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Abstract: In this paper, an attempt is made to show a general solution to nonlinear
and/or non-Gaussian state space modeling in a Bayesian framework, which corresponds
to an extension of Carlin, Polson and Stoffer (1992) and Carter and Kohn (1994, 1996).
Using the Gibbs sampler and the Metropolis-Hastings algorithm, an asymptotically exact
estimate of the smoothing mean is obtained from any nonlinear and/or non-Gaussian
model. Moreover, taking several candidates of the proposal density function, we examine
precision of the proposed Bayes estimator.
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1 Introduction

Since Kitagawa (1987) and Kramer and Sorenson (1988) proposed the nonlinear filter
and smoother using numerical integration, nonlinear and/or non-Gaussian filtering and
smoothing techniques have been developed. For example, Tanizaki (1996), Tanizaki and
Mariano (1994) and Mariano and Tanizaki (1995) applied Monte Carlo integration with
importance sampling to nonlinear and non-Gaussian state-space modeling, where a recur-
sive algorithm of weight functions is obtained.

Carlin, Polson and Stoffer (1992) and Carter and Kohn (1994, 1996) utilize Gibbs
sampling (also see Chib and Greenberg (1996)), where the smoothing means are evaluated
by random draws in a Bayesian framework. Random draws of the state variables for
all time periods are jointly generated, which implies that the smoothing procedure is

∗The authors are grateful to two anonymous referees for helpful comments and suggestions. However,
responsibility for any errors remains entirely with the authors.
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formulated.1 However, they choose the prior densities such that random draws are easily
generated, or they utilize rejection sampling as well as Gibbs sampling in the case of
the nonlinear system. It is known that rejection sampling is sometimes computationally
inefficient. We sometimes have the case where rejection sampling does not work well,
depending on the underlying assumptions on the functional form or the error terms.
Thus, in their paper, the specific state-space models are taken.

Gordon, Salmond and Smith (1993), Kitagawa (1996) and Kitagawa and Gersch (1996)
proposed both filtering and smoothing using the resampling procedure, where random
draws from the filtering density and the smoothing density are recursively generated at
each time and the random draws from the smoothing are based on those from the filtering
density. In the case of smoothing, the resampling approach has the disadvantage that it
takes an extremely long time computationally.

Tanizaki (1996, 1999), Tanizaki and Mariano (1998) and Mariano and Tanizaki (2000)
proposed nonlinear filter and smoother utilizing rejection sampling, where random draws
from the filtering density and the smoothing density are recursively obtained as in the re-
sampling procedure. When the acceptance probability is close to zero, rejection sampling
takes a long time computationally. Moreover, we have the case where the acceptance
probability is zero. In such a case, rejection sampling cannot be applied.

In order to avoid these computational disadvantages of the existing procedures, Geweke
and Tanizaki (1999) suggested the nonlinear and/or non-Gaussian smoother applying the
Metropolis-Hastings algorithm and the Gibbs sampler simultaneously, where the mea-
surement and transition equations are specified in any general formulation and the error
terms in the state-space model are not necessarily normal. They also focus on smoothing
in a non-Bayesian framework.

Utilizing the Metropolis-Hastings algorithm in addition to the Gibbs sampler, in this
paper, we deal with any nonlinear and/or non-Gaussian state-space model in a Bayesian
framework. Thus, this paper is an extension of Carlin, Polson and Stoffer (1992), Carter
and Kohn (1994, 1996) and Geweke and Tanizaki (1999).2 Moreover, several proposal
densities are taken and compared by some Monte Carlo studies, since the critical problem
of the Metropolis-Hastings algorithm is choice of the proposal density. We conclude by
the root mean square criterion that the proposed procedure are not affected by choice of
the proposal densities except for some cases.

1Carlin, Polson and Stoffer (1992) showed the filtering procedure, which has more computational
burden than the smoother (usually, since the filtering estimate is based on the smoothing estimate,
smoothing is more computational than filtering). Therefore, their filter cannot be practically applied.

2As mentioned above, Carlin, Polson and Stoffer (1992) and Carter and Kohn (1994, 1996) dealt with
the special state-space models which we can easily generated random draws. In the nonlinear cases,
Carlin, Polson and Stoffer (1992) utilized rejection sampling within Gibbs sampling, which is sometimes
infeasible in practice. However, we can apply the estimation procedure shown in this paper to any
nonlinear and/or non-Gaussian state-space models.

