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ABSTRACT: In this paper, the importance sampling filter pro-
posed by Mariano and Tanizaki (1995), Tanizaki (1996), Tanizaki
and Mariano (1994) is extended using the antithetic Monte Carlo
method to reduce the simulation errors. By Monte Carlo stud-
ies, the importance sampling filter with the antithetic Monte Carlo
method is compared with the importance sampling filter without
the antithetic Monte Carlo method. It is shown that for all the sim-
ulation studies the former is clearly superior to the latter especially
when number of random draws is small.

1 INTRODUCTION

The traditional nonlinear filters such as the extended Kalman filter, the second-
order nonlinear filter and the Gaussian sum filter are used from various aspects.
Especially, the extended Kalman filter is obtained as follows: (i) the nonlinear
measurement and transition equations are linearized by the first-order Taylor
series expansion and (ii) the linearized functions are applied directly to the
standard Kalman filter formula. See Gelb (1974) and Anderson and Moore
(1979) for the traditional nonlinear filters.
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Recently, the nonlinear filters have been developed since Kitagawa (1987)
and Harvey (1989), where the nonlinear filter is derived based on the un-
derlying density functions. The traditional nonlinear filters are obtained by
approximating the nonlinear measurement and transition equations by the
Taylor series expansions. Kitagawa (1987) and Kramer and Sorenson (1988)
proposed the nonlinear filter approximating the density functions by numeri-
cal integration, which has the disadvantage that it is not feasible in the higher
dimensional cases of the state-vector. In order to improve the disadvantage,
various density-based nonlinear filters have been developed.

Tanizaki (1996), Tanizaki and Mariano (1994) and Mariano and Tanizaki
(1995) derived the nonlinear filtering algorithm using Monte Carlo integration
with importance sampling, which utilizes the random numbers generated from
the appropriately chosen importance density to obtain the filtering mean and
variance. See, for example, Geweke (1988, 1989a, 1989b, 1996, 1997), Shao
(1989) and Koop (1994) for Monte Carlo integration with importance sam-
pling. Moreover, Carlin, Polson and Stoffer (1992), Carter and Kohn (1994,
1996) and Chib and Greenberg (1996) proposed the nonlinear smoothing by
Gibbs sampling. The nonlinear filter with rejection sampling is introduced by
Mariano and Tanizaki (1999), Tanizaki (1996, 1999) and Tanizaki and Mar-
iano (1998), where random draws are directly generated from the filtering
densities. Gordon, Salmond and Smith (1993) and Kitagawa (1996) applied
the resampling procedure to the nonlinear filter and smoother.

Thus, in the last decade, a large amount of research on filtering theory
has been devoted to evaluating the filtering mean and variance by generating
random draws. In this paper, we re-consider the importance sampling filter
developed by Mariano and Tanizaki (1995), Tanizaki (1996) and Tanizaki and
Mariano (1994). In the case where we evaluate a nonlinear function by gener-
ating random draws by a computer, we have simulation errors. The simulation
errors disappear as number of the random draws increases, which is obtained
from the central limit theorem. However, in practice, a small sample is usually
used for the random draws from computational point of view. Therefore, we
need to consider variance reduction of the Monte Carlo method. The anti-
thetic Monte Carlo method is utilized for variance reduction (see, for exam-
ple, Geweke (1988, 1989a, 1989b, 1996, 1997) for the antithetic Monte Carlo
method). Thus, in this paper, an attempt is made to reduce the simulation er-
rors of the importance sampling filter by the antithetic Monte Carlo method.
The importance sampling filter with the antithetic Monte Carlo method is
compared with the resampling filter, which is one of the most recently devel-
oped nonlinear filters (see Gordon, Salmond and Smith (1993) and Kitagawa
(1996) for the resampling filter). The resampling filter is briefly described in
Appendix A.

As a result, it is concluded from several Monte Carlo studies that (i) the
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importance sampling filter with the antithetic Monte Carlo method works well
especially when number of random draws is small and (ii) under the same
number of random draws, the importance sampling filters perform better than
the resampling filter.

2 PRELIMINARIES

2.1 OVERVIEW OF NONLINEAR AND
NONNORMAL FILTER

We consider the following general nonlinear and nonnormal state-space model:

(Measurement Equation) yt = ht(αt, εt), (1)

(Transition Equation) αt = ft(αt−1, ηt), (2)

for t = 1, 2, · · · , T , where T denotes the sample size. A vector yt is observable
while a vector αt is unobserved. ht(·, ·) and ft(·, ·) are vector functions, which
are assumed to be known. The error terms εt and ηt are mutually independently
distributed, which are typically assumed to be normal but not necessarily. Let
Ys be the information set up to time s, i.e., Ys = {ys, ys−1, · · · , y1}. Define
Py(yt|αt) and Pα(αt|αt−1) as the density functions obtained from the measure-
ment equation (1) and the transition equation (2). We consider estimating αt

using information Ys. at|s ≡ E(αt|Ys) is called prediction if t > s, filtering if
t = s and smoothing t < s, respectively.

Nonlinear Filter: The recursive density algorithm on filtering is known as
follows (for example, see Kitagawa (1987), Harvey (1989) and Tanizaki (1996)):

P (αt|Yt−1) =
∫

Pα(αt|αt−1)P (αt−1|Yt−1)dαt−1, (3)

P (αt|Yt) =
Py(yt|αt)P (αt|Yt−1)∫
Py(yt|αt)P (αt|Yt−1)dαt

, (4)

where the initial condition is given by:

P (α1|Y0) =





∫
Pα(α1|α0)P (α0)dα0, if α0 is stochastic,

Pα(α1|α0), if α0 is nonstochastic.

The two densities Pα(αt|αt−1) and Py(yt|αt) are computed from the measure-
ment equation (1) and the transition equation (2), respectively. Equation (3)
corresponds to one-step ahead prediction, which plays a role of predicting αt
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using the past information Yt−1. Equation (4) combines the present sample
with the past information. Accordingly, equation (3) is called the prediction
equation while equation (4) is known as the update equation. Based on the
two densities, the density-based filtering algorithm is represented as the fol-
lowing two steps: (i) equation (3) yields P (αt|Yt−1) given P (αt−1|Yt−1) and
(ii) equation (4) yields P (αt|Yt) given P (αt|Yt−1). Thus, repeating predicting
and updating for all t, the filtering densities P (αt|Yt), t = 1, 2, · · · , T , can be
obtained.

Filtering Mean and Variance: Our goal is to estimate the state-variable
αt. Once we have the recursions shown in equations (3) and (4), the filtering
mean (i.e., at|s ≡ E(αt|Ys)) and the filtering variance (i.e., Σt|s ≡ Var(αt|Ys))
are easily obtained as follows:

at|s =
∫

αtP (αt|Ys)dαt, (5)

Σt|s =
∫

(αt − at|s)(αt − at|s)
′P (αt|Ys)dαt, (6)

for s = t− 1, t.

