

PDF issue: 2025-06-01

Isomerization of (Z)-alkenylsilanes to (E)isomers with hydrosilane and RhI(PPh3)3

Mori, Atsunori Takahisa, Eisuke Nishihara, Yasushi Hiyama, Tamejiro

(Citation) Canadian Journal of Chemistry,79(11):1522-1524

(Issue Date) 2001-11

(Resource Type) journal article

(Version) Accepted Manuscript

(URL) https://hdl.handle.net/20.500.14094/90000449

Isomerization of (Z)-alkenylsilanes to (E)-isomers with hydrosilane and RhI(PPh3)3

Atsunori Mori,* Eisuke Takahisa, Yasushi Nishihara, and Tamejiro Hiyama[‡] *Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Yokohama 226-8503, Japan* Phone +81 459245231, Fax +81 459245224, e-mail amori@res.titech.ac.jp

Abstract

Isomerization of (*E*)-2-phenylethenylsilanes to the (*Z*)-isomers is found to easily take place at 60 °C within 1 h using 20-100 mol% of a hydrosilane and 0.1 mol % of RhI(PPh₃)₃ and is understood in terms of insertion of alkenylsilanes to hydridorhodium followed by β -hydride elimination.

Key words: hydrosilylation, isomerization, RhI(PPh3)3, alkenylsilane, hydrosilane

Regio- and stereoselective hydrosilylation of terminal alkynes leading to alkenylsilanes is a significant reaction in organic synthesis as well as organometallic chemistry. Among a number of transition metal catalysts endowed with a variety of features, rhodium complexes show high activity as well as characteristic selectivities. We recently disclosed that rhodium-catalyzed hydrosilylation of terminal alkynes using a hetereoatom-substituted hydrosilane (*e.g.*, **1a** and **1b**) produced (Z)-alkenylsilanes (**2**) or (E)-alkenylsilanes (**3**) depending on the reaction procedure as shown in Scheme 1.²

Meanwhile, we observed that (E)-alkenylsilanes **3** were obtained through isomerization of initially produced (Z)-isomers **2**. This observation suggests that the hydrosilylation might have occurred through *trans*-addition of a hydrosilane to give **2** followed by isomerization to *cis*-adduct **3**. This isomerization js unusual in view of stereochemistry of hydrosilylation.^{3,4} We report here that the isomerization of **2** to **3** is promoted by the presence of a hydrosilane and RhI(PPh₃)₃. We also discuss mechanistic aspect of the isomerization.

phenylacetylene When а mixture of and pentamethyldisiloxane (1a) was heated at 60 °C in the presence of 0.1 mol % of RhI(PPh₃)₃, the reaction leading (*E*)-2-phenylethenylsilane **3a** proceeded highly to selectively. At 26% conversion, ratio of resulting (Z)-2phenylethenylsilane (2a) and (E)-isomer (3a) was 92 : 8. The isomer ratio gradually changed in favor of 3a as the reaction proceeded. At 89% conversion, the ratio was 37 : 62; at >99% conversion, 0 : 100 (Scheme 2).

Scheme 2

In the presence of 0.1 mol% of RhI(PPh₃)₃ only, **2a** did not isomerize at 60 °C in 24 h (see: Table 1, entry 1), whereas the isomerization started to take place rapidly when 10 mol % of pentamethyldisiloxane (**1a**) was added to the mixture, and after 1 h a 65 : 35 mixture of (*Z*)-isomer **2a** and (*E*)-isomer **3a** resulted. The ratio did not change 1 h thereafter, while most of **1a** was consumed. ^{5,6} Addition of **1a** (0.6 mol) to the reaction mixture reinitiated the isomerization to complete the transformation to (*E*)-isomer **3a** within 1 h. Use of larger amount of **1a** more accelerated the isomerization (entries 4-6). Thus, the isomerization appears to be competitive with the consumption of

hydrosilane 1a, both presumably being catalyzed by the rhodium complex. (Z)-Isomer 2b with a p-tolyl group isomerized faster than 2a to give (E)-isomer 3b exclusively using 20 mol% of 1a in 1 h at 60 °C (entry 8). Isomerization of (Z)-isomer 2c to (E)-isomer 3c also occurred similarly in the presence of diethoxy(methyl)silane (1b).

