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ASYMPTOTICALLY EXACT CONFIDENCE
INTERVALS OF CUSUM AND CUSUMSQ TESTS:
A Numerical Derivation Using Simulation Technique

Hisashi TANIZAKI
Faculty of Economics, Kobe University, Nada-ku, Kobe 657, JAPAN

ABSTRACT: In testing a structural change, the approximated confidence intervals
are conventionally used for CUSUM and CUSUMSQ tests. This paper numerically
derives the asymptotically exact confidence intervals of CUSUM and CUSUMSQ tests.
It can be easily extended to nonnormal and/or nonlinear models.

KEY WORDS: CUSUM test, CUSUMSQ test, Monte-Carlo simulation, Asymptot-
ically exact confidence interval

1 INTRODUCTION

There is a great amount of literature on use of recursive residuals, e.g., Brown, Durbin
and Evans (1975), Galpin and Hawkins (1984), Harvey (1989), Johnston (1984), Ploberger
(1989), Ploberger, Kramer and Alt (1989), and Westlund and Térnkvist (1989). Especially,
Brown, Durbin and Evans (1975) described an important application of recursive residuals
in testing for structural change over time. The technique is appropriate for time series data,
and might be used if one is uncertain about when a structural change might have taken
place. We have two tests; cumulative sum (CUSUM) test and cumulative sum of squares
(CUSUMSQ) test The null hypothesis is that the coefficient vector (8 is the same in every
period; the alternative is simply that it (or the disturbance variance) is not. The test is
quite general in that it does not require a prior specification of when the structural change
takes place. However, it is known that the power of the test is rather limited compared to
that of the Chow test. The test is frequently criticized on this basis. However, the Chow
test is based on a rather definite piece of information, namely, when the structural change
takes place. If this is not known or must be estimated, the advantage of the Chow test
diminishes considerably (see Greene (1990) and Krémer (1989)). See Galpin and Hawkins
(1984) for an application.

One of the reasons why the CUSUM test is less powerful is that the confidence interval
of the test is approximated. For the CUSUM test statistic, we cannot derive the explicit
distribution, and therefore the approximated confidence interval is conventionally used in
testing the stability of the coefficient. Although it is known that the CUSUMSQ test statistic
is distributed as a beta random variable, the confidence interval of the CUSUMSQ test
is also approximated. Therefore, in this paper, an attempt is made to obtain the exact
confidence intervals of the CUSUM and CUSUMSQ tests asymptotically using the Monte-
Carlo simulation technique. Moreover, the power is compared for both the approximated
confidence intervals (the confidence intervals conventionally used) and the simulated ones
(the confidence intervals proposed in this paper).



2 OVERVIEW OF CUSUM AND CUSUMSQ TESTS

Consider the following regression model:
Y =2 + e, ug ~ N(0,0?), t=1,---,T,

where [ is a k x 1 unknown parameter vector. y; is a dependent variable while x; isa 1 X k
vector of independent variables. w; is assumed to be normally distributed with mean zero
and variance o2. Define X; and Y; as follows:

Y1 x1

Y2 Z2
}/t - . ) Xt =

Yt Tt

The null hypothesis of no structural change for the model is specified as:
H()Zﬂl:/[)'Q:...:ﬂT:ﬁ and g%:g%:...:a%:OQ’

where f3; denotes the vector of coefficients in period ¢ and o7 the disturbance variance in
that period. The null hypothesis would be violated if 3 remained constant but o2 varies.

Let b; be the ordinary least squares estimate of 3; using the data Y; and Xy, i.e., by =
(X7X;)7'X]Y;. Tt is well known that b; is obtained recursively (see Brown, Durbin and
Evans (1975), Johnston (1984) and Riddell (1975) for the recursive algorithm). The recursive
residual is defined as:

_ Y — Teby—1 (1)
\/1 + xt(Xt/_lthl)_livi ’

Wt

which has mean zero and variance o2.

The CUSUM test statistic for testing structural change is given by:

t
W, = Zwi/a, t=k+1,---,T, 2)
i=k+1
1 T
where 6% = T % Z w?, which implies the unbiased estimate of 0. The expected value
i=k+1

of W; is zero and the distribution of W; is symmetric about zero if the disturbance in the
regression model is symmetric. Since we cannot obtain the explicit distribution of W}, we
conventionally test as follows. The null hypothesis is accepted if Wy, t = k+ 1,---,T,
stay within a pair of straight lines which pass through the points (k, +c,vT — k) and
(T, £3cwVT — k), where ¢, is a parameter depending on the significance level « chosen for
the test. It is known that we have ¢,, =1.143 when o =0.01, ¢,, =0.948 when « =0.05 and
¢y =0.850 when a =0.10 (see Brown, Durbin and Evans (1975) and Johnston (1984)).