2.2 MONTE CARLO INTEGRATION WITH
IMPORTANCE SAMPLING

Let x be a random variable associated with a density function P (x). Suppose
that g(x) is a function of x. The expectation of g(x) is represented as follows:

E(g(x)) =
∫

g(x)P (x)dx ≡ µ. (7)

Suppose that the integration in equation (7) cannot be carried out analytically
in the present case. In such a case, the expectation is evaluated by Monte Carlo
integration with importance sampling. We utilize another density function
of x, say PI(x), which is called the importance density and is appropriately
assumed by a researcher. Let xi, i = 1, 2, · · · , n, be the random numbers from
the density function PI(x). Define the weight function ω(x) as a ratio of the
two densities, i.e.,

ω(x) =
P (x)

PI(x)
.

Then, we have the following approximation of equation (7):

µ ≡ E(g(x)) =
∫

g(x)ω(x)PI(x)dx ≈ 1

n

n∑

i=1

g(xi)ω(xi) ≡ gn. (8)

The expectation E(g(x)) is evaluated as gn. The properties of gn are known
as follows (see, for example, Geweke (1988, 1989a, 1989b, 1996, 1997), Shao
(1989) and Koop (1994)):
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(i) gn converges almost surely to µ, if the support of P (x) is included in the
support of PI(x).

(ii) If ω(x) is bounded above,

√
n(gn − µ) −→ N(0, Σ),

where Σ ≡ E[(g(x)ω(x)− µ)(g(x)ω(x)− µ)′] and the arrow denotes con-
vergence in distribution.

It is shown from the result (ii) that gn in equation (8) is consistent but con-
vergence speed is quite slow as

√
n.

Moreover, Geweke (1988, 1989a, 1989b, 1996, 1997) pointed out the fol-
lowing. It is important that the importance density PI(x) is not too different
from P (x) and especially important that the weight function does not become
very large over the support of P (x). This indicates that numerical accuracy
is adversely affected by large relative values of the weight function, i.e., such
large values indicate a poor approximation of E(g(x)).

Using the Monte Carlo integration method with importance sampling, Mar-
iano and Tanizaki (1995), Tanizaki (1996), Tanizaki and Mariano (1994) eval-
uated the integrations included in the nonlinear filtering algorithm represented
by equations (3) and (4), which are described in the next section.

2.3 NONLINEAR FILTER USING IMPORTANCE
SAMPLING

Mariano and Tanizaki (1995), Tanizaki (1996) and Tanizaki and Mariano
(1994) proposed the nonlinear filtering algorithm with importance sampling,
where density functions are converted by weight functions and a recursive al-
gorithm of the weight functions is obtained. Define the weight function as:

ω(αt|Ys) =
P (αt|Ys)

PI(αt)
,

for s = t − 1, t, where the density function PI(αt) has to be appropriately
specified by a researcher, which is called the importance density.

Using the weight functions, ω(αt|Ys) for s = t − 1, t, the density-based
filtering algorithm given by equations (3) and (4) are rewritten as follows:

ω(αt|Yt−1) =
∫ Pα(αt|αt−1)

PI(αt)
ω(αt−1|Yt−1)PI(αt−1)dαt−1

≈ 1

n

n∑

j=1

Pα(αt|αj,t−1)

PI(αt)
ω(αj,t−1|Yt−1), (9)
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ω(αt|Yt) =
Py(yt|αt)ω(αt|Yt−1)∫

Py(yt|αt)ω(αt|Yt−1)PI(αt)dαt

≈ Py(yt|αt)ω(αt|Yt−1)

1

n

n∑

j=1

Py(yt|αj,t)ω(αj,t|Yt−1)

, (10)

where αi,t, i = 1, 2, · · · , n, denote the random draws generated from the impor-
tance density PI(αt). Note that we need to use the same importance density
to evaluate the two integrals in equations (9) and (10). For P (αt|Yt) and
P (αt|Yt−1), it is not possible to obtain the explicit functional form in general.
Accordingly, ω(αt|Yt) and ω(αt|Yt−1) cannot be explicitly obtained. We need
to evaluate the two weight functions at the same random draws in order to
construct the recursive algorithm on the weight functions.

Again, in equations (9) and (10), αt is evaluated at αi,t. Thus, a recursive
filtering algorithm of the weight functions is derived as follows:

ω(αi,t|Yt−1) ≈ 1

n

n∑

j=1

Pα(αi,t|αj,t−1)

PI(αi,t)
ω(αj,t−1|Yt−1), (11)

ω(αi,t|Yt) ≈ Py(yt|αi,t)ω(αi,t|Yt−1)

1

n

n∑

j=1

Py(yt|αj,t)ω(αj,t|Yt−1)

, (12)

for i = 1, 2, · · · , n and t = 1, 2, · · · , T , where each weight function is evaluated
at the random draws, αi,t for i = 1, 2, · · · , n. The initial condition of the weight
function is given by:

ω(αi,1|Y0) ≈ 1

n

n∑

j=1

Pα(αi,1|αj,0)

PI(αi,1)
ω(αj,0|Y0), if α0 is stochastic,

ω(αi,1|Y0) =
Pα(αi,1|α0)

PI(αi,1)
, if α0 is nonstochastic.

The recursive algorithm shown in equations (11) and (12) is implemented by
the following two steps: (i) given ω(αj,t−1|Yt−1) for j = 1, 2, · · · , n, ω(αi,t|Yt−1)
for i = 1, 2, · · · , n are obtained from equation (11), and (ii) given ω(αj,t|Yt−1)
for j = 1, 2, · · · , n, ω(αi,t|Yt) for i = 1, 2, · · · , n are obtained from equation (12).
Thus, the weight functions are recursively evaluated for all time t = 1, 2, · · · , T .

Filtering Mean and Variance: Equations (5) and (6) are approximated
as:

at|s ≈ 1

n

n∑

i=1

αi,tω(αi,t|Ys), (13)

Σt|s ≈ 1

n

n∑

i=1

(αi,t − at|s)(αi,t − at|s)
′ω(αi,t|Ys), (14)
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for s = t− 1, t. Thus, equations (13) and (14) represent the filtering estimates
based on Monte Carlo integration with importance sampling.

Filtering Density: Sometimes, we need shape of the filtering densities.
From definition of the weight function, we can evaluate the filtering density
P (αt|Ys) at αt = αi,t, which is as follows:

P (αi,t|Ys) = ω(αi,t|Ys)PI(αi,t),

for s = t− 1, t.

3 VARIANCE REDUCTION METHOD IN

MONTE CARLO INTEGRATION

The problem of the importance sampling filter is choice of the importance
density PI(αt), because precision of the filtering estimates is sensitive to the
importance density.