Table 1. Isomerization of (Z)-alkenylsilanes^{*a*}

Ph 2	SiY ₃	H–Si` RhI(P (0.1 m	Ph ₃) ₃	Ph	SiY ₃ 3
entry	2 (% Z)	H–Si Y	′ ₃ , mol	time/h	2 : 3 ^b
1	2a (99)		none	24	97:3
2		1a	0.1	1	65:35
3				2	61:39
4			+0.6 ^{c)}	1	0:100
5			0.2	1	24:76
6			0.3	1	0:100
7	2b (95)		0.1	1	27:73
8			0.2	1	0:100
9	2c (93)	1b	0.2	1	2:98

^a All reactions were carried out using 0.1 mol% of RhI(PPh₃)₃ at 60 PC.^bThe ratio was determined by ¹H NMR. ^{*c*}Additional 0.6 mol of hydrosilane was added to the product mixture resulting from the experiment in entry 3.

Table 2 shows scrambling experiments using an equimolar mixture of (Z)-2-phenylethenylsilane 2 and hydrosilane 1 with a different silvl group SiY₃ or SiZ₃. Scrambling of a silyl group was at best 6% after isomerization at 60 °C for 1 h. These results show that the silyl exchange does not occur extensively during the isomerization to the corresponding (Z)-silane 3.

On the other hand, the scrambling experiments using DSiMe₂Ph (1c-d) revealed that a fair amount of deuterium was incorporated into the product. For example, as illustrated in Scheme 3, when the isomerization was carried out starting with an equimolar mixture of 1c-d and (Z)-2phenylethenylsilane 2a, a 1.3 : 1 mixture of (E)-isomer 3a and 1-deuterio-2-phenylethenyllsilane **3a**-*d* resulted.⁸

 Table 2.
 Isomerization of Z-alkenylsilanes
using hydrosilane with different substituents

/=	·\ +	H–SiZ ₃	RhI(PPh ₃) ₃ (0.1 mol%)	•		
Phí			60 ÞC, 1 h	-		
2		1 Ph	SiY₃ + Ph∕≈	SiZ ₃		
			Products ^a			
entry	2	1	-{-SiY3	-}-SiZ3		
1	2b	1a	86%	0%		
2	2a	1b	87%	6%		
3	2a	1c	80%	0%		
^a Y ields determined by ¹ H NMR.						

Scheme 3

Above observations lead to a mechanism shown in Scheme 4: Oxidative addition of HSiZ₃ to $Rh(I)L_n$ followed by insertion of (Z)-alkenylsilane 2 to the resulting Rh(III) species 4 would furnish intermediate 5. The scrambling experiments shown in Table 2 and Scheme 3 suggest that the insertion occurs at a Rh(III)-H bond in 4 rather than a Rh(III)-Si bond. The results contrast sharply to the fact that insertion of a carbon-carbon triple bond towards a H-Rh(III)-SiZ3 species is considered to occur at a rhodium-silicon bond.³ Thus, the isomerization proceeds via an insertion- β -elimination mechanism, which is rarely considered for alkenylsilane isomerization though often discussed in olefin isomerization." The regiochemistry is controlled to give 5 so that the rhodium atom is located at β -position of SiY3. Successive β -elimination leading to (E)-alkenylsilanes 3 would occur after C-C bond rotation to

induce syn-periplanar conformation of a Rh-C-C-H moiety.