The CUSUM test is usually used with the CUSUMSQ test, which plays a role of com-
plement to the CUSUM test. Using the CUSUM test, we can see when the structural
change occurs. However, the CUSUM test is not very powerful. Even though the structural
change clearly takes place in a period, the null hypothesis is often accepted. Conversely, the
CUSUMSQ test is too powerful but we cannot know the period when the structure changes.
Accordingly, both tests are complementarily used.

The CUSUMSQ test statistic which is the alternative test to the CUSUM test is repre-
sented as:

Sy = Zt: wf/ XT: w2, (3)

i=k+1 i=k+1



Table 1. « =0.10, 0.05, 0.01 and T' — k£ =10, 20, 30, 40, 50

T—k 10 20 30 40 50
o
0.10 39075 31325 26767 .23781  .21630
0.05 44641 35277  .30081 .26685 .24245
0.01 54210 43071 .36649 .32459  .29456
t—k T-—t

which is distributed as a Beta random variable with parameter ( —
t

—k
value of S; is T 5 Also, the confidence interval is conventionally approximated, which is

). The expected

t—k
given by a pair of straight lines ¢, T where c; depends on both the sample size T'— k

and the significance level a. For o =0.10, 0.05, 0.01 and T'— &k =10, 20, 30, 40, 50, ¢, is given
by Table 1, which represents a both-sided test. See Durbin (1969) and Johnston (1984) for
¢s. Durbin (1969) pointed out that the test statistic gives us a good approximation when
T — k is large (see Harvey (1981)).

An example of T'— k = 50 and o = 0.01, 0.05, 0.10 is taken in Figures la and 1b.
90%, 95% and 99% denote the confidence intervals for each significance level, i.e., a =
0.10, 0.05, 0.01.

The confidence intervals displayed in Figures la and 1b are conventionally used for
CUSUM and CUSUMSQ tests.

There is some evidence that the CUSUM test is less powerful than the CUSUMSQ test in
small sample. Some Monte-Carlo experiments by Garbade (1977) also suggest that the latter
may not be very powerful in comparison with tests based on variable parameter models.

It is known that the confidence intervals of these two tests are the approximated ones.
The exact confidence interval cannot be obtained explicitly for the CUSUM test, because
its distribution is not known. Also, for the CUSUMSQ test, the exact confidence interval
is not utilized, even though its distribution is known. Thus, because the exact distribution
is not utilized for these two tests, the CUSUM test is not powerful and the CUSUMSQ
test is too powerful in small sample. In the next section, we obtain the asymptotically
exact confidence intervals using the simulation technique such as the method of simulated
moments (see McFadden (1989)).

3 NUMERICAL DERIVATION OF CONFIDENCE IN-
TERVALS

In this section, we construct both exact confidence intervals of CUSUM and CUSUMSQ
tests. The intervals are obtained by generating random numbers.

For the CUSUM test, the confidence interval is simulated as follows. First, generate
T — k normal random numbers, which are denoted by wy, t = k+ 1,---,7T, and compute
the CUSUM test statistic (2). Repeat this procedure m times. Denote the CUSUM test
statistic in the j-th smallest value of the m simulation runs by Wt(] ), which implies that
Wt(j), j=1,---,m, are sorted by size for all t = k+1,---,T. That is, Wt(l) is the smallest
value and Wt(m) the largest one. We take m =20,000 in this paper.
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Figure 1a. CUSUM test
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Denote the significance level through all periods by a and that in each period by . Let
Wt(U) be the upper bound and Wt(L) be the lower one, which implies (U — L)/m =1 — oy,
in the case of 100(1 — v, )% confidence interval at time ¢, where oy, is the significance level
at time t for the CUSUM test. If we assume that the distribution of the disturbance u; is
symmetric about zero, that of the CUSUM test statistic is also symmetric, and therefore we
have Wt(U) = —Wt(L) for all ¢t. In this procedure, we need to obtain the confidence interval
[Wt(L), Wt(U)], t=k+1,---,T, and the significance level at each time (i.e., a,), given a.
Note that we have the relationship 1 — a = (1 — ay,)?~F if W, is independent of W; for
t # 5. Since W; is clearly correlated with W, for ¢ # s, we have 1 — a # (1 — a,)T=F.

