ2 τ = τ4

(0.5477) (0.5133) (0.5870)

.0 .47059 .35330 .35336 .35335 .35330

.1 .48103 .36608 .36605 .36605 .36600

.2 .49117 .37855 .37843 .37845 .37841

.3 .50104 .39073 .39052 .39056 .39052

.4 .51062 .40261 .40233 .40238 .40235

.6 .52902 .42553 .42511 .42519 .42517

.8 .54642 .44737 .44682 .44693 .44692
1.0 .56288 .46818 .46753 .46765 .46765
1.5 .60036 .51603 .51516 .51533 .51534
2.0 .63318 .55845 .55745 .55765 .55768
3.0 .68747 .62951 .62841 .62864 .62869
4.0 .73000 .68565 .68458 .68481 .68487
5.0 .76376 .73020 .72924 .72945 .72951
6.0 .79094 .76577 .76493 .76512 .76519
7.0 .81309 .79437 .79366 .79383 .79388
8.0 .83138 .81754 .81696 .81710 .81715
9.0 .84666 .83648 .83602 .83613 .83617

10.0 .85955 .85211 .85174 .85183 .85187
12.0 .88003 .87609 .87587 .87593 .87595
14.0 .89545 .89341 .89328 .89331 .89333
16.0 .90745 .90639 .90632 .90634 .90635
18.0 .91701 .91647 .91643 .91644 .91645
20.0 .92480 .92453 .92451 .92451 .92452
22.0 .93127 .93113 .93112 .93112 .93112
24.0 .93671 .93665 .93664 .93664 .93664
26.0 .94137 .94133 .94133 .94133 .94133
28.0 .94539 .94537 .94537 .94537 .94537
30.0 .94889 .94888 .94888 .94888 .94888
40.0 .96131 .96131 .96131 .96131 .96131
50.0 .96888 .96888 .96888 .96888 .96888

100.0 .98428 .98428 .98428 .98428 .98428
150.0 .98948 .98948 .98948 .98948 .98948
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estimator in the neighborhood of λ = 0. Also, we see from Table 2 that the PT-2SHI estimator

with τ = τ1 has smaller MSE than the PT-2SHI estimator with τ = τ2 over a wide region of

λ though the MSE of the PT-2SHI estimator with τ = τ1 is slightly larger than that of the

PT-2SHI estimator with τ = τ2 around λ = 0. Furthermore, the PT-2SHI estimator with τ = τ4

dominates the PSR estimator. Though we do not show the results for the other cases, the

PT-2SHI estimator with τ = τ4 dominates the PSR estimator for the other values of k and n

considered here.

5 Concluding remarks

Shao and Strawderman (1994) proposed a family of estimators which dominate the PSR esti-

mator though they assumed that the disturbance variance is known. Sugiura and Takagi (1996)

extended Shao and Strawderman’s (1994) estimator to the case of unknown disturbance variance.

However, relatively large sample size is needed for Sugiura and Takagi’s estimator to dominate

the PSR estimator since the dominance is valid when the condition n ≥ max[9k + 10, 13k − 7]

holds.

Also, Ohtani (1999) showed that the heterogeneous pre-test (HPT) estimator which consists

of the AMMSE and SR estimators dominates the PSR estimator when k = 3. However, the

dominance is not hold when k ≥ 4.

Our numerical results show that the PT-2SHI estimator with the appropriate parameter

values dominates the PSR estimator even when k = 15 and n = 20. Though they were found by

trial and error, the parameter values we used in numerical evaluations are restricted and some-

what tentative. Thus, there may be more appropriate values such that the MSE performance of

the PT-2SHI estimator is improved over a wide region of the parameter space. However, since

it is beyond the scope of this paper to seek such values, it is a remaining problem for future

research.
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Appendix

First, we derive the formula for H(p, q, r, α; τ). Let u1 = b′Sb/σ2 and u2 = e′e/σ2. Then, u1 is

distributed as the noncentral chi-square distribution with k degrees of freedom and noncentrality

parameter λ = β′Sβ/σ2, u2 is distributed as the chi-square distribution with ν = n − k degrees

of freedom, and u1 and u2 are independent.

Using u1 and u2, H(p, q, r, α; τ) is expressed as

H(p, q, r, α; τ)

= E

[
I(F ≤ τ)

(σ2u1)p(σ2u2)q

(σ2u1 + ασ2u2)r

]

= (σ2)p+q−r
∞∑

i=0

Ki

∫∫

R
u

k/2+i−1
1 u

ν/2−1
2 exp[−(u1 + u2)/2]

up
1u

q
2

(u1 + αu2)r
du1 du2, (25)

where

Ki =
wi(λ)

2(ν+k)/2+iΓ (ν/2)Γ (k/2 + i)
, (26)

wi(λ) = exp(−λ/2)(λ/2)i/i !, and R is the region such that {(u1, u2)|u1 ≥ 0, u2 ≥ 0 and u1/u2 ≤

kτ/ν}.