Choice of Importance Density: In order to compute the weight functions
ω(αt|Yt−1) and ω(αt|Yt), it is important that the importance density PI(αt) is
not too different from both P (αt|Yt−1) and P (αt|Yt).

In the case where the state-variable lies on a certain interval, for example,
in the case of 0 < αt < 1, we may choose the importance density PI(αt) as the
following uniform distribution between zero and one:

αi,t = ui,t, (15)

where ui,t ∼ U(0, 1) for i = 1, 2, · · · , n and t = 1, 2, · · · , T .
If the range of the state-variable αt is from −∞ to +∞, Mariano and

Tanizaki (1995), Tanizaki (1996) and Tanizaki and Mariano (1994) suggested
utilizing the following bimodal distribution for choice of the importance den-
sity:

PI(αt) =
1

2
N(a∗t|t−1, cΣ

∗
t|t−1) +

1

2
N(a∗t|t, cΣ

∗
t|t),

which denotes the average of two normal densities, where a∗t|s and Σ∗
t|s for

s = t−1, t denote the filtering means and variances obtained from the extended
Kalman filter and c is a constant value which should be equal to or greater
than one. Thus, we construct the importance density based on the extended
Kalman filter estimates, i.e., the importance density is obtained independently
of the importance sampling filter.

Now, it might be natural that use of the above bimodal distribution gen-
erates the following three questions:
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(i) Why do we use the bimodal distribution consisting of the two normal
densities?

(ii) Why do we use the first- and second-moments of the extended Kalman
filter?

(iii) Why should c be equal to or greater than one?

The answers to the questions are as follows:

(i) The importance density PI(αt) needs to cover the two target densities
P (αt|Ys) for s = t − 1, t over the range of αt. Usually, the peak and
range of the one-step ahead prediction density P (αt|Yt−1) is different
from those of the filtering density P (αt|Yt). In general, the range of
P (αt|Yt−1) is larger than that of P (αt|Yt). For the importance sampling
filter, the two densities P (αt|Ys), s = t−1, t, have to be approximated by
one importance density PI(αt) in order to obtain the recursive algorithm.
Therefore, it might be plausible to take the bimodal distribution for the
importance density.

(ii) Also, the peak and range of P (αt|Ys) for s = t − 1, t are not known,
but mean and variance of the state-variable can be estimated by the
extended Kalman filter algorithm, even if the extended Kalman filter
indicates the biased estimators. It is appropriate to consider that the
extended Kalman filter estimates are not too far from the true values.
Therefore, the importance sampling filter would be improved by utilizing
the importance density based on the extended Kalman filter.

(iii) It is known that the support of the importance sampling distribution
needs to include that of the target density (see, for example, Geweke
(1996)). In a framework of filtering theory, we have the two target
densities, i.e., P (αt|Yt−1) and P (αt|Yt). In the above bimodal den-
sity, N(a∗t|t−1, cΣ

∗
t|t−1) is used to cover P (αt|Yt−1) while N(a∗t|t, cΣ

∗
t|t) is

P (αt|Yt). Accordingly, the support of N(a∗t|t−1, cΣ
∗
t|t−1) should include

that of the one-step ahead prediction density P (αt|Yt−1) and the sup-
port of P (αt|Yt) should be included in the support of N(a∗t|t, cΣ

∗
t|t). Since

the support of P (αt|Ys) is not known in general, it is safe that the impor-
tance density PI(αt) should be more broadly distributed than the target
densities P (αt|Ys), s = t − 1, t. Therefore, it might be appropriate that
c ≥ 1 should be chosen.

Based on the above bimodal distribution, the random draws of αt from PI(αt)
are generated by:

αi,t = a + Σ1/2zi,t, (16)
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where zi,t ∼ N(0, 1) for i = 1, 2, · · · , n and t = 1, 2, · · · , T . (a, Σ) takes the
following discrete random variable:

(a, Σ) =





(a∗t|t−1, cΣ
∗
t|t−1), with probability 1/2,

(a∗t|t, cΣ
∗
t|t), with probability 1/2.

(17)

In order to choose (a∗t|t−1, cΣ
∗
t|t−1) or (a∗t|t, cΣ

∗
t|t) in (17), we need to generate a

uniform random number between zero and one, say u. That is, we may choose
(a∗t|t−1, cΣ

∗
t|t−1) when u ≤ 0.5 and (a∗t|t, cΣ

∗
t|t) when u > 0.5.

Antithetic Monte Carlo Methods: The essence of the antithetic Monte
Carlo method is as follows. Suppose that we have the sample x1, x2, · · · , xn

from the density function P (x). Consider estimating mean E(x), which is sim-
ply estimated as the arithmetic average of x1, x2, · · · , xn, i.e., x = (1/n)

∑n
i=1 xi.

Variance of the arithmetic average, Var(x), indicates precision of the estimated
mean.

(i) When xi, i = 1, 2, · · · , n, are mutually independently distributed, i.e.,
when xi ∼ N(0, σ2) for i = 1, 2, · · · , n, we have Var(x) = σ2/n.

(ii) To make things easier, consider the following case: Cov(xi, xj) = ρσ2

when j = i+m and Cov(xi, xj) = 0 otherwise, where i = 1, 2, · · · ,m and
n = 2m. When xi and xi+m are negatively correlated (i.e., ρ < 0) and
xi ∼ N(0, σ2) for i = 1, 2, · · · ,m, we obtain Var(x) = (1+ ρ)σ2/n, which
is clearly less than variance in Case (i).

Let xi, i = 1, 2, · · · , n, be the random draws from P (x). Then, variance of
the estimated mean x is given by Case (i). However, in the case where xi,
i = 1, 2, · · · ,m, are the random draws from P (x), if Cov(xi, xi+m) < 0, the
estimated mean in Case (ii) has less variance than that in Case (i). Accordingly,
negatively correlated sample is more optimal than random sample in a sense of
reduction of the simulation errors. Similarly, for a function g(·), mean of g(x)
is estimated as the arithmetic average of g(x1), g(x2), · · · , g(xn). If g(xi) is
negatively correlated with g(xi+m), the obtained estimate of E(g(x)) performs
better. In this paper, we apply the above antithetic Monte Carlo procedure
to the importance sampling filter proposed by Tanizaki (1996), Tanizaki and
Mariano (1994).

First, in the case where αt lies on an interval, for example, 0 < αt < 1, we
may choose PI(αt) as a uniform distribution between zero and one. In order to
have antithetic relationship, we use the following sample αi,t, i = 1, 2, · · · , n.