Summarizing above, we obtain Wt(U), Wt(L) and a,, given «, satisfying the following
three conditions:

Prob(W,) > Wi > W5, w9 > wy > wiP .

o ) (L) )
Wyl >Wpr>Wr7)=1-aq,

Prob(W,") > W, > W) =1 — a, (5)
W = —wP), forall t =k +1,---,T. (6)

Equation (4) corresponds to the joint density function of Wy 1, -+, Wy, while Equation (5)
is based on the marginal density function of W;. Here, we apply the simulation technique
used in Diebold and Rudebusch (1991) to obtain Wt(U), Wt(L) and a,,, given a.

It might be appropriate to assume that there is a certain relationship between «,, and
«, which is represented as:

a = fulow),

where f,,(+) is unknown but derived by the simulation technique. fy,(c,) denotes the prob-
ability that {W;}/_, , lies outside the interval {(Wt(L)7 Wt(U))}f: k41> given the significance
level at time ¢ (i.e., a,,).! In practice, we use the conventional Newton-Raphson nonlinear
optimization procedure to obtain a,,, i.e.,

alFD) = o) 4 g (a - fw(ag))>, fori=1,2,---, (7)

where d\ can be interpreted as d\) = 1/f. (o). The superscript (i) denotes the i-th
iteration. We take 041(3 ) = «, which is the initial value for «,,. However, since the function
fw(+) is unknown and accordingly we cannot obtain the first derivative of f,(-), we choose
dg) = (5wd$‘71)7 dq(l?) =1 and §,, = .5. Moreover, taking into account the convergence speed,
at each i we consider choosing either the above Newton-Raphson procedure or the following:

alth = —%—al), i |————1]>01, (8)
fu(ow’) fu(ow’)
where alt) = a. The convergence criterion is: |ozq(ﬁ+1) - ozq(f;)| < 0.0001. For the significance
(i41)

level at each time (i.e., o), we choose au,  ’ satisfying the convergence criterion.
Thus, summarizing above, the procedure constructing the confidence interval for the
CUSUM test is as follows:

LGiven au,, we can compute the probability fu,(aw) by the simulation. Accordingly, we obtain ay, such
that fu(cw) is equal to a. That is, o = f;l(oa) is derived. See Figure 2 for relationship between aw, and

fuw(aw).



(i) Generate m sets of T'—k standard normal random numbers (i.e., m x (T'— k) standard
random draws),? which corresponds to m sets of the normalized recursive residuals
{wi/o} i1 For each set of the T — k random draws, we compute {W;}/_,  , and

{St}tT:k+1'

The CUSUM test statistic (i.e., {W;}{_,,,) and the CUSUMSQ test statistic (i.c.,
{S¢}/_),1) obtained from the j—th set of the 7' — k random draws are denoted by
{Wt(j)}tT:kH and {St(j)}tT:kH-

(ii) Given the random draws, o and ol obtain Wt(Ui) and Wt(Li) fort=k+1,.---,T
such that (U; — L;)/m =1 — o) and Wt(Ui) = th(L"'). Wt(U") and Wt(Li) denote the
U-th and L-th largest values at time ¢ in the i-th iteration.

(iii) Count the number of the series {Wt(ji) 'tT:kH, j = 1,---,m, outside the interval
(W WD) . Note that

[ the number of {I/[/t(m}tT:,H_1

falling in the interval {(Wt(Li), Wt(Ui))};:k+1 ]

By =1 —

which corresponds to the significance level through all periods, i.e., . Also, note that
we have the restriction Wt(Ui) = —Wt(L") because the probability density function of
the CUSUM test statistic is symmetric.

(iv) Using the following optimization procedure, update from 041(5) to an*l).

« (0%

QUi+ — Juw(ow’) fuw(ow’)
w -
ol +dP (a - fu,(an))>, otherwise,
where ozq(ﬂl) = q, dq(j) = 5wd1(ﬁ-71), dq(l?) =1 and §,, is a constant value.
(v) Repeat (ii)-(iv) until alitY is stable, i.e., |a7(j+1) - ag)| < 0.0001.

For the CUSUMSQ test, we can take the almost same procedure as above. Similarly,
after m simulation runs, denote the j-th largest value of the CUSUMSQ test statistics in
m simulations by S,SJ), where Sfj), j =1,---,m, are already sorted by size. That is, for
all ¢, St(l) is the smallest value and St(m) the largest one. Also, m =20,000 is taken for the
CUSUMSQ test.