Geweke and Tanizaki (1999) developed the nonlinear and/or nonnormal smoother in a non-Bayesian
framework, while in this paper we consider it in a Bayesian framework.
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2 Metropolis Algorithm within Gibbs Sampling

We consider a nonlinear and nonnormal state-space model in the following general form:

(Measurement Equation) yt = ht(αt, εt, γ), (1)

(Transition Equation) αt = ft(αt−1, ηt, δ), (2)

for t = 1, 2, · · · , T , where T denotes the sample size. A vector yt is observable while a
vector αt is unobserved. The error terms εt and ηt are mutually independently distributed,
which are typically assumed to be normal but not necessarily. ht(·, ·, ·) and ft(·, ·, ·) are the
vector functions, which are assumed to be known. We introduce the nuisance parameters
γ and δ into the state-space model. Let Yt be the information set up to time t, i.e.,
Yt = {y1, y2, · · · , yt}. We consider estimating the conditional expectation of αt using
information YT , i.e., αt|T ≡ E(αt|YT ).3

Consider deriving P (αt|YT ) to obtain the smoothing mean αt|T . Let us define At = {α0,
α1, · · ·, αt}, which is a set consisting of the state-variables up to time t. Define Py(yt|αt, γ)
and Pα(αt|αt−1, δ) as the density functions obtained from measurement equation (1) and
transition equation (2). Denote the prior distributions of γ and δ by Pγ(γ) and Pδ(δ). Let
P (At, Yt|γ, δ), Pα(At|δ) and Py(Yt|At, γ) be the joint density of At and Yt given γ and δ,
the density of At given δ and the conditional density of Yt given At and γ, respectively.

Under the setup, the density of AT and YT given γ and δ, i.e., P (AT , YT |γ, δ), is written
as:

P (AT , YT |γ, δ) = Pα(AT |δ)Py(YT |AT , γ), (3)

where the two densities in the right hand side are represented by:

Pα(AT |δ) =





Pα(α0|δ)
T∏

t=1

Pα(αt|αt−1, δ), if α0 is stochastic,

T∏

t=1

Pα(αt|αt−1, δ), otherwise,

(4)

Py(YT |AT , γ) =
T∏

t=1

Py(yt|αt, γ), (5)

where Pα(α0|δ) denotes the initial density of α0 when α0 is assumed to be a random
variable. From the Bayes theorem, the conditional distribution of AT given YT , γ and δ,
i.e., P (AT |YT , γ, δ), is obtained as follows:

P (AT |YT , γ, δ) =
P (AT , YT |γ, δ)∫

P (AT , YT |γ, δ)dAT

. (6)

3The conditional expectation αt|s = E(αt|Ys) is called prediction if t > s, filtering if t = s and
smoothing if t < s. Moreover, there are three kinds of smoothing by the relationship between t and s
with t < s. Let k and T be the fixed nonnegative integer and the sample size, respectively. αk|t for
fixed k and t = k + 1, k + 2, · · · , T is called fixed-point smoothing, which is useful to estimate the initial
condition of the system. αt|t+k for fixed k and t = 1, 2, · · · , T − k is known as fixed-lag smoothing. αt|T
for t = 1, 2, · · · , T is called fixed-interval smoothing, which is helpful to investigate the past condition of
the system. In this paper, we focus only on fixed-interval smoothing αt|T .
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Using the Metropolis-Hastings algorithm and the Gibbs sampler, an attempt is made
to generate random draws of AT , γ and δ directly from P (AT |YT , γ, δ), P (γ|AT , YT , δ)
and P (δ|AT , YT , γ). Define A∗

t+1 = {αt+1, αt+2, · · · , αT}, where AT = {At, A
∗
t+1}, AT =

A∗
0 and A∗

T+1 = ∅ (an empty set). According to the Gibbs sampler, random draws
of AT from P (AT |YT , γ, δ) are based on those of αt from P (αt|At−1, A

