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Abstract 

Background. BRAF and K-ras genes are the most frequently mutated oncogenes in 

various human malignancies. We examined BRAF and K-ras mutations in human 

gastric cancer, and investigated the relationship with microsatellite instability (MSI) and 

hypermethylation of promoter regions in hMLH1 and O6-methylguanine DNA 

methyltransferase (MGMT). 

Methods. Sixteen gastric cancer cell lines and 62 gastric cancer tissue samples were 

screened for BRAF and K-ras mutations with direct sequencing. We also performed 

microsatellite assay and investigated methylation status in promoter regions of hMLH1 

and MGMT.  

Results. BRAF mutation was not found in cancer cell lines examined. One (1.6%) cancer 

tissue sample showed point mutation in BRAF gene (GTG-->GAG, V599E). K-ras 

mutation (GGT-->GAT, G12D) was detected in 5 (31%) gastric cancer cell lines and one 

(1.6%) gastric cancer tissue sample. In gastric cancer tissues examined, MSI was 

detected in 23 (37%) cases. Hypermethylated promoter regions were detected in 6 (10%) 

cases and 13 (21%) cases in hMLH1 and MGMT, respectively.  MSS (microsatellite 

stable) tumors showed frequent lymphatic invasion (P = 0.050). 

Conclusion. Although BRAF mutation was reported in a variety of other human cancers, 

it is a rare event in the carcinogenesis and progression/development of the gastric cancer.  
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Introduction  

Ras genes are the most frequently mutated oncogenes in human cancer [1,2]. The 

vast majority of Ras mutations found in human disease occur in K-ras, with mutations 

in H-ras being quite rare [3]. Activating point mutations usually occur at codon 12 and 

13 [2], and high frequency of codon 61 K-ras point mutation in lung and Harderian gland 

neoplasm of B6C3F1 mice exposed to chloroprene was also reported [4]. Recently, 

mutations in BRAF, a member of RAF family gene, were reported in human 

malignancies such as colon cancer and melanoma cells [5,6]. Almost all BRAF mutations 

have been reported within two kinase domains (G-loop domain and kinase domain), and 

the most common mutation is a single substitution, V599E [5-8]. BRAF protein plays a 

central role in the classical RAS/RAF/MEK/ERK pathway, acting to relay signals from 

activated RAS proteins [9,10]. It has been reported that dyfunction of RAS protein is not 

required for the growth of cancer cells with BRAF mutation [5].  

Hypermethylation of CpG islands is common changes in human cancers, and 

associated with silencing of various tumor suppressor genes in their promoters [11-13]. 

Wang et al. [14] reported that BRAF mutation was always found in tumors with 

microsatellite instability (MSI) in colorectal cancer and these tumors were found most 

often with an abnormality of hMLH1 and with hypermethylation of hMLH1 promoter. 

Koinuma et al. [15] suggested that BRAF activation may participate in the 
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carcinogenesis of sporadic colorectal cancers with hMLH1 hypermethylation in the 

proximal colon, independently of K-ras activation. However, BRAF mutation in gastric 

cancer is rare [16-18] and Zhao et al. [19] suggested that it did not associate with MSI. 

O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair protein that 

removes mutagenic and cytotoxic adducts from the O6- position of guanine. O6-

methylguanine is considered as adenine by DNA polymerases, thus leading to the 

frequent generation of G to A transitions in K-ras [20].  

In the present study, to discover the possibility that the alterations in BRAF and 

K-ras might play a role in stomach carcinogenesis, we analysed the occurrence of BRAF 

and K-ras mutations in gastric cancer cell lines and tissues. We also studied 

microsatellite status and hypermethylation of promoter regions in hMLH1 and MGMT 

to know the correlation with BRAF and K-ras genes.  

 

Subjects, materials, and methods 

Samples and DNA extraction.  

Sixteen gastric cancer cell lines were used in this study. Ten gastric cell lines of 

the HSC series (HSC-39,  -41, -42, -44PE,  -58, -60, -57, -59, -64 and SH101-P4) were 

provided by Dr. K. Yanagihara (National Cancer Center, Tokyo, Japan) [21,22], and 5 

human gastric carcinoma cell lines of the MKN series (MKN-1, -7, -28 , -45 and -74) were 
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kindly provided by Dr. T. Suzuki (Fukushima Medical College, Fukushima, Japan) [23]. 