αi,t = ui,t, αi+m,t = 1− ui,t, (18)

where ui,t ∼ U(0, 1) for i = 1, 2, · · · ,m and n = 2m. Clearly, it is expected
that (18) is more powerful than (15) because of less variance.
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FIGURE 1: Location of αi,t and αi+m,t
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Second, consider the bimodal distribution used in the case where the range
of the state-variable αt is from −∞ to +∞. For the variance reduction method,
we can consider the following two procedures:

(i) We can take αi,t as follows:

αi,t = a + Σ1/2zi,t, αi+m,t = a + Σ1/2(−zi,t), (19)

where zi,t ∼ N(0, 1) for i = 1, 2, · · · , m, n = 2m and t = 1, 2, · · · , T . Note that
(a, Σ) is given by (17). The above procedure implies that we have both αi,t and
αi+m,t simultaneously when αi,t is generated from the bimodal distribution.

(ii) Also, we can consider the following procedure:

αi,t = a + Σ1/2zi,t, αi+m,t = ã + Σ̃1/2(−zi,t), (20)

where (ã, Σ̃) takes as follows:

(ã, Σ̃) =





(a∗t|t−1, cΣ
∗
t|t−1), if (a, Σ) = (a∗t|t, cΣ

∗
t|t),

(a∗t|t, cΣ
∗
t|t), if (a, Σ) = (a∗t|t−1, cΣ

∗
t|t−1),

where (a, Σ) is given by (17).

It is easily expected that both (19) and (20) yield less simulation errors
than (16). Figure 1 displays the two transformations (i.e., (19) and (20)) from
αi,t to αi+m,t. Note that all the dotted areas are equal. When P (αt|Yt−1)
is away from P (αt|Yt), i.e., when N(a∗t|t−1, cΣ

∗
t|t−1) is away from N(a∗t|t, cΣ

∗
t|t),

(20) might be better than (19), which implies that αi,t and αi+m,t of (20)
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are more negatively correlated than those of (19). For the antithetic Monte
Carlo method (19), note that αi,t has positive correlation with αi+m,t when
N(a∗t|t−1, cΣ

∗
t|t−1) is too away from N(a∗t|t, cΣ

∗
t|t). However, in the case where

P (αt|Yt−1) is close to P (αt|Yt), (19) might be recommended rather than (20).
See Appendix B for the two antithetic Monte Carlo methods (19) and (20).

In the next section, some Monte Carlo studies are performed, where the
conventional Monte Carlo method given by (15) and (16) is compared with
the antithetic Monte Carlo approach represented by (18) – (20).

4 MONTE CARLO STUDIES

In this section, we perform some Monte Carlo simulation studies to check
whether the antithetic Monte Carlo methods work well or not in a nonlin-
ear filtering framework. We compare the extended Kalman filter (EKF), the
resampling filter (RSF) and the importance sampling filters (ISF) with and
without the antithetic Monte Carlo methods. Note that the resampling filter
(RSF) proposed by Kitagawa (1996) is concisely described in Appendix A.

The simulation procedure is as follows:

(i) Generating random numbers of the error terms εt and ηt, we obtain a
set of data yt and αt, t = 1, 2, · · · , T , from the system (1) and (2), where
T = 25, 50 is taken.

(ii) Given data YT = {y1, y2, · · · , yT}, obtain the filtering estimates by the ex-
tended Kalman filter (EKF), the resampling filter (RSF) and the impor-
tance sampling filters (ISF (15) and ISF (18), or ISF (16), ISF (19) and
ISF (20)). We choose n = 20, 50, 100, 500 for RSF and n = 20, 50, 100
for ISF’s.

(iii) Repeat (i) and (ii) G times and compute the root mean square error
(RMSE) for each estimate, which is defined as:

RMSE =
1

T

T∑

t=1


 1

G

G∑

g=1

(a
(g)
t|t − α

(g)
t )2




1/2

,

where at|t takes the extended Kalman filter estimate, the resampling filter
estimate and the importance sampling filter estimates. The superscript
(g) denotes the g-th simulation run and we take G = 1000. That is, α

(g)
t

denotes the simulated state variable at time t in the g-th simulation run.

Under the above simulation procedure, we examine five Monte Carlo stud-
ies, i.e., Linear and Normal Model, ARCH Model, Stochastic Volatility Model,
Nonstationary Growth Model and Logistic Model. Simulation results and some
discussion are given in Section 4.1

11



Simulation I: Linear and Normal Model (Table 1): Consider the fol-
lowing linear scalar system:

(Measurement Equation) yt = αt + εt,

(Transition Equation) αt = δαt−1 + ηt,
(21)

α0 ∼ N(0, 1),
(

εt

ηt

)
∼ N

( (
0
0

)
,
(

1 0
0 1

) )
,

for t = 1, 2, · · · , T and δ = 0.5, 0.9, 1.0.
In this simulation study, the extended Kalman filter is given by the conven-

tional linear recursive formula (i.e., the extended Kalman filter reduces to the
standard Kalman filter in this case), because the system is linear and normal.
Therefore, it is expected that EKF is better than ISF’s and RSF.

Simulation II: ARCH Model (Table 2): The scalar system with the
nonlinear transition equation is given by:

(Measurement Equation) yt = αt + εt,

(Transition Equation) αt = (1− δ + δα2
t−1)

1/2ηt,
(22)

where t = 1, 2, · · · , T and δ = 0.5, 0.9. The transition equation follows the
first-order autoregressive conditional heteroscedasticity (ARCH(1)) process,
while the measurement equation consists of the ARCH(1) term and the error.
Note that the unconditional variance of αt is assumed to be one in this Monte
Carlo experiment. For α0 and (εt, ηt)

′, we make the same assumptions as in
Simulation I (in Simulations III and V, similarly, we assume the same density
functions as in Simulation I for α0 and (εt, ηt)

′). The measurement equation is
linear but the transition equation is nonlinear. In this experiment, therefore,
it might be expected that EKF does not show a good performance.

Simulation III: Stochastic Volatility Model (Table 3): Consider the
following nonlinear system:

(Measurement Equation) yt = exp
(

1

2
αt

)
εt,

(Transition Equation) αt = δαt−1 + ηt,

(23)

where 0 ≤ δ < 1 and t = 1, 2, · · · , T . δ = 0.5, 0.9 is taken. The transition
equation follows the first-order autoregressive process, while the measurement
equation denotes the nonlinear function of the state variable and the error.
Note that in this simulation study the antithetic Monte Carlo method (19) is
equivalent to (20) because one-step ahead prediction estimates are equal to the

12



filtering estimates in the extended Kalman filter algorithm, i.e., a∗t|t = a∗t|t−1

and Σ∗
t|t = Σ∗

t|t−1.
It is known that the measurement equation in the system (23) gives us a

poor approximation. Instead, taking the logarithm on both sides, the mea-
surement equation in the system (23) is rewritten as:

(Measurement Equation) log(y2
t ) = αt + log(ε2

t ),

(Transition Equation) αt = δαt−1 + ηt,
(24)

where log(ε2
t ) is known to be distributed as mean −1.27 and variance π2/2 (for

example, see Ghysels, Harvey and Renault (1996) and Sandmann and Koop-
man (1998) for mean and variance of the stochastic volatility model). There-
fore, we may use the measurement equation in (24), rather than that in (23).
Note that the state-space model (24) reduces to the linear and non-Gaussian
system. Accordingly, the Kalman filter estimate is an optimal estimator in the
sense that it minimizes the mean square error within the class of all linear esti-
mators, which implies that the Kalman filter under the normality assumption
is the minimum mean square estimator and that the Kalman filter without the
normality assumption is known as the minimum mean square linear estimator
(see Harvey (1989)).