∗
t+1, YT , γ, δ) for

t = 1, 2, · · · , T . To perform the Gibbs sampler, therefore, we need to obtain the conditional
density function of αt given At−1, A∗

t+1, YT , γ and δ, which is derived from equation (6)
and is shown in the following equation:

P (αt|At−1, A
∗
t+1, YT , γ, δ)

=
P (AT |YT , γ, δ)∫
P (AT |YT , γ, δ)dαt

∝




Py(yt|αt, γ)Pα(αt|αt−1, δ)Pα(αt+1|αt, δ), if t = 1, 2, · · · , T − 1,

Py(yt|αt, γ)Pα(αt|αt−1, δ), if t = T (endpoint).
(7)

The posterior density of γ given AT , YT and δ, i.e., P (γ|AT , YT , δ), and that of δ given
AT , YT and γ, i.e., P (δ|AT , YT , γ), are given by:

P (γ|AT , YT , δ) ∝ Py(YT |AT , γ)Pγ(γ), (8)

P (δ|AT , YT , γ) ∝ Pα(AT |δ)Pδ(δ). (9)

Thus, all the kernels of P (αt|At−1, A∗
t+1, YT , γ, δ) for t = 1, 2, · · · , T , P (γ|AT , YT , δ) and

P (δ|AT , YT , γ) are obtained. Utilizing the three kernels given by (7) – (9), we consider
evaluating the smoothing mean by generating random draws of AT , γ and δ directly
from the conditional density P (AT , γ, δ|YT ). The Metropolis-Hastings algorithm within
the Gibbs sampler is applied to random number generation. From the three posterior
densities (7) – (9), the smoothing random draws are generated as follows:

(i) Take appropriate values4 for γ, δ and αt, t = 0, 1, · · · , T .

(ii) Generate a random draw of αt from P (αt|At−1, A
∗
t+1, YT , γ, δ) for t = 1, 2, · · · , T .

(iii) Generate a random draw of γ from P (γ|AT , YT , δ).

(iv) Generate a random draw of δ from P (δ|AT , YT , γ).

(v) Repeat (ii) – (iv) N times to obtain N random draws of AT , δ and γ.

In Steps (ii) – (v), the random draws of AT , δ and γ are updated, which sampling method
is called the Gibbs sampler. See Geman and Geman (1984), Tanner and Wong (1987),
Gelfand, Hills, Racine-Poon and Smith (1990), Gelfand and Smith (1990), Carlin and

4Typically, the smoothed estimates based on the extended Kalman filter are taken for αt, t =
0, 1, · · · , T . The extended Kalman filter is one of the traditional nonlinear filters, where the nonlin-
ear measurement and transition equations given by equations (1) and (2) are linearized by the first-order
Taylor series expansion and the linearized system is directly applied to the standard linear recursive
algorithm (see Wishner, Tabaczynski and Athans (1969), Gelb (1974), Anderson and Moore (1979) and
Tanizaki and Mariano (1996)). Moreover, α0 is generated from the initial density Pα(α0|δ) if α0 is
stochastic and it is fixed as α0 if α0 is nonstochastic.
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Polson (1991), Geweke (1996, 1997) and so on for the Gibbs sampler. We may change
the order of Steps (ii) – (iv). Moreover, in Steps (ii) – (iv), generally it is intractable
to generate the random draws of αt for t = 1, 2, · · · , T , γ and δ. In this case, there are
two ways to generate random draws, i.e., one is rejection sampling5 and another is the
Metropolis-Hastings algorithm (see Appendix 1 for the Metropolis-Hastings algorithm).
It is well known that rejection sampling takes a long time computationally when the ac-
ceptance probability is close to zero and also rejection sampling cannot be applied when
the acceptance probability is zero. Therefore, in order to avoid these computational disad-
vantages of rejection sampling, in this paper we suggest applying the Metropolis-Hastings
algorithm in Steps (ii) — (iv), when it is not feasible to generate the random draws
from the corresponding posterior densities. Thus, the Gibbs sampler and the Metropolis-
Hastings algorithm are combined in order to obtain the smoothing random draws from
any state-space model.