TMK-1 was established from poorly differentiated adenocarcinoma of the stomach by 

Ochiai et al. [24]. The original histological type of HSC-39, -44PE, -57, -58, -59, 60, -64, 

MKN-45, -74 and TMK-1 is diffuse type of gastric cancer and HSC-41, -42, SH101-P4, 

MKN-1, -7 and -28 is intestinal type of gastric cancer. DNA was extracted with Wizard 

Genomic DNA Purification Kit (Promega, Madison, WI). Sixty-two primary gastric 

cancer samples were obtained from patients undergoing surgery in Hiroshima 

University Hospital (Hiroshima, Japan). Tumor tissues and normal control tissues were 

frozen immediately in liquid nitrogen after operation, and stored at --80˚C until use. 

Informed consent was obtained from all patients under approval by local ethical 

committee (approval number 23).  Genomic DNAs in this series of tumor were 

extracted as described previously [25]. We confirmed microscopically that the tumor 

specimens consisted mainly (>80%) of carcinoma tissue.  Clinicopathological information 

was obtained from medical charts and histopathological examination was performed 

according to the Japanese Classification of Gastric Carcinoma [26]. 

 

Direct Sequencing Analyses 

BRAF exon 11 and 15, K-ras exon 2 and 3, were amplified by PCR using the 

following primer sets: BRAF-exon 11, 5’-TCCCTCTCAGGCATAAGGTAA-3’ (sense)/       
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5’-CGAACAGTGAATATTTCCTTTGAT-3’ (antisense), BRAF-exon 15, 5’-TCATAATGC 

TTGCTCTGATAGGA-3’ (sense)/5’-GGCCAAAAATTTAATCAGTGGA-3’  (antisense),  

K-ras-exon 2, 5’-GTGTGACATGTTCTAATATAGTCA-3’ (sense)/5’- GAATGGTCCTGCA 

CCAGTAA-3’ (antisense), K-ras-exon 3, 5’-TCAAGTCCTTTGCCCATTTT-3’ (sense)/5’-

TGCATGGCATTAGCAAAGAC-3’ (antisense). Polymerase chain reaction (PCR) was 

performed in total 15-µl reaction volumes containing 1-µl template DNA, 0.56 µM of 

each primer, 74.7 µM each of dATP, dGTP, dCTP, dTTP, 4.5 mM of MgCl2, 0.075 unit of 

AmpliTaq Gold (Applied Biosystems, Foster City, CA, USA). The PCR amplification was 

used with “hot-start PCR” and consisted of 35 cycles (94˚C for 30 s, 58˚C [BRAF exon 11, 

15 and K-ras exon 2] or 64˚C [K-ras exon 3] for 30 s, 72˚C for 30 s) after the initial Taq 

DNA polymerase activation step (95˚C for 12 min), followed by a final extension for 3 

min at 72˚C.  

PCR products were sequenced using each sense primer and the ABI PRISM BigDyeTM 

Terminator v3.0 Cycle Sequencing Ready Reaction (Applied Biosystems) and an automated DNA 

sequencer. Mutations in these genes were confirmed by sequencing reaction using each antisense 

primer. All experiments were duplicated precisely. 
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Microsatellite Analyses 

Five microsatellite markers (D1S191, D5S346, D17S250, BAT-25 and BAT-26) 

were analyzed [27]. The forward primers were fluorescein-labeled with [6-FAM] (D1S191, 

D17S250 and BAT-26), [VIC] (D5S346) and [TAMRA] (BAT-25). PCR was performed as 

described above. The PCR amplification consisted of 35 cycles (94˚C for 30 s, 55˚C for 30 

s, 72˚C for 30 s) after the initial Taq DNA polymerase activation step (95˚C for 10 min), 

followed by a final extension for 10 min at 72˚C. PCR products were electrophoresed in 

ABI PRISM 310 Genetic Analyzer along with GeneScan-500 [ROX] molecular weight 

standard (Applied Biosystems). The size of the PCR product was analysed using 

GeneScan software (Applied Biosystems). We classified the status of MSI in each tumor 

according to the criterion by Boland et al. [27]: microsatellite stable (MSS), MSI was not 

observed in any microsatellite locus examined; low frequency of MSI (MSI-L), one out of 

5 loci revealed MSI; high frequency of MSI (MSI-H), two or more microsatellite loci 

showed MSI.  

 

Bisulfite PCR and methylation-specific PCR (MSP) 

To examine the DNA methylation patterns, we treated genomic DNA with 

sodium bisulfite, as described by Herman et al. [28,29]. For analysis of DNA methylation 

of MGMT, we performed MSP. For analysis of DNA methylation of hMLH1, we 
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performed bisulfite-PCR followed by restriction digestion as previously described 

elsewhere [25,30]. The PCR products were loaded onto 8% non-denaturing 

polyacrylamide gels, stained with ethidium bromide, and visualized under UV light.  