In this simulation study, we examine the above two kinds of the system,
i.e., (23) and (24). See Ghysels, Harvey and Renault (1996), Shepherd (1996)
and Sandmann and Koopman (1998) for the stochastic volatility model.

Simulation IV: Nonstationary Growth Model (Table 4): Consider an
example of the following univariate nonstationary growth model:

(Measurement Equation) yt =
α2

t

20
+ εt,

(Transition Equation) αt =
1

2
αt−1 +

25αt−1

1 + α2
t−1

+8 cos(1.2(t− 1)) + ηt,

(25)

α0 ∼ N(0, 1),
(

εt

ηt

)
∼ N

( (
0
0

)
,
(

1 0
0 10

) )
,

where t = 1, 2, · · · , T . The system (25) are taken in Kitagawa (1987, 1996)
and Carlin, Polson and Stoffer (1992). It is called the nonstationary growth
model in Carlin, Polson and Stoffer (1992).
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Simulation V: Logistic Model (Table 5): Next, we take the following
logistic system:

(Measurement Equation) yt =
exp(αt)

exp(αt) + exp(εt)
,

(Transition Equation) αt =
exp(αt−1)

exp(αt−1) + exp(ηt)
,

(26)

where t = 1, 2, · · · , T . In this experiment, both the measurement and the
transition equations are logistic, which implies that the system is nonlinear.
αt lies on the interval between zero and one. Therefore, we apply (15) and
(18) for the random draws generated from the importance density.

Note as follows. The measurement equation can be transformed into a
linear function in the state variable, which is shown as:

log

(
1

yt

− 1

)
= −αt + εt.

For the Kalman filtering estimate, however, equation (26), rather than the
above equation, is linearized in this experiment.

4.1 RESULTS AND DISCUSSION

The results are in Tables 1 – 5, where all the values denote the RMSE’s, defined
above. n = 20, 50, 100, 500 and c = 1, 2, 4, 9, 16, 25 are taken. In each table,
the superscript ∗ denotes the minimum RMSE of c = 1, 2, 4, 9, 16, 25 for each
of ISF’s. Therefore, ISF’s with ∗ perform better than ISF’s without ∗ in the
sense of RMSE. In the simulation studies, ISF’s with ∗ are compared with
EKF and RSF. Note that EKF does not depend on both c and n while RSF
is independent of c.

In Linear and Normal Model (Table 1), c = 2 is the best choice for δ =
0.5, 0.9, 1.0. As c is large, RMSE’s become larger, which implies that too widely
distributed importance density leads to a poor approximation of the filtering
density. The two antithetic Monte Carlo variance reduction methods, i.e., ISF
(19) and ISF (20), perform better than the conventional Monte Carlo method,
i.e., ISF (16), especially when n is small. The three ISF’s are close to each
other as n increases and also they are very close to EKF. ISF (19) is not too
different from ISF (20) but the former is slightly better than the latter. Under
the same number of random draws, RSF is the worst estimator. ISF (19) with
n = 100 is similar to RSF with n = 500. Therefore, RSF needs more random
draws than ISF to keep the same precision.

In Table 2, ARCH(1) model is taken as an example. When δ2 < 1/3, the
fourth-moment of αt does not exists, which implies that αt is widely distributed
with fat tails. Therefore, c = 25 gives us the smallest RMSE when δ = 0.9,
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while c = 4 is the smallest RMSE when δ = 0.5. In the case of δ = 0.9, c = 25
and n = 100, ISF’s perform much better than EKF.

For the stochastic volatility model in Table 3, we estimate two types of the
state-space models, i.e., (23) and (24). Note for the system (23) in Table 3
that the one-step ahead prediction estimates are exactly equal to the filtering
estimates in the extended Kalman filter. Therefore, there is no difference
between ISF (19) and ISF (20). However, when we use the system (24), ISF
(19) is different from ISF (20). Since ISF is based on the extended Kalman
filter estimates, ISF with (23) is not equivalent to ISF with (24). For RSF, note
that there is no difference between (23) and (24) because RSF does not depend
on the extended Kalman filter. From the table, the system (24) is preferred to
the system (23), where RMSE’s from the system (24) are smaller than those
from the system (23). In this example, the case of c = 2 is recommended for
the systems (23) and (24).

In Table 4, an example of the nonstationary growth model is taken. c =
25 might be recommended in this simulation study. In almost all the cases,
RMSE’s of ISF (20) are smaller than those of ISF (19). We can take the system
(25) as the case where P (αt|Yt−1) is too far from P (αt|Yt). Therefore, in this
example, we should take ISF (20) for the antithetic Monte Carlo method. It
is surprising that RSF with n = 20 is close to ISF’s with n = 100. In the case
of strong nonlinearity, RSF is the best estimator even when n is small.

In the logistic model of Table 5, (18) is taken as the antithetic Monte Carlo
method. In the other simulation studies the bimodal distribution is used for the
importance density, but in this example the uniform distribution is taken as the
importance density. We have the same conclusion as the previous simulation
studies, i.e., the antithetic Monte Carlo method is good especially when n is
small and ISF’s are better than RSF for the same number of random draws.

From the tables, we can conclude as follows.

(i) For both RSF and ISF, RMSE is small as n increases.

(ii) Except for Simulation IV (Table 4), RSF is worse than ISF’s in the case
of the same number of random draws. However, with no doubt, RSF
becomes better than any other estimators for large n.

(iii) ISF’s are better than EKF in the nonlinear systems (see Tables 2 – 5).
Even in the linear and normal system, ISF’s are very close to EKF (see
Table 1).

(iv) ISF’s with the variance reduction methods perform better than ISF with-
out them. Especially, ISF’s with the variance reduction methods are
significantly better when n is small. As n increases, the ISF’s with and
without the variance reduction methods are close to each other.