Let g(·) be a function. Consider estimating E(g(αt)|YT ), based on the N random draws
of αt for t = 1, 2, · · · , T . The smoothing estimate of E(g(αt)|YT ) is simply obtained as the
arithmetic average of the N−M random draws of g(αt). Especially, the case of g(αt) = αt

represents the smoothing mean (i.e., αt|T ), while the case of g(αt) = (αt−αt|T )(αt−αt|T )′

gives us the smoothing variance. Usually, we ignore the first M random draws from
consideration, because of convergence of the Markov chain Monte Carlo methods.

3 Choice of Proposal Density

The Metropolis-Hastings algorithm has the problem of specifying the proposal density
as in Appendix 1, which is the crucial criticism. Several generic choices of the proposal
density are discussed by Tierney (1994) and Chib and Greenberg (1995). Let P∗α(z|x),
P∗γ(z|x) and P∗δ(z|x) be the proposal densities of αt, γ and δ, respectively.

3.1 On the Proposal Density P∗α(z|x)

For the proposal density P∗α(z|x), we can consider the following candidates, which are
utilized in Section 4.

3.1.1 Proposal Density I

It might be natural for the proposal density to take the density function obtained from
the transition equation (2), i.e., P∗α(z|x) = Pα(z|αt−1, δ). In this case, P∗α(z|x) does not
depend on x, i.e., P∗α(z|x) = P∗α(z), which is called the independence chain.

5Carlin, Polson and Stoffer (1992) utilizes rejection sampling in the case of the nonlinear system. As
mentioned above, rejection sampling is sometimes computationally inefficient. Accordingly, we sometimes
have the case such that rejection sampling does not work well, depending on the underlying assumptions
on the functional form or the error terms. Improving this issue, in this paper, we introduce the estimation
procedure which can be applied to any state-space model.
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3.1.2 Proposal Density II

It is possible for the proposal density to utilize the extended Kalman smoothed estimates,
i.e., P∗α(z|x) = N(a∗t|T , cΣ∗

t|T ), where a∗t|T and Σ∗
t|T denote the first- and the second-

moments (i.e., mean and variance) based on the extended Kalman smoothed estimates at
time t. This proposal density is also the independence chain. c is an appropriate constant
value. In Monte Carlo studies of the next section, c = 1, 2, 4, 16 is taken.

3.1.3 Proposal Density III

We may take the proposal density called the random walk chain, i.e., P∗α(z|x) = P∗α(z−
x). In this paper, we consider the proposal density as P∗α(z|x) = N(x, cΣ∗

t|T ). As defined
in Section 3.1.2, c takes an appropriate constant value.

3.1.4 Proposal Density IV

The alternative proposal density is based on approximation of the log-kernel (see Geweke
and Tanizaki (1999)). Let q(z) = log(P (z)), where P (z) may denote the kernel which
corresponds to equation (7). Approximating the log-kernel q(z) around x by the second-
order Taylor series expansion, q(z) is represented as:

q(z) ≈ q(x) + q′(x)(z − x) +
1

2
q′′(x)(z − x)2, (10)

where q′(·) and q′′(·) denote the first- and the second-derivatives. Depending on the sign
of q′′(x), we have the following four cases, i.e., Cases 1 – 4.

Case 1: q00(x) < 0: Equation (10) is written by:

q(z) ≈ q(x)− 1

2

(
−q′′(x)

)(
z − (x− q′(x)

q′′(x)
)
)2

+ d(x),

where d(x) is an appropriate function of x. The second term in the right hand side
is equivalent to the exponential part of the normal density. Therefore, P∗α(z|x) is
taken as N(µ, σ2), where µ = x− q′(x)/q′′(x) and σ2 = (−q′′(x))−1.

Case 2: q00(x) ≥ 0 and q0(x) < 0: Perform linear approximation of q(z). Let x∗1
be the nearest mode with x∗1 < x. Then, q(z) is approximated by a line passing

between x∗1 and x, which is written as: q(z) ≈ q(x∗1) +
q(x∗1)− q(x)

x∗ − x
(z − x∗1). From

the second term in the right hand side, the proposal density is represented as the
exponential distribution with z > x∗1− d, i.e., P∗α(z|x) = λ exp

(
−λ(z− (x∗1− d))