Making use of the change of variables, v1 = u1/u2 and v2 = u2, (25) reduces to:

(σ2)p+q−r
∞∑

i=0

Ki

∫ τ∗∗

0

∫ ∞

0

v
k/2+p+i−1
1 v

(ν+k)/2+p+q−r+i−1
2

(v1 + α)r
exp[−(1 + v1)v2/2]dv2 dv1, (27)

where τ∗∗ = kτ/ν.

Again, making use of the change of variable, z = (1 + v1)v2/2, (27) reduces to:

(σ2)p+q−r
∞∑

i=0

Ki2(ν+k)/2+p+q−r+iΓ ((ν + k)/2 + p + q − r + i)

×
∫ τ∗∗

0

v
k/2+p+i−1
1

(1 + v1)(ν+k)/2+p+q−r+i(v1 + α)r
dv1. (28)

Further, making use of the change of variable, t = v1/(1+ v1), and substituting (26) in (28),

(28) reduces to (14) in the text.
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Next, we derive the formula for J(p, q, r, α; τ). Differentiating H(p, q, r, α; τ) given in (14)

with respect to β, we obtain:

∂H(p, q, r, α; τ)
∂β

= (2σ2)p+q−r
∞∑

i=0

[
∂wi(λ)

∂β

]
Gi(p, q, r, α; τ)

= (2σ2)p+q−r
∞∑

i=0

[
−Sβ

σ2
wi(λ) +

Sβ

σ2
wi−1(λ)

]
Gi(p, q, r, α; τ)

= −(Sβ/σ2)H(p, q, r, α; τ) + (Sβ/σ2)(2σ2)p+q−r
∞∑

i=0

wi(λ)Gi+1(p, q, r, α; τ), (29)

where we define w−1(λ) = 0.

Expressing H(p, q, r, α; τ) by b′Sb and e′e, we have:

H(p, q, r, α; τ) = E

[
I(F ≤ τ)

(b′Sb)p(e′e)q

(b′Sb + αe′e)r

]

=
∫∫

R′

(b′Sb)p(e′e)q

(b′Sb + αe′e)r
fN (b)fe(e′e)db d(e′e), (30)

where fe(e′e) is the density function of e′e,

fN (b) =
1

(2π)k/2|σ2S−1|1/2
exp

[
−(b − β)′S(b − β)

2σ2

]
(31)

is the density function of b, and R′ is the region such that {(b, e)|(b′Sb/k)/(e′e/ν) ≤ τ}.

Differentiating H(p, q, r, α; τ) given in (30) with respect to β, we obtain:

∂H(p, q, r, α; τ)
∂β

=
1
σ2

E

[
I(F ≤ τ)

(b′Sb)p(e′e)q

(b′Sb + αe′e)r
Sb

]
− Sβ

σ2
H(p, q, r, α; τ). (32)

Equating (29) and (32), and multiplying β′ from left, we obtain (15) in the text.

Acknowledgment

The author is grateful to Kazuhiro Ohtani for his very helpful guidance and to two anonymous

referees and Michael D. Perlman for their very useful comments.

References

Baranchik, A.J. (1970), A family of minimax estimators of the mean of a multivariate normal

distribution, Annals of Mathematical Statistics, 41, 642-645.

12



Farebrother, R.W. (1975), The minimum mean square error linear estimator and ridge regres-

sion, Technometrics, 17, 127-128.

James, W. and C. Stein (1961), Estimation with quadratic loss, Proceedings of the Fourth

Berkeley Symposium on Mathematical Statistics and Probability 1, (Berkeley, University

of California Press), 361-379.

Namba, A. (1998), Small sample properties of shrinkage estimators in econometrics, Master

Thesis, Kobe University.

Ohtani, K. (1996), On an adjustment of degrees of freedom in the minimum mean squared error

estimator, Communications in Statistics-Theory and Methods, 25, 3049-3058.

Ohtani, K. (1999), MSE performance of a heterogeneous pre-test estimator, Statistics and Prob-

ability Letters, 41, 65-71.

Shao, P.Y. and W.E. Strawderman (1994), Improving on the James-Stein positive-part estima-

tor, Annals of Statistics, 22, 1517-1538.

Stein, C. (1956), Inadmissibility of the usual estimator for the mean of a multivariate normal

distribution, Proceedings of the Third Berkeley Symposium on Mathematical Statistics

and Probability, (Berkeley, University of California Press), 197-206.

Sugiura, N. and Y. Takagi (1996), Dominating James-Stein positive-part estimator for normal

mean with unknown covariance matrix, Communications in Statistics-Theory and Meth-

ods, 25, 2875-2900.

Theil, H. (1971), Principles of Econometrics, (John Wiley, New York).

Tran Van Hoa and A. Chaturvedi (1990), Further results on the two-stage hierarchial information

(2SHI) estimators in the linear regression models, Communications in Statistics-Theory

and Methods, 19, 4697-4704.

13