(v) For ISF’s, c = 2, 4 is better in almost all the cases. However, we should
choose a large value for c in the case where Pα(αt|αs) is widely dis-
tributed. See δ = 0.9 of Table 2 and Table 4.
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TABLE 1: Simulation I: Linear and Normal Model (21)

Estimation T 25 50
Method n c \ δ 0.5 0.9 1.0 0.5 0.9 1.0
EKF 0.7321 0.7783 0.7917 0.7347 0.7808 0.7943

1 0.7507 0.8006 0.8154 0.7533 0.8035 0.8185
20 2 0.7499∗ 0.7996∗ 0.8143∗ 0.7522∗ 0.8022∗ 0.8170∗

4 0.7536 0.8051 0.8204 0.7558 0.8069 0.8221
9 0.7633 0.8180 0.8343 0.7654 0.8199 0.8364

ISF 1 0.7404 0.7880∗ 0.8019∗ 0.7422 0.7894 0.8034
(16) 50 2 0.7402∗ 0.7880∗ 0.8019∗ 0.7412∗ 0.7885∗ 0.8024∗

4 0.7414 0.7895 0.8036 0.7423 0.7902 0.8044
9 0.7447 0.7934 0.8077 0.7451 0.7937 0.8081
1 0.7352 0.7821 0.7957 0.7384 0.7850 0.7988

100 2 0.7348∗ 0.7818∗ 0.7955∗ 0.7380∗ 0.7847∗ 0.7984∗
4 0.7352 0.7824 0.7962 0.7387 0.7855 0.7994
9 0.7364 0.7838 0.7976 0.7401 0.7872 0.8011
1 0.7409 0.7902 0.8048 0.7433 0.7928 0.8077

20 2 0.7379∗ 0.7872∗ 0.8018∗ 0.7416∗ 0.7905∗ 0.8052∗
4 0.7393 0.7895 0.8046 0.7430 0.7931 0.8082
9 0.7466 0.8014 0.8184 0.7493 0.8040 0.8208

ISF 1 0.7354 0.7828 0.7967 0.7381 0.7853 0.7992
(19) 50 2 0.7345∗ 0.7815∗ 0.7952∗ 0.7371∗ 0.7842∗ 0.7981∗

4 0.7348 0.7821 0.7959 0.7375 0.7850 0.7990
9 0.7364 0.7844 0.7985 0.7385 0.7868 0.8010
1 0.7342 0.7810 0.7947 0.7363 0.7829 0.7966

100 2 0.7340∗ 0.7806∗ 0.7942∗ 0.7360∗ 0.7825∗ 0.7961∗
4 0.7340∗ 0.7807 0.7944 0.7362 0.7830 0.7968
9 0.7346 0.7815 0.7951 0.7367 0.7836 0.7975
1 0.7420 0.7919 0.8067 0.7441 0.7940 0.8089

20 2 0.7400∗ 0.7909∗ 0.8060∗ 0.7429∗ 0.7928∗ 0.8077∗
4 0.7430 0.7960 0.8118 0.7458 0.7979 0.8135
9 0.7539 0.8118 0.8291 0.7560 0.8130 0.8302

ISF 1 0.7357 0.7835 0.7976 0.7393 0.7869 0.8009
(20) 50 2 0.7353∗ 0.7833∗ 0.7973∗ 0.7383∗ 0.7856∗ 0.7996∗

4 0.7363 0.7854 0.7997 0.7386 0.7865 0.8006
9 0.7396 0.7903 0.8051 0.7403 0.7896 0.8042
1 0.7342∗ 0.7810∗ 0.7947∗ 0.7365 0.7831 0.7969

100 2 0.7342∗ 0.7814 0.7951 0.7362∗ 0.7829∗ 0.7967∗
4 0.7347 0.7826 0.7965 0.7367 0.7839 0.7978
9 0.7372 0.7860 0.7999 0.7380 0.7855 0.7994

20 0.7888 0.8573 0.8837 0.7897 0.8572 0.8825
RSF 50 0.7542 0.8110 0.8270 0.7549 0.8096 0.8271

100 0.7433 0.7922 0.8072 0.7453 0.7954 0.8090
500 0.7339 0.7809 0.7944 0.7369 0.7837 0.7970
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TABLE 2: Simulation II: ARCH Model (22)

Estimation T 25 50
Method n c \ δ 0.5 0.9 0.5 0.9
EKF 0.7038 0.6654 0.7050 0.6356

2 0.7069∗ 0.6310 0.7103 0.6058
4 0.7070 0.6113 0.7099∗ 0.5881

20 9 0.7137 0.5925 0.7157 0.5732
16 0.7238 0.5842 0.7243 0.5676∗
25 0.7357 0.5817∗ 0.7354 0.5677
2 0.6957 0.6118 0.6997 0.5931

ISF 4 0.6952∗ 0.5886 0.6986∗ 0.5747
(16) 50 9 0.6975 0.5696 0.7002 0.5590

16 0.7005 0.5617 0.7026 0.5535
25 0.7034 0.5583∗ 0.7054 0.5523∗

2 0.6899 0.6019 0.6959 0.5855
4 0.6893∗ 0.5800 0.6953∗ 0.5689

100 9 0.6904 0.5607 0.6963 0.5554
16 0.6915 0.5524 0.6973 0.5499
25 0.6925 0.5497∗ 0.6984 0.5483∗

2 0.6992 0.6214 0.7014 0.5998
4 0.6976∗ 0.6027 0.7008∗ 0.5841

20 9 0.7032 0.5842 0.7064 0.5698
16 0.7144 0.5787∗ 0.7173 0.5662∗
25 0.7324 0.5812 0.7356 0.5705
2 0.6911 0.6084 0.6960 0.5888

ISF 4 0.6902∗ 0.5870 0.6948∗ 0.5719
(19) 50 9 0.6917 0.5673 0.6953 0.5576

16 0.6934 0.5582 0.6967 0.5522
25 0.6952 0.5544∗ 0.6986 0.5507∗

2 0.6900 0.6017 0.6941 0.5825
4 0.6895∗ 0.5800 0.6935∗ 0.5663

100 9 0.6899 0.5612 0.6939 0.5529
16 0.6907 0.5539 0.6946 0.5490
25 0.6915 0.5512∗ 0.6951 0.5481∗

2 0.7015 0.6205 0.7027∗ 0.5995
4 0.7007∗ 0.6025 0.7029 0.5837

20 9 0.7084 0.5852 0.7110 0.5703
16 0.7226 0.5804∗ 0.7243 0.5674∗
25 0.7437 0.5834 0.7452 0.5721
2 0.6926∗ 0.6067 0.6975 0.5885

ISF 4 0.6926∗ 0.5853 0.6963∗ 0.5713
(20) 50 9 0.6954 0.5669 0.6973 0.5577

16 0.6984 0.5597 0.6991 0.5527
25 0.7017 0.5573∗ 0.7016 0.5514∗

2 0.6909∗ 0.6000 0.6946 0.5814
4 0.6912 0.5787 0.6945∗ 0.5649

100 9 0.6934 0.5610 0.6957 0.5525
16 0.6953 0.5550 0.6967 0.5491
25 0.6970 0.5535∗ 0.6976 0.5486∗