)
if

x∗1− d < z and P∗α(z|x) = 0 otherwise, where λ =

∣∣∣∣∣
q(x∗1)− q(x)

x∗1 − x

∣∣∣∣∣ and d is a positive

value (see Footnote 6 for d). Thus, z is generated by z = w + (x∗1 − d), where w
follows the exponential distribution with parameter λ.
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Case 3: q00(x) ≥ 0 and q0(x) > 0: Similarly, perform linear approximation of q(z) in
this case. Let x∗2 be the nearest mode with x < x∗2. Approximation of q(z) is exactly
equivalent to that of Case 2. Taking into account z < x∗2 + d, the proposal density

is written as: P∗α(z|x) = λ exp
(
−λ((x∗2 + d) − z)

)
if z < x∗2 + d and P∗α(z|x) = 0

otherwise. Thus, z is generated by z = (x∗2 + d) − w, where w is the exponential
distribution with parameter λ.

Case 4: q00(x) ≥ 0 and q0(x) = 0: In this case, q(z) is approximated as a uniform
distribution at the neighborhood of x. As for the range of the uniform distribution,
we utilize the two appropriate values x∗1 and x∗2, which satisfies x∗1 < x < x∗2. When
we have two modes, x∗1 and x∗2 may be taken as the modes. Thus, the proposal
density P∗α(z|x) is obtained by the uniform distribution on the interval between x∗1
and x∗2, or possibly the interval between (x∗1 − d) and (x∗2 + d).

Thus, for approximation of the kernel, all the possible cases are given by Cases 1 – 4
depending on the signs of q′(·) and q′′(·). For positive d, the generated random draw may
move from one case to another,6 which implies that the irreducibility condition of the
Gibbs sampler is guaranteed. Moreover, applying the procedure above to each element of
the state vector, Proposal IV is easily extended to multivariate cases.

3.2 On the Proposal Densities P∗γ(z|x) and P∗δ(z|x)

For the proposal densities P∗γ(z|x) and P∗δ(z|x), in the case where the random draws are
easily generated from the posterior density, we do not need to perform the Metropolis-
Hastings algorithm. Therefore, we can generate random draws directly from the posterior
density in such a case.

However, generally it is quite rare to have the above case. When it is infeasible to
generate random draws from the posterior density, in order to perform the Metropolis
algorithm we may take the following proposal densities for γ and δ. As the first strat-
egy, we may take the proposal density as the prior density, i.e., P∗γ(z|x) = Pγ(z) and
P∗δ(z|x) = Pδ(z), which corresponds to the Proposal Density I in Section 3.1.1. Second,
it might be also possible to apply the Proposal Density IV (Section 3.1.4) to P∗γ(z|x) and
P∗δ(z|x). As another candidate of the proposal densities P∗γ(z|x) and P∗δ(z|x), when γ
and δ lie on an interval, we may generate uniform random draws between the interval.

3.3 Discussion

We should keep in mind some remarks when we choose the proposal density, which are
discussed as follows.

6 As an example, consider the unimodal density in which we have Cases 2 and 3. Let x∗ be the mode.
We have Case 2 in the right hand side of x∗ and Case 3 in the left hand side of x∗. In the case of d = 0,
we have the random draws generated from either of Case 2 or 3. In this situation, the generated random
draw does not move from one case to another. In the case of d > 0, however, the distribution in Case 2
can generate a random draw in Case 3. That is, for positive d, the generated random draw may move
from one case to another. In Section 4, we take d = 1/λ, which is a standard error of the exponential
distribution with parameter λ.
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When the one-step prediction density Pα(αt|αt−1; δ) is far from the posterior den-
sity P (αt|At−1, A

∗
t+1, YT ; γ, δ), shown in equation (7), i.e., when Pα(αt|αt−1; δ) is far from

Py(yt|αt; γ), Proposal Density I is not appropriate. In the case where the measurement
equation is highly nonlinear, it might be expected that we often have this case.

In Proposal II, we utilize the first- and second-moments of the extended Kalman
smoother. The peak and range of P (αt|YT ) are not known in general, but mean and
variance of the state-variable can be estimated by the extended Kalman smoothed algo-
rithm, even if the extended Kalman smoother indicates the biased estimator. It might
be appropriate to consider that the extended Kalman smoothed estimates are not too far
from the true state mean values. Therefore, the Metropolis algorithm would be improved
by utilizing the proposal density based on the extended Kalman smoother.