For the CUSUMSQ test, let as be the significance level in each period. Given «, we
com (L) o) i o

pute S;77, S,/ and ajy satisfying:

Prob(S{7) > Sia1 > Sy, 8 > 5, > 547,
S > 8p > S =1 —aq,

(9)

2In the case where the error u; is nonnormal, we generate the random numbers corresponding to the
underling assumption of w¢.



Figure 2. «a,, vs f(ay) and oy vs f(as): T —k =50 and m = 20,000
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Given the significance level «, we consider computing St(U), St(L) and «ay for the CUSUMSQ
test. We have to obtain ag which is constant over time. If wy, t = k+1,---,T, are mutually
independently and identically distributed, then the density function of S; is equivalent to
that of 1 — Sy for all t = K+ 1,---,7 — 1. Accordingly, we have the relationships:

S =1-8%), ,and1- 8 = 5%, .. We obtain o, which satisfies @ = f,(as). fs(cvs)

denotes the probability which {S;}{_, ,, lies outside the interval {(St(L), kS't(U))}iFZk.Jr17 given
the significance level at time ¢ (i.e., as). The procedure constructing the confidence interval
for the CUSUMSQ test is as follows.

BN O) if |

@ —1/>0.1,
QU+ — fs(as?)

e
fs(a?)
agi) + dgi) (a — fs(agi))), otherwise,
where agl) = q, dgi) = 5sdgi_1), dgo) = 1 and d, is a constant value. Note that we need to have
St(U) and St(L) such that St(U) —SYSL) is minimized, St(L) =1 —Sgr)kft and 1 —St(U) = S(TLJr)kft
for t =k+1,---, 7 — 1. In this paper, we take §; = .5. Also, the convergence criterion is:
1ol — Y| < 0.0001.
Taking an example of the case: T — k = 50 and m = 20,000, (aw, fw(aw)) and (as,
fuw(a)) are displayed in Figure 2.



fw(:) and f4(-) are monotone and accordingly their inverse functions exist. The proposed
approach of constructing the confidence intervals is guaranteed to work in all circumstances,
even for nonnormal cases.3

In Table 2, we check the convergence speed in simulating the confidence intervals, where
a = 0.10, 0.05, 0.01, T'— k =50 and m =20,000 are taken. We can see that the convergence
is very quick.

We concretely show the computation procedure, taking an example of the case: CUSUM
test and « = 0.10. Constructing the confidence interval based on a,, = 0.1000 and com-

puting the probability which lies outside the interval (Wt(Ll)7 Wt(Ul)) for some ¢, we have

fw(a,(ul)) = 0.5374. Using equation (8), o'V is updated to 041(,,2), which is 0.0186. Based on
aﬁ ) = 0.0186, again, we compute the confidence interval and the corresponding significance
level, i.e., fw(ag)) = 0.1527. For the computation from fw(ag;?)) to agl), the convergence
criterion is switched to equation (7). The procedure is completed by the sixth iteration
since aq(f) is the same value as af), ie., ag’):agi):0.0llZ As it is seen in Table 2, the
convergence speed is quite fast. By the results obtained from Table 2, we have the con-
fidence intervals in Figures 3a and 3b, where the case of T'— k = 50, m = 20,000 and
a = 0.10,0.05,0.01 is displayed.

Thus, we have the confidence intervals of CUSUM and CUSUMSQ tests as shown in
Figures 3a and 3b. However, the intervals in Figures 3a and 3b are not smooth, which
implies the obtained confidence intervals are not reliable. In order to improve this problem,
repeating the procedure n times, we take the arithmetic average of n sets of upper bounds
and lower bounds for the confidence intervals under each significance level a. As n goes to
infinity, by law of large number, the arithmetic average of the intervals becomes the true
intervals.* n = 2,000 is taken in Figures 4a and 4b, where each simulated 90%, 95% and
99% confidence intervals are drawn.

According to the procedure shown in Figures 4a and 4b, we can construct the intervals

for any T'— k and any «, given m and n.

3aq and as denote the significance levels at a single time, while fy, (aw) and fs(as) denote the significance

levels over all time periods. When «,, increases, fw(aw) also clearly increases. And similarly, when as
increases, fs(as) also clearly increases. Therefore, fu(aw) and fs(as) are monotone. Accordingly, the
inverse functions, i.e., f;l(a) and f;l(a), exist for all nonnormal errors.

4 As m increases, the simulated confidence intervals become smooth. However, an increase in m yields an
increase in data storage. We cannot take an extremely large m in practice because of a computer and/or
compiler limitation. Therefore, we consider repeating the procedure (i)—(v) n times, which implies obtaining
n sets of simulated confidence intervals.