20 0.7547 0.7527 0.7555 0.6786
RSF 50 0.7154 0.5995 0.7180 0.5813

100 0.7028 0.5697 0.7047 0.5610
500 0.6895 0.5421 0.6943 0.5422
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TABLE 3: Simulation III: Stochastic Volatility Models (23) and (24)

State-Space Estimation T 25 50
Model Method n c \ δ 0.5 0.9 0.5 0.9

EKF 1.1613 2.1569 1.1542 2.2222
1 0.9722 1.2265 0.9678 1.2335

20 2 0.9613∗ 1.1953∗ 0.9586∗ 1.2006∗
4 0.9634 1.2036 0.9621 1.2190

ISF 1 0.9496 1.1528 0.9463 1.1577
(16) 50 2 0.9442∗ 1.1326∗ 0.9407∗ 1.1378∗

4 0.9455 1.1383 0.9412 1.1392
1 0.9400 1.1320 0.9369 1.1308

(23) 100 2 0.9370∗ 1.1217 0.9344∗ 1.1214∗
4 0.9372 1.1214∗ 0.9355 1.1222
1 0.9580 1.2147 0.9561 1.2204

20 2 0.9498∗ 1.1854∗ 0.9492∗ 1.1950∗
4 0.9551 1.2095 0.9542 1.2269

ISF 1 0.9418 1.1499 0.9415 1.1543
(19) 50 2 0.9390∗ 1.1333∗ 0.9373∗ 1.1355∗

4 0.9406 1.1374 0.9383 1.1372
1 0.9388 1.1277 0.9362 1.1309

100 2 0.9361∗ 1.1168∗ 0.9335∗ 1.1201∗
4 0.9365 1.1205 0.9335∗ 1.1214

EKF 1.0071 1.2507 0.9965 1.2399
1 0.9616 1.1578 0.9588 1.1568

20 2 0.9569∗ 1.1504∗ 0.9543∗ 1.1509∗
4 0.9610 1.1573 0.9586 1.1603

ISF 1 0.9464 1.1292 0.9420 1.1286
(16) 50 2 0.9440∗ 1.1264∗ 0.9391∗ 1.1232∗

4 0.9451 1.1300 0.9402 1.1244
1 0.9375 1.1163 0.9355 1.1168

100 2 0.9359∗ 1.1135∗ 0.9343∗ 1.1146∗
4 0.9364 1.1156 0.9354 1.1168
1 0.9466 1.1412 0.9445 1.1443

20 2 0.9429∗ 1.1343∗ 0.9419∗ 1.1389∗
(24) 4 0.9459 1.1399 0.9452 1.1477

ISF 1 0.9372 1.1208 0.9357 1.1224
(19) 50 2 0.9368∗ 1.1183∗ 0.9342∗ 1.1194∗

4 0.9377 1.1213 0.9346 1.1204
1 0.9359 1.1139 0.9326 1.1156

100 2 0.9352∗ 1.1128∗ 0.9317∗ 1.1124∗
4 0.9354 1.1146 0.9319 1.1127
1 0.9466 1.1414 0.9445 1.1443

20 2 0.9432∗ 1.1355∗ 0.9420∗ 1.1396∗
4 0.9466 1.1441 0.9457 1.1503

ISF 1 0.9372 1.1211 0.9357 1.1224
(20) 50 2 0.9369∗ 1.1192∗ 0.9343∗ 1.1200∗

4 0.9382 1.1248 0.9351 1.1226
1 0.9360 1.1143 0.9326 1.1156

100 2 0.9353∗ 1.1138∗ 0.9318∗ 1.1130∗
4 0.9359 1.1186 0.9323 1.1150

20 0.9885 1.2191 0.9913 1.2307
RSF 50 0.9581 1.1530 0.9546 1.1568

100 0.9450 1.1298 0.9423 1.1310
500 0.9348 1.1100 0.9325 1.1115
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TABLE 4: Simulation IV: Nonstationary Growth Model (25)

Estimation T 25 50
Method n c

EKF 22.0200 20.5308
9 14.0078 13.8635

20 16 13.5467 13.2938
25 13.2408∗ 13.0008∗

ISF 9 11.9598 12.0086
(16) 50 16 10.6172 10.5155

25 9.7394∗ 9.8271∗

9 10.1727 10.1441
100 16 8.2233 8.2563

25 7.3472∗ 7.4668∗

9 14.5901 13.9493
20 16 13.8567 13.2146

25 13.6782∗ 12.8041∗

ISF 9 12.0995 12.1316
(19) 50 16 10.8665 10.6546

25 9.9000∗ 10.0330∗

9 10.2235 10.1331
100 16 8.4028 8.3700

25 7.6416∗ 7.4050∗

9 14.0817 13.5841
20 16 13.3809 13.1203

25 13.3197∗ 12.6800∗

ISF 9 11.8390 11.8826
(20) 50 16 10.5076 10.4571

25 9.6522∗ 9.5233∗

9 10.0773 10.1798
100 16 8.4122 8.2378

25 7.2359∗ 7.3390∗

20 7.3768 7.5378
RSF 50 5.8327 5.9042

100 5.1234 5.1886
500 4.6093 4.7345

TABLE 5: Simulation V: Logistic Model (26)

Estimation
Method n \ T 25 50

EKF 0.2147 0.2150
ISF 20 0.2029 0.2032
(15) 50 0.1991 0.1999

100 0.1986 0.1989
ISF 20 0.2002 0.2014
(18) 50 0.1987 0.1993

100 0.1979 0.1986
20 0.2078 0.2077

RSF 50 0.2008 0.2018
100 0.1994 0.1999
500 0.1977 0.1983
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5 SUMMARY

In this paper, we have extended the importance sampling filter proposed by
Mariano and Tanizaki (1995), Tanizaki (1996), Tanizaki and Mariano (1994)
using the antithetic Monte Carlo methods to reduce the simulation errors.
In a nonlinear filtering framework, they suggested utilizing the bimodal dis-
tribution function for the importance density function, where the first- and
second-moments of the extended Kalman filter are used. According to the
simulation techniques such as Monte Carlo integration, the simulation errors
decrease as number of random draws (i.e., n) increases, but it is well known
that convergence speed is quite slow as

√
n. Therefore, in this paper, we have

applied the antithetic Monte Carlo methods to the importance sampling filter.
In Section 4, we performed several simulation studies to examine whether

the importance sampling filters with the antithetic Monte Carlo methods work
well or not. The importance sampling filters with and without the antithetic
Monte Carlo methods are compared with the extended Kalman filter and the
resampling filter. The results obtained from the simulation studies are as
follows. The importance sampling filters with the variance reduction methods
show a good performance especially when number of random draws (i.e., n) is
small. As n increases, ISF (16), ISF (19) and ISF (20) (or ISF (15) and ISF
(18)) are close to each other. c = 2, 3 is better in almost all the cases, while
a large value of c should be chosen in the case where Pα(αt|αt−1) is widely
distributed (see δ = 0.9 of Table 2 and Table 4). Moreover, under the same
number of random draws, the importance sampling filters perform better than
the resampling filter in Simulations I – III and V. However, when the system
includes strong nonlinearity as in Simulation IV, the resampling filter becomes
the best estimator.