In Proposal Densities II and III, moreover, c should be equal to or greater than
one. The support of the proposal distribution should include that of the target den-
sity (see, for example, Geweke (1996)). For Proposal II, N(a∗t|T , cΣ∗

t|T ) is used to cover
P (αt|At−1, A

∗
t+1, YT ; γ, δ). The support of N(a∗t|T , cΣ∗

t|T ) should include that of the pos-
terior density P (αt|At−1, A

∗
t+1, YT ; γ, δ). Since the support of P (αt|At−1, A

∗
t+1, YT ; γ, δ) is

not known in general, it might be safe that the proposal density P∗α(z|x) should be more
broadly distributed than the posterior density P (αt|At−1, A

∗
t+1, YT ; γ, δ). Therefore, it is

appropriate that c ≥ 1 should be chosen. Otherwise, Proposal Density II could be break
down, especially for the multimodal posterior density. Similarly, for Proposal Density III,
when c is small, it takes a long time for the chain to travel over the support of the target
density. Accordingly, c should not be too small for Proposal Density III.

Proposal Density IV gives us a poor approximation in both tails of the target density.
In the tails, the random draws generated from the proposal density result in the outliers,
because we sometimes have the case where the approximated density in the tails has too
large variance, compared with the target density.

For the other possible candidate, in the case where the state-variable αt lies on an
interval, a uniform distribution between the interval might be taken as the proposal
density. However, this case would not be usual in practice.

4 Monte Carlo Studies

In this section, the simulation-based smoothers with Proposal Densities I – IV are inves-
tigated. Five state space models are examined, i.e., Simulations A – E. For simplicity, we
consider the cases where γ is not included in equation (1) while δ is in equation (2). The
simulation procedure is as follows:

(i) Generate random numbers of εt and ηt for t = 1, 2, · · · , T , based on the underlying
assumptions of the error terms. Given δ and the random draws of εt and ηt, we
obtain a set of data yt and αt, t = 1, 2, · · · , T , from equations (1) and (2), where
T = 100 and δ = 0.5, 0.9.

(ii) Given YT , perform the Bayes estimator shown in Section 2 in order to obtain the
state mean of αt (i.e., αt|T ) and the Bayes mean of δ (say, δ), where we take (M,N) =

8



(3000, 8000), (5000, 10000). As for the prior density of δ, the diffuse prior is chosen
for Simulations A and B and the uniform prior is taken for Simulations C – D.

(iii) Repeat (i) and (ii) G times, where G = 1000 is taken.

(1) For comparison of the state-variable αt, compute the root mean square error
(RMS) for each estimator, which is defined as:

RMS =
1

T

T∑

t=1


 1

G

G∑

g=1

(α
(g)
t|T − α

(g)
t )2




1/2

.

αt|T in the equation above takes the estimated state mean, while αt denotes
the artificially simulated state-variable. The superscript (g) denotes the g-th

simulation run. That is, α
(g)
t indicates the simulated state-variable at time t in

the g-th simulation run.

(2) For comparison of the parameter δ, compute the arithmetic average (AVE) and

the root mean square error (RMS) of δ, i.e., AVE =
1

G

G∑

g=1

δ
(g)

and RMS =

( 1

G

G∑

g=1

(δ
(g) −δ)2

)1/2
. In Simulations C and D, the standard error (SER) is

used instead of RMS.

Under the above setup, in this section, we examine several types of state-space models,
i.e., ARCH Model, Stochastic Volatility Model, Structural Change Model, Shifted-Mean
Model and Nonstationary Growth Model.

Simulation A (ARCH Model): Consider the nonlinear system: yt = αt + εt and αt =

(1 − δ + δα2
t−1)

1/2ηt, where δ = 0.5, 0.9 is taken.7 α0 ∼ N(0, 1) and
(

εt

ηt

)
∼

N
( (

0
0

) (
1 0
0 1

) )
are assumed, which are also used in Simulations B – D. The

uniform distribution is taken for the prior density of δ, i.e., Pδ(δ) = 1 for 0 < δ < 1.
See Engle (1982) and Bollerslev, Engle and Nelson (1994) for the ARCH model.