 

Statistical analyses 

Associations between the MSI and methylation status of hMLH1 and MGMT 

gene promoter regions, and relationship between MSI status and clinicopathological 

factors were assessed by theχ2  test. A P value less than 0.05 was regarded as 

statistically significant. 

 

Results 

Point mutation of BRAF and K-ras 

We first examined the gastric cancer cell lines and tissue samples for presence of 

point mutations in BRAF exon 11, 15 and K-ras exon 2, 3 by direct sequencing. No 

BRAF point mutation was found in gastric cancer cell lines examined (Table 1). One 

(1.6%) gastric cancer tissue (A771: por2, T3, N2, stage III) showed BRAF point mutation 

(GTG-->GAG at codon 599, Val-->Glu) (Fig. 1A). Frequency of BRAF mutation in gastric 

cancer cell lines and tissues were 0% and 1.6%, respectively. On the other hand, HSC-41, 

-42, -44PE, -57 and SH101-P4 (Table 1) and one (1.6%) gastric cancer (H205: tub1, T2, 
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N0, stage I) (Fig. 1B) had K-ras point mutation (GGT-->GAT at codon 12, Gly-->Asp). 

Two out of 10 (20%) cell lines originated from diffuse type gastric cancer and 3 of 6 (50%) 

cell lines from intestinal type gastric cancer had K-ras mutation. 

 

Microsatellite analyses in gastric cancers 

We performed microsatellite assay in these gastric cancer samples with 5 

microsatellite markers. Results are shown in Table 2. Overall, MSI was detected in 23 

(37%) of 62 cases: MSI-H (14 cases, 23%), MSI-L (9 cases, 14%). Especially, MSI was 

frequently observed at loci of D1S191 (18 cases, 29%), BAT 25 (11 cases, 18%) and 

D5S346 (10 cases, 16%). The case with BRAF point mutation (A771) showed MSS. 

While the case with K-ras point mutation (H205) demonstrated MSI-H. 

When we analyzed the relationship between MSI status and clinicopathological 

factors (Table 3), gastric cancers with MSS showed frequent lymphatic invasion (P =  

0.050).  

 

Methylation status of hMLH1 and MGMT in gastric cancers. 

Among these 62 gastric cancer tissues, DNA hypermethylation was detected in 

the following frequencies: 6 (10%) for hMLH1, 13 (21%) for MGMT (Table 2). Of 6 cases 

with hMLH1 hypermethylation, three were accompanied with MSI (MSI-H, 2 cases;  
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MSI-L, 1 case). One case with BRAF mutation (A771) demonstrated stable microsatellite 

and did not have hypermethylation in the promoter of hMLH1 or MGMT. Although 

MSI-H was detected in a case with K-ras mutation (H205), hypermethylation of hMLH1 

or MGMT was not detected in their promoter regions. 

Significant correlation was not observed between clinicopathological factors and 

promoter hypermethylation of hMLH1 or MGMT in the present series of gastric 

carcinomas. 

 

Discussion 

Recently, BRAF mutation was found in wide range of human cancers [5], 

especially in melanoma cell lines (59%) and tissues (56--68%) [5,31,32], thyroid cancer 

cell lines (80%) and tissues (10--45%) [33,34], colorectal cancer cell lines (7%) and tissues 

(5.1--22%) [14,15,18,35]. On the other hand, BRAF mutation was infrequent (1.6%) in 

gastric cancer tissues in our study; that is conformable to those reported previously (0--

2.2%) [16-19]. According to the BRAF mutation in gastric cancer cell lines, no 

information has been available up to now. We could not detect any BRAF mutation, exon 

11 and 15, in 16 gastric cancer cell lines studied.  

K-ras mutation frequency was reported previously to be 70--100%, 7--80% and 10-

-48% in pancreatic, colorectal, and lung cancer tissues, respectively [35-38]. In gastric 
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cancer, the frequency of K-ras mutation was reported to be 2.8--20% [17,19,39,40]. In the 

present study, K-ras mutation was also infrequent (1/62, 1.6%) in gastric cancer tissues. 

In contrast, the frequency of K-ras mutation in gastric cancer cell lines was higher (31%) 

in this study than those reported previously (19%) [16]. Miki et al. [41] reported the 

intestinal type of gastric cancer had higher frequency of K-ras mutation than those of 

the diffuse type tumors. We considered that the frequency of K-ras mutation was also 

higher in cell lines from intestinal type gastric cancer than in those from diffuse type. 