APPENDICES

APPENDIX A: RESAMPLING FILTER

The resampling procedure proposed by Gordon, Salmond and Smith (1993)
and Kitagawa (1996) are described as follows.

Equation (3) is approximately represented as:

P (αt|Yt−1) ≈ 1

n

n∑

j=1

P (αt|αj,t−1|t−1). (27)

Therefore, αi,t|t−1 is generated as follows. Pick up αj,t−1|t−1 randomly (i.e., pick
up j with equal probability) and generate a random number of ηt (i.e., ηi,t),
and we have a random draw of αt (i.e., αi,t|t−1) from the transition equation:
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αi,t|t−1 = ft(αj,t−1|t−1, ηi,t). Thus, when αj,t−1|t−1 for j = 1, 2, · · · , n are avail-
able, αi,t|t−1 for i = 1, 2, · · · , n can be obtained from the transition equation.

For filtering, we consider generating the random draws of αt (i.e., αi,t|t
for i = 1, 2, · · · , n) from the filtering density P (αt|Yt), given αi,t|t−1 for i =
1, 2, · · · , n. Using the random draws αi,t|t−1 for i = 1, 2, · · · , n, equation (4) is
approximately rewritten as follows:

P (αi,t|t−1|Yt) ≈ Py(yt|αi,t|t−1)∑n
j=1 Py(yt|αj,t|t−1)

. (28)

Note that P (αi,t|t−1|Yt−1) ≈ 1/n is used to derive equation (28). That is, let
xi, i = 1, 2, · · · , n, be the random draws from the density P (x). Then, for all
i and j, the probability which we have xi should be equal to the probability
which xj occurs. In the case where we have n random draws of x, therefore,
P (xi) ≈ 1/n is obtained.

Equation (28) is interpreted as follows. The probability which αt takes
αj,t|t−1 is approximately given by P (αj,t|t−1|Yt). Accordingly, αi,t|t is chosen
from αj,t|t−1, j = 1, 2, · · · , n, with probability P (αj,t|t−1|Yt). That is, the i-th
random draw of αt from P (αt|Yt) (i.e., αi,t|t) is resampled as:

αi,t|t =





α1,t|t−1, with probability P (α1,t|t−1|Yt),
α2,t|t−1, with probability P (α2,t|t−1|Yt),

...
...

αn,t|t−1, with probability P (αn,t|t−1|Yt).

Thus, in order to obtain random draws from the filtering density, first we
have to compute P (αj,t|t−1|Yt) for all j = 1, 2, · · · , n using equation (28) and
next obtain αi,t|t for i = 1, 2, · · · , n by resampling αj,t|t−1 with probability
P (αj,t|t−1|Yt), j = 1, 2, · · · , n. In practice, a uniform random draw between zero
and one (say, u) is generated and αj,t|t−1 is taken as αi,t|t when ωj−1 ≤ u < ωj,

where ωj ≡ ∑j
m=1 P (αm,t|t−1|Yt) and ω0 ≡ 0.

Based on the random draws αi,t|s for i = 1, 2, · · · , n, the filtering mean and
variance are easily obtained as:

at|s =
1

n

n∑

i=1

αi,t|s, Σt|s =
1

n

n∑

i=1

(αi,t|s − at|s)(αi,t|s − at|s)
′,

where s = t− 1, t.

APPENDIX B: COMPARISON OF THE ANTITHETIC
MONTE CARLO METHODS

In Section 3, we have introduced the two types of the antithetic Monte Carlo
methods, i.e., (19) and (20). In this appendix, we examine which method gives
us the better approximation.
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TABLE 6: Correlation Coefficients between xi and xi+m

µ \ σ 1.0 1.5 2.0 2.5 3.0 4.0 5.0

0.0 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000
0.5 −0.883 −0.926 −0.951 −0.966 −0.975 −0.985 −0.990

(19) 1.5 −0.283 −0.486 −0.630 −0.731 −0.799 −0.875 −0.916
3.0 0.389 0.166 −0.055 −0.232 −0.383 −0.583 −0.706
5.0 0.723 0.589 0.431 0.268 0.111 −0.146 −0.348
0.0 −1.000 −0.923 −0.800 −0.690 −0.600 −0.471 −0.385
0.5 −1.000 −0.926 −0.805 −0.695 −0.605 −0.475 −0.388

(20) 1.5 −1.000 −0.943 −0.837 −0.731 −0.639 −0.506 −0.412
3.0 −1.000 −0.968 −0.895 −0.807 −0.725 −0.581 −0.478
5.0 −1.000 −0.984 −0.943 −0.886 −0.822 −0.696 −0.585

Take an example of the density function: P (x) =
1

2
N(0, 1) +

1

2
N(µ, σ2),

which corresponds to: αt = x, a∗t|t = 0, cΣ∗
t|t = 1, a∗t|t−1 = µ and cΣ∗

t|t−1 = σ2

in the importance density PI(αt) in Section 3.
Generate random draws from P (x), which are denoted by xi, i = 1, 2, · · · , n.

Consider the two types of the antithetic Monte Carlo methods, which are shown
in (19) and (20). Compute the correlation coefficient between xi and xi+m,
i = 1, 2, · · · ,m, where n = 2m. We take n = 100000, µ = 0.0, 0.5, 1.5, 3.0, 5.0
and σ = 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0.

The results are shown in Table 6. For (19), xi is positively correlated
with xi+m when N(0, 1) is too far from N(µ, σ2). However, when N(0, 1) is
close to N(µ, σ2), (19) has strong negative correlation compared with (20).
The antithetic method (20) always yields negative correlations between xi and
xi+m, but the correlation becomes small as µ approaches zero. When σ2 goes
to one, (18) has strong negative correlation in spite of µ.

Therefore, it might be concluded that (19) should be chosen when σ2 is
large and/or µ is close to zero but (20) might be recommended when σ2 is
close to one and/or µ is close to large.

The obtained results can be applied to the importance density PI(αt) as
follows: (19) is better than (20) when at|t−1 is close to at|t and/or cΣt|t−1 is too
different from cΣt|t. (20) should be chosen when at|t−1 is away from at|t and/or
cΣt|t−1 is close to cΣt|t. In practice, since P (αt|Yt−1) is more widely distributed
than P (αt|Yt) because of Yt−1 ⊂ Yt, we should take (19) if at|t−1 is close to at|t
and choose (20) if at|t−1 is far from at|t.
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