Simulation B (Stochastic Volatility Model): Take an example of the following state
space model: yt = exp (0.5αt) εt and αt = δαt−1 + ηt, where δ = 0.5, 0.9 is taken.
The uniform prior Pδ(δ) = 1 for 0 < δ < 1 is assumed. See Ghysels, Harvey and
Renault (1996) for the stochastic volatility model.

Simulation C (Structural Change Model): The data generating process is given by:
yt = dt + δαt +εt and αt = δαt−1 +ηt, where δ = 0.5, 0.9, but the estimated system
is: yt = αt +εt and αt = δαt−1 +ηt, where dt = 1 for t = 21, 22, · · · , 40, dt = −1 for

7Note from the transition equation that the unconditional variance of αt is assumed to be one. In
this paper, δ = 0.5, 0.9 is examined. αt is distributed with large tails in the case of δ = 0.9, because the
forth-moment of the ARCH(1) process does not exist when δ2 > 1/

√
3. See Engle (1982) and Bollerslev,

Engle and Nelson (1994).
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t = 61, 62, · · · , 80 and dt = 0 otherwise. The diffuse prior is assumed for δ.8 This
model corresponds to the case where the sudden shifts occur at time periods 21, 41,
61 and 81.

Simulation D (Shifted-Mean Model): The data generating process is given by: yt

= dt + εt, but the estimated system is: yt = αt +εt and αt = δαt−1 +ηt, where dt is
defined in Simulation C. The diffuse prior is assumed for δ.

Simulation E (Nonstationary Growth Model): The system is: yt = α2
t /20 +εt and

αt = δ1αt−1 +δ2αt−1 /(1 + α2
t−1) +δ3 cos(1.2(t− 1)) +ηt, where the true parameter

values are taken as: (δ1, δ2, δ3) = (0.5, 25, 8). εt, ηt and α0 are mutually indepen-
dently distributed as: εt ∼ N(0, 1), ηt ∼ N(0, 10) and α0 ∼ N(0, 10). The diffuse
prior is assumed for δ. This model is examined in Kitagawa (1987, 1996) and Carlin
et al. (1992).

In Simulation A, the transition equation follows the first-order autoregressive condi-
tional heteroscedasticity model (i.e., ARCH(1) model), while the measurement equation
consists of the state-variable and the error term. Simulation B is called the stochastic
volatility model, where the transition equation follows the AR(1) process and the mea-
surement equation denotes a nonlinear function of the state-variable and the error term.
In Simulations C and D, the estimated model is different from the data generating pro-
cess. Simulation E is called the nonstationary growth model, which is nonlinear in both
the transition and measurement equations.

Results and Discussion: The results are in Tables 1 – 6 for the suggested Bayes
estimator and Table 7 for the extended Kalman smoothed estimator (EK) and the im-
portance resampling smoother (IR). In Table 7, EK denotes the standard linear recursive
Kalman smoothed estimator for Simulations C and D and the extended Kalman smoothed
estimator for Simulations A, B and E. IR is briefly discussed in Appendix 2. I, II, III
and IV indicate the simulation-based nonlinear smoothers with the Proposal Densities I
– IV shown in Section 3.1. For Proposal Densities II and III, we examine c = 1, 2, 4, 16.
δ = 0.5, 0.9 is chosen for Simulations A and B. For EK and IR in Table 7, δ is not esti-
mated and it is assumed to be constant, because EK and IR are not Bayes estimators.
For the simulation-based nonlinear estimator discussed in this paper, as mentioned above,
the uniform prior of δ is assumed for Simulations A and B and the diffuse prior of δ is for
Simulations C – E. For each estimator, we compare RMS for αt and both AVE and RMS
(or SER) for δ.

First of all, in Tables 1 – 5, to check convergence diagnostics on the Metropolis within
the Gibbs sampler, the cases of (M, N) = (3000, 8000), (5000, 10000) are examined. For
the burnin period M , there are some diagnostic tests, which are discussed in Geweke
(1992) and Mengersen, Robert and Guihenneuc-Jouyaux (1999). However, since their
tests are applicable in the case of one sample path, we cannot utilize them. Because G

8When the diffuse prior is assumed for δ (i.e., Pδ(δ) is constant for δ), the posterior density of
δ is given by δ ∼ N