Table 2. Convergence of Simulated Confidence Intervals (T — k = 50)

CUSUM Test ~ CUSUMSQ Test

i o) fu@d) o fu(a)
a=0.10
1 .1000 .5374 .1000 .6933
2 .0186 1527 .0144 1737
3 .0122 .1064 .0083 .1101
4 .0106 .0954 .0058 .0819
5 0112 .1001 .0071 .0956
6 .0112 — .0073 .0988
7 — — .0074 —
a = 0.05
1 .0500 .3285 .0500 4507
2 .0076 .0713 .0055 .0783
3 .0053 .0532 .0035 .0546
4 .0045 .0459 .0024 .0393
5 .0051 .0518 .0031 .0474
6 .0049 .0498 .0032 .0503
7 .0050 — .0032 —
a=0.01
1 .0100 .0914 .0100 1285
2 .0011 .0138 .0008 .0143
3 .0008 .0107 .0005 .0104
4 .0006 .0083 .0004 .0090
5 .0007 .0096 .0005 .0090
6 .0008 — .0005 —
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Table 3. Maximum Standard Errors of Simulated Confidence Intervals
(m = 20,000 and n = 2,000)

T—-k 10 20 30 40 50
o
0.10 CUSUM 0391  .0755 .1027 .1259 .1510
CUSUMSQ | .0038 .0041 .0040 .0039 .0038
0.05 CUSUM .0474 1010 .1351 .1739 .2037
CUSUMSQ | .0049 .0044 .0046 .0046 .0044
0.01 CUSUM 0758 1847 2745 3465 4337
CUSUMSQ | .0084 .0097 .0090 .0083 .0079

Each value in Table 3 denotes the maximum value of the T'— k arithmetic standard errors
obtained from n sets of confidence intervals.

For the intervals of CUSUM test, the standard error is large when 7' — k increases and/or
« is small. For the CUSUMSAQ test, the standard error increases as « is small. In any case,
it is seen from Table 3 that all the standard errors are enough small compared with length
of the confidence intervals. It is clear that the standard errors in Table 3 approach zero as
n increases.

When comparing the conventional confidence intervals and the simulated confidence
intervals, the findings are as follows. For the CUSUM test (see Figures la and 4a), the
simulated confidence interval is larger than the conventional one at the middle of the period,
while the former is smaller than the latter otherwise. As for the CUSUMSQ test (see Figures
1b and 4b), similarly, the simulated one is larger than the conventional one in the middle,
while the former is smaller than the latter in the tails.

Finally, note as follows. For any underlying distribution of the disturbance u; in the
regression model, the computational procedure can be applied in the exactly same fashion.

In the following section, we compare the power for the numerical confidence intervals
and the conventional ones under the normal disturbance.

4 POWER OF CUSUM AND CUSUMSQ TESTS

Using the simulated confidence intervals obtained in the last section, we perform Monte-
Carlo experiments to examine the power of CUSUM and CUSUMSQ tests. Since the recur-
sive residuals are identically, independently and normally distributed, we generate normal
random draws for wy, t = k+1,---,T. Suppose that at the middle point of T'— k the struc-

tural change takes place. Thus, we can assume that wy, t =k + 1,---,T, are distributed as
follows:

wy ~ N(0, 1), fort=k+1,---,(T—k)/2,

wi ~ N(p, %), fort=(T-k)/2+1,---,T,

11
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Figure 4a. CUSUM test
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where we examine testing not only a shift in location but also that in scale. Then we compute
each of the test statistics, and record whether or not rejection occurs for tests with each
size. The experiment is repeated M times, and then compute the sample powers (for each
statistic and the test size) as the relative rejection frequency. We can obtain the estimated

standard errors for the sample powers as 4/p(1 — D) / M, where p denotes the sample power.

Since we perform the experiment 10,000 times, i.e., M =10,000, the estimated standard
errors are enough small (at most 1/.5(1 — .5)/10, 000 = 0.005).
a, T —k, p and o are chosen as follows:

a = 0.10, 0.05, 0.01,
T — k = 10, 20, 30, 40, 50,
1 =00, 0.5, 1.0, 1.5,
o =10, 1.5, 2.0, 2.5.