Scheme 4

We have found that the rhodium-catalyzed isomerization of (Z)-2-phenylethenylsilane 2 to (E)-isomers 3 takes place in the presence of a catalytic amount of hydrosilane and a rhodium catalyst. Since hydrosilylation of 1-alkynes also proceeds in a similar stereochemical manner, it would be reasonable to assume that similar isomerization pathway is invoved in these cases also. In addition, the isomerization was demonstrated to proceed through insertion-B-elimination of a hydridorhodium H-Rh(III)-Si to alkenylsilane in contrast to the reaction of the species with a triple bond which has been considered to insert at the rhodium-silicon bond.

Acknowledgement

This work was supported by Yamada Science Foundation and by a Grant-in-Aid for Scientific Research on Priority Areas "The Chemistry of Inter-element Linkage" (No. 09239102) from Ministry of Education, Science, Sports and Culture, Japan. We thank Shin-Etsu Chemical Co. Ltd for kind donation of organosilicon reagents.

[†] This paper is dedicated to Professor Victor Snieckus on the occasion of his 64th birthday.

[‡] Present address: Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Sakyoku, Kyoto 606-8501, Japan.

References and Notes

- T. Hiyama and T. Kusumoto, "Hydrosilylation of C=C and C=C" in Comprehensive Organic Synthesis, Vol 8, Pergamon Press, 1991.
- 2 A. Mori, E. Takahisa, H. Kajiro, K. Y. Nishihara, and T. Hiyama, Chem. Lett., 443 (1998). Idem, Polyhedron,

19, 567 (2000).

- Wilkinson complex RhCl(PPh3)3 is reported to catalyze the reaction of 1-alkynes with trialkylsilane leading to (Z)-alkenylsilanes. The stereochemical outcome is understood in terms of initial *cis*-addition to give (E)products followed by isomerization to (Z)-isomers. I. Ojima, N. Clos, R. J. Donovan, and P. Ingallina, Organometallics, 9, 3127 (1990). See also; R. Takeuchi, S. Nitta, and D. Watanabe, J. Org. Chem., 60, 3045 (1995) and references cited therein.
- 4 Isomerization of (*Z*)-alkenyltriethylsilanes to (*E*)isomers catalyzed by iridium complexes: M. A. Esteruelas, O. Nürnberg, M. Oliván, L. A. Oro, and H. Werner, Organometallics, **12**, 3264 (1993).
- 5 Reaction of **3a** in the presence of 0.1 mol% of RhI(PPh₃)₃ afforded the corresponding disilane as confirmed by H NMR.
- 6 K. Shintani, O. Ooi, A. Mori, and Y. Kawakami, Polym. Bull., 38, 1 (1997).
- We also observed the similar isomerization in the use of 0.1 mol% of RhCl(PPh₃)₃. See also: H. M. Dickers, R. N. Haszeldine, A. P. Mather, and R. V. Parish, J. Organometal. Chem., 161, 91 (1978).
- 8 Typical experimental procedure: To a screw capped glass tube were added a (Z)-2-phenylethenylsilane 2 (1.0 mmol), a hydrosilane (0.1-0.3 mmol) and RhI(PPh3)3 (0.1 mol %, 1 mg). The resulting mixture was heated at 60 °C for 1 h. The isomerization was monitored by taking aliquot of the solution and measuring ¹H NMR spectra in a CDCl3 solution. After the isomerization was completed, the corresponding (*E*)-silane **3** was isolated by bulb-to-bulb distillation.
- 9 The major product of the following equation showed ¹H NMR spectrum identical to the deuterated product in Scheme 3. ¹H NMR (CDCl₃, 300 MHz) δ 6.92 (t, *J* = 2.7 Hz, 1 H, PhC<u>H</u>=CDSi) for **3a**-*d*; 6.95 (d, *J* = 19.2 Hz, 1 H, PhC<u>H</u>=CHSi) for **3a**.

10 J. P. Collman, L. S. Hegedus, J. R. Norton, and R. G. Finke, in "Principles and Application of Organotransition Metal Chemistry", University Science Books, Mill Valley, CA (1987), Chap. 10, p. 523.