Ten-percent of gastric cancer tissues in this study showed hypermethylation in 

the promoter of hMLH1, which was slightly lower than the frequency reported 

previously (14--37%) [25,42-44]. The frequency of hypermethylation in the promoter of 

MGMT in present study (21%) was matched to those reported lately (16--61%) [25,42,44-

46]. In the present study, only 14% and 21% MSI-H gastric cancers were accompanied 

with hypermethylation in the promoter of hMLH1 and MGMT, respectively, obviously 

lower than those reported previously (37%--87.5%,  61%) [42,43,47]. MSS tumors showed 

frequent lymphatic invasion, which may correlate with previous observation that MSS 

tumors had tendency to have poorer prognosis than MSI ones [48,49]. 

Although MMR-deficient colorectal cancers have been reported to show  high incidence of 

BRAF mutations and lower incidence of K-ras mutations compared with MMR-proficient colorectal 

cancers [6], we could not find any relationship between MMR-deficiency and mutation of BRAF and K-
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ras in gastric carcinomas. Moreover, no connection was shown between K-ras mutation and 

hypermethylation of the promoter region in MGMT in gastric cancer. These findings may indicate the 

difference between gastric and colorectal carcinomas on their tumorigenesis. Further investigation will 

be required to clarify that point. 
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Figure legends 

 

Figure 1 BRAF and K-ras mutations in gastric carcinomas. A, the case with BRAF 

mutation (A771). Point mutation at codon 599 was detected in the cancer lesion 

(GTG-->GAG). B, the case with K-ras mutation and MSI (H205). Point mutation at 

codon 12 was detected in the cancer lesion (GGT-->GAT). 
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Table 1. Mutation of BRAF and K-ras in gastric cancer cell lines 

 BRAF point mutation K-ras point mutation 
 

Cell line  
Exon 11 Exon 15 Exon 2 Exon 3 

 HSC-39 -- --  -- -- 
 HSC-41 -- --  G216A /G13D -- 
 HSC-42 -- --  G216A /G14D -- 
 HSC-44PE -- --  G216A /G12D -- 
 HSC-57 -- --  G216A /G15D -- 
 HSC-58 -- --  -- -- 
 HSC-59 -- --  -- -- 
 HSC-60 -- --  -- -- 
 HSC-64 -- --  -- -- 
 SH101-P4 -- --  G216A /G15D -- 
 MKN-1 -- --  -- -- 
 MKN-7 -- --  -- -- 
 MKN-28 -- --  -- -- 
 MKN-45 -- --  -- -- 
 MKN-74 -- --  -- -- 
 TMK-1 -- -- -- -- 
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Table 2. Status of MSI and methylation in promoter regions of hMLH1 and MGMT in 
gastric cancers 

Case ID  BRAF 
mutation  

K-ras 
mutation 

Microsatellite 
status   

hMLH1 methy-
lation status    

MGMT methy-
lation status 

A517  --  --  MSI-H  --  + 
A803  --  --  MSI-H  --  -- 
G102  --  --  MSI-H  --  -- 
G109  --  --  MSI-H  +  -- 
G209  --  --  MSI-H  --  + 
H204  --  --  MSI-H  --  -- 
H205  --  G12D  MSI-H  --  -- 
H206  --  --  MSI-H  --  + 
H208  --  --  MSI-H  --  -- 
K108  --  --  MSI-H  --  -- 
K111  --  --  MSI-H  --  -- 
K116  --  --  MSI-H  +  -- 
K202  --  --  MSI-H  --  -- 
R102  --  --  MSI-H  --  -- 
A769  --  --  MSI-L  --  -- 
G105  --  --  MSI-L  --  + 
G106  --  --  MSI-L  --  -- 
G202  --  --  MSI-L  --  -- 
G210  --  --  MSI-L  +  -- 
H203  --  --  MSI-L  --  -- 
H207  --  --  MSI-L  --  -- 
H210  --  --  MSI-L  --  -- 
K101  --  --  MSI-L  --  -- 
A518  --  --  MSS  --  -- 
A519  --  --  MSS  --  -- 
A529  --  --  MSS  --  -- 
A531  --  --  MSS  --  -- 
A734  --  --  MSS  --  + 
A741  --  --  MSS  --  -- 
A768  --  --  MSS  --  + 
A771  V599E  --  MSS  --  -- 
A774  --  --  MSS  --  + 
A776  --  --  MSS  --  -- 
A777  --  --  MSS  --  -- 
A778  --  --  MSS  --  -- 
G103  --  --  MSS  --  -- 
G104  --  --  MSS  --  + 
G107  --  --  MSS  --  + 
G108  --  --  MSS  --  -- 
G110  --  --  MSS  --  -- 
G112  --  --  MSS  --  -- 
G114  --  --  MSS  --  -- 
G201  --  --  MSS  --  -- 
G212  --  --  MSS  --  + 
H201  --  --  MSS  +  -- 
H202  --  --  MSS  --  -- 
H209  --  --  MSS  --  -- 
H211  --  --  MSS  --  -- 
H212  --  --  MSS  --  + 
J201  --  --  MSS  --  + 
K113  --  --  MSS  --  -- 
K118  --  --  MSS  --  + 
K201  --  --  MSS  +  -- 
K206  --  --  MSS  --  -- 
K208  --  --  MSS  --  -- 
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R101  --  --  MSS  +  -- 
R103  --  --  MSS  --  -- 
R104  --  --  MSS  --  -- 
S202  --  --  MSS  --  -- 
S203  --  --  MSS  --  -- 
S204  --  --  MSS  --  -- 