In order to obtain the simulated confidence intervals, m sets of random draws are generated,
i.e., m =20,000 as in Section 3. In this section, different M sets of normal random draws
are generated to examine the power for both CUSUM and CUSUMSQ tests. The results
are in Tables 4a — 4c and 5a — 5c. In the case of u =0.0 and o =1.0, theoretically the
sample power should be equal to the significance level . However, for the conventional
90% confidence interval of the CUSUM test, the sample power is .0236 when T' — k& =10,
.0474 when T — k =20, .0572 when T — k =30, .0633 when T' — k =40, and .0690 when
T — k =50 (see Table 4a, Conventional 90% Confidence Interval, Case: y =0.0 and o =1.0).
This implies that the conventional confidence interval of the CUSUM test gives us a poor
approximation even if T — k is large. For the conventional 90% confidence interval of the
CUSUMSQ test, the power is .1445 when T — k =10, .1253 when T — k =20, .1205 when
T — k =30, .1133 when T — k =40, and .1133 when T' — k =50 (see Table 5a, Conventional
90% Confidence Interval, Case: p =0.0 and o =1.0), which implies that the power of the
confidence interval of the CUSUMSQ test is too large.

The other findings are as follows. The CUSUM test is more powerful in the location
parameter p while the CUSUMSQ test is more powerful in the scale parameter o. Both
tests are powerful as T'— k is large for almost all the cases. Given u, the CUSUM test is less
powerful as o is large. Therefore, the CUSUM test is sensitive to the structural change of
the shifting parameter and the CUSUMSQ test should be used in testing heteroscedasticity.

5 SUMMARY

In this paper, the asymptotically exact confidence intervals for the CUSUM and CUSUMSQ
tests were derived using the simulation technique. As the number of simulation (i.e., m
and/or n) increases, the approach proposed in this paper clearly gives us the asymptotically
exact confidence interval. The main results are as follows: (i) for the conventional confidence
intervals, the power of the CUSUM test is too low. The confidence interval of the test gives
us a poor approximation even when T'—k goes to large (see T—k = 50), and the power of the
CUSUMSAQ test is too large, (ii) the CUSUM test is more sensitive to the location parameter
1 than the CUSUMSAQ test while the latter is more sensitive to the scale parameter o than
the former, and (iii) given p, the CUSUM test is poor as ¢ increases.

Finally, even in the case where the recursive residuals are not normal, the simulation
technique to obtain the confidence intervals of the CUSUM and CUSUMSQ tests can be
easily applied. That is, the asymptotically exact confidence intervals proposed in this paper
can be derived for any regression model with the nonnormal disturbance. However, note
that the proposed confidence intervals have larger simulation errors for large sample size
T — k and small significance level a than for small 7' — k and large «.
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Table 4a.

CUSUM Test («a = 0.10)

Conventional Interval

Exact Interval

. \ C 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5
T-k=10
0.0 .0236  .0109 .0057 .0032 .0991  .0509 .0340 .0241
0.5 .0244 .0119 .0066 .0038 1047 .0578  .0382 .0267
1.0 .0298 .0141 .0074 .0038 1367 .0806 .0517 .0357
1.5 .0411 .0185 .0092 .0049 1866 1177 .0722  .0505
T—-k=20
0.0 .0474 .0229 .0151 .0109 .0948 .0440 .0285 .0217
0.5 0713  .0405 .0246 .0176 1330 0717 .0486 .0357
1.0 1840 1034 .0612 .0405 2709 179 1120 0777
1.5 3722 2266 1374 .0870 5124 3523 2338  .1606
T—-k=30
0.0 0572 .0297 .0207 .0168 .0991 .0414 .0267 .0226
0.5 1220 .0686 .0462 .0349 1710 .0913 0618 .0473
1.0 3762 2301 1435 .0966 4542 2847 1833 .1264
1.5 7118 5153 3409 .2281 7812 5958 4162 .2878
T—-k=40
0.0 0633 .0325 .0248 .0208 0955 .0406 .0282 .0240
0.5 1697 1013 .0651  .0482 2061 1172 .0740 .0548
1.0 5670 3764 2436 1635 6118  .4119 2733 .1863
1.5 .8931  .7301 .5398  .3850 9138  .7661 5811  .4202
T—-k=50
0.0 .0690 .0337 .0250 .0227 .1008  .0385 .0254 .0226
0.5 2176 1289 .0839  .0593 2496 1386 .0896 .0619
1.0 7096 4931 3237  .2205 7338 5126  .3388 .2332
1.5 9699 .8700 .6907 .5123 9747 8815 .7105 5311
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Table 4b. CUSUM Test (a = 0.05)

Conventional Interval

Exact Interval

. \ C 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5
T-k=10
0.0 .0037 .0017 .0008 .0003 .0494 .0225 .0140 .0092
0.5 .0044 .0010 .0003 .0002 .0501  .0262 .0169 .0103
1.0 .0039 .0012 .0005 .0002 0686 .0344 .0207 .0145
1.5 .0034 .0012 .0003 .0001 0952 .0502 .0292 .0178
T—-k=20
0.0 .0190 .0074 .0034 .0028 0482 .0198 .0117 .0083
0.5 .0296 .0131 .0068 .0040 0689 .0343 .0200 .0140
1.0 0877 .0406 .0198 .0102 1750 .0924  .0539  .0346
1.5 1914 .0930 .0464 .0247 3971 2125 1250  .0772
T—-k=30
0.0 .0250 .0103 .0066 .0045 0477 .0172  .0120 .0099
0.5 .0602 .0310 .0176 .0115 .0919 .0470 .0305 .0215
1.0 2346 1235 .0686 .0429 3165 1781 1046  .0699
1.5 0337 3244 1842 1102 .6437 4352 2714  .1667
T—-k=40
0.0 .0294 .0131 .0087 .0076 .0463 .0177 .0124 .0107
0.5 .0934 .0483 .0312 .0212 1217 .0606 .0390 .0273
1.0 4121 2367 1331  .0787 4736 2874 1688  .1025
1.5 7901 5752 .3735 2341 8386  .6428 4359 .2893
T—-k=50
0.0 .0336 .0142 .0105 .0086 .0510 .0168 .0114 .0098
0.5 1260 .0677 .0395 .0282 1498 .0792 .0467 .0311
1.0 5661 3434 2035 1275 .6074 3785 2267 .1445
1.5 9182 7561 5370 .3532 9356 .7926 .5765 .3899
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Table 4c.

CUSUM Test (a =0.01)

Conventional Interval

Exact Interval

. \ C 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5
T-k=10
0.0 .0000 .0000 .0000 .0000 .0093 .0044 .0021 .0013
0.5 .0000 .0000 .0000 .0000 .0117 .0046 .0027 .0014
1.0 .0000 .0000 .0000 .0000 0142 .0064 .0027 .0013
1.5 .0000 .0000 .0000 .0000 0177 .0079 .0031 .0016
T—-k=20
0.0 .0009 .0001 .0000 .0000 .0097 .0022 .0012 .0010
0.5 .0021 .0005 .0002 .0000 .0146  .0053 .0027 .0016
1.0 .0049 .0016 .0004 .0002 .0511 .0190 .0075 .0037
1.5 .0136 .0031 .0013 .0003 1218 0505 .0215 .0094
T—-k=30
0.0 .0024 .0003 .0002 .0001 .0090 .0022 .0011 .0007
0.5 .0085 .0032 .0012 .0004 .0231  .0103 .0057 .0036
1.0 .0448 .0148 .0059 .0027 1235 .0504 .0240 .0116
1.5 1491 .0530 .0190 .0083 3361 1650 .0784 .0408
T—-k=40
0.0 .0046 .0013 .0008 .0006 .0104 .0033 .0019 .0015
0.5 .0160 .0059 .0027 .0014 0343 .0147 .0075 .0046
1.0 1299 0461  .0194 .0087 2282 .0997 0431 .0255
1.5 4152 2012 .0820 .0370 5874 3428 1738  .0869
T—-k=50
0.0 .0042 .0014 .0007 .0007 .0097 .0025 .0017 .0012
0.5 .0278 .0117 .0064 .0035 0471 .0198 .0105 .0075
1.0 2438 1032 .0416 .0203 3370 1592 .0765 .0378
1.5 6672 .3892 1919 .0944 STr17 o 5175 2825 1563
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Table 5a.

CUSUMSQ Test (o =0.10)