A8086  --  --  MSS  --  -- 
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Table 3. Comparison of clinicopathological parameters of adenocarcinomas of the 
stomach with MSI and MSS 
       MSI status  

    
Total        

 MSI   MSS  
       n (%) n (%) n (%)  

P value2 

 Total  62 (100.0)  23 (22.0)   39 (64.0)   
 Histological type            
  tub1  9 (14.5)  2 (8.7)   7 (17.9)  P = 0.320 
  tub2  17 (27.4)  8 (34.8)   9 (23.1)   
  pap  7 (11.3)  4 (17.4)   3 (7.7)   
  por1  9 (14.5)  5 (21.7)   4 (10.3)   
  por2  16 (25.8)  3 (13.0)   13 (33.3)   
  sig  3 (4.8)  1 (4.3)   2 (5.1)   
  und  1 (1.6)  0 (0.0)   1 (2.6)   
 Depth of invasion1            
  T1 (M, SM) 3 (4.8)  1 (4.3)   2 (5.1)  P = 0.462 
  T2 (MP, SS) 27 (43.5)  13 (56.5)   14 (35.9)   
  T3 (SE)  29 (46.8)  8 (34.8)   21 (53.8)   
  T4 (SI)  3 (4.8)  1 (4.3)   2 (5.1)   
 Lymphatic invasion           
  ly (-)  7 (11.5)  5 (21.7)   2 (5.3)  P = 0.050 
  ly (+)  54 (88.5)  18 (78.3)   36 (94.7)   
 Lymph node  metastasis1          
  N0  19 (30.6)  8 (34.8)   11 (28.2)  P = 0.780 
  N1  14 (22.6)  5 (21.7)   9 (23.1)   
  N2  17 (27.4)  7 (30.4)   10 (25.6)   
  N3  12 (19.4)  3 (13.0)   9 (23.1)   
 Venous invasion           
  v (-)  10 (16.1)  5 (21.7)   5 (12.8)  P = 0.356 
  v (+)  52 (83.9)  18 (78.3)   34 (87.2)   
 Liver metastasis             
  H0  58 (93.5)  22 (95.7)   36 (92.3)  P =0.605 
  H1  4 (6.5)  1 (4.3)   3 (7.7)   
 Peritoneal metastasis           
  P0  56 (90.3)  21 (91.3)   35 (89.7)  P = 0.841 
  P1  6 (9.7)  2 (8.7)   4 (10.3)   
 Other distant metastases          
  M0  57 (91.9)  22 (95.7)   35 (89.7)  P = 0.409 
  M1  5 (8.1)  1 (4.3)   4 (10.3)   
 Tumor stage1             
  I  16 (25.8)  6 (26.1)   10 (25.6)  P = 0.922 
  II  7 (11.3)  3 (13.0)   4 (10.3)   
  III  22 (35.5)  7 (30.4)   15 (38.5)   
  IV  17 (27.4)  7 (30.4)   10 (25.6)   
1 Depth of invasion, lymph node metastasis and tumor stage was evaluated according to 
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the criteria of the Japanese Classification of Gastric Carcinoma [26]. 
2 Statistical analysis was performed by χ2  test. A P value less than 0.05 were regarded 
to be significant. 
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