Conventional Interval

Exact Interval

. \ C 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5
T-k=10
0.0 1445 2436 4153 5808 0977 1700 .3067  .4549
0.5 1522 2651 4348  .5886 1003 1891  .3215  .4642
1.0 1909 3389 4873 .6238 1256 2418 .3726 .5013
1.5 2858 4363 .5692  .6832 1891 3220 4439  .5573
T—-k=20
0.0 1253 .3250  .6239  .8289 0989 .2430 .5120 .7324
0.5 1343 3775 6578 8417 1037 2856 5467  .7505
1.0 2398 5133 7414 8754 1697 3998 .6303  .8018
1.5 4715 .6905  .8365 .9200 3304 5617 7421  .8580
T—-k=30
0.0 1205 4190 7825 .9374 .0993 .3234 .6770 .8878
0.5 1443 4904 8113 9452 1114 3868 7103 .8955
1.0 3163 .6584 8773 .9635 2249 5386 7967 9258
1.5 .6366 .8505 .9421 .9836 4884 .7384 .8921 .9594
T—-k=40
0.0 1133 4993 8723  .9800 1007 .3904 .7897  .9542
0.5 1397 5825 8984 9831 171 4597 8166 9574
1.0 3729 7669 9466 9898 2629 .6485 .8924 .9764
1.5 7673 .9301 9835 9960 6130 .8553 .9586 .9900
T—-k=50
0.0 1133 5712 19343 19945 1039 4464 .8661  .9852
0.5 1474 6600 9478 9961 1188 5311 .8967 .9871
1.0 4417 8483 9777 9973 3089 7423 9481 9942
1.5 8602 9675  .9949 9991 7291 9235 9847 9973
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Table 5b. CUSUMSQ Test (« = 0.05)

Conventional Interval

Exact Interval

. \ C 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5
T-k=10
0.0 0722 1312 2445 3723 .0490 .0943 .1965 .3161
0.5 0728 1480 .2581 .3770 0483 .1109 .2077  .3281
1.0 .0940 .1898 .2990 .4099 0646 .1466 .2488 .3620
1.5 1339 2501 3591 .4563 0989 .2047 .3094 4133
T—-k=20
0.0 .0621 .2058 .4746 .7086 0487 .1526 .3785 .6188
0.5 0717 2459 5118 .7291 0563 .1823 4181 .6387
1.0 1398 3639 5977 7783 0974 2723 .5006 .6981
1.5 2979 5288 7163  .8410 2060 4214 6181 .7749
T—-k=30
0.0 .0610 .2933 .6655 .8862 .0493 2198 .5589 .8170
0.5 0742 3584 .7001 .8939 0571 2705 5969 .8324
1.0 1988 5218 7927 9254 1329 4142 6984 8762
1.5 4768 7359  .8885 .9597 3442 6220 .8226 9269
T—-k=40
0.0 .0609 .3730 .7900 .9580 0504 .2743 .6897 9167
0.5 0797 4490 8222 .9634 0615 .3407 .7308 .9268
1.0 2463 .6511 .8986 .9784 1684 5285  .8236 .9541
1.5 6243 .8632 .9630 .9912 4735 7684 9248 9787
T—-k=50
0.0 0578 .4405 .8786 .9862 0551 .3287 .7910 .9684
0.5 .0766 .5331 .9040 .9898 0632 4077 .8306 .9739
1.0 3072 7572 9528 9952 2040 .6351 .9071  .9860
1.5 7513 9335 9874 9978 .6043  .8705 .9683 .9952
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Table 5c.

CUSUMSQ Test (o =0.01)

Conventional Interval

Exact Interval

. \ C 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5
T-k=10
0.0 0175 .0328 .0695 .1121 0112 .0224 .0607 .1151
0.5 0175 .0374 .0743 1154 .0102 .0258 .0657 .1214
1.0 .0169 .0478 .0857 .1296 0125 .0386 .0806 .1388
1.5 .0205 .0592 .1003 .1426 0231 .0592 .1084 .1678
T—-k=20
0.0 0126 .0589 .1782 .3451 .0086 .0472 .1691 .3523
0.5 .0154 .0745 .2005 .3672 .0087 .0616 .1877 .3773
1.0 .0295 1195 .2524 4164 0233 1012 .2482 .4373
1.5 0627 1812 .3331 .4944 0650 1784 .3442 5249
T—-k=30
0.0 .0137  .1021 .3666 .6543 .0106 .0737 .3123 .6057
0.5 .0150 .1387 .4051 .6769 .0107 .1014 .3496 .6294
1.0 .0516 .2385 .5039 .7372 0347  .1900 .4500 .6969
1.5 1649 4102 .6446 .8201 1344 3539 5984 7917
T—-k=40
0.0 .0146  .1487 .5369 .8343 .0103 .1032 .4498 .7747
0.5 .0193 .1984 .5829 .8538 0138 1436 .4960 .7991
1.0 0772 3632 7035 .8984 0539 2815 .6233 .8575
1.5 2897 6127 8393  .9488 2208 5212 7826 .9216
T—-k=50
0.0 0115 .2049 .6757 .9321 .0101 .1403 .5790 .8923
0.5 0185 .2713 .7250 .9426 0154 1957 .6294 .9091
1.0 1043 4901  .8360 .9667 0675 .3803 .7654 .9408
1.5 4392 7732 9372 9874 3309 .6798  .8957 .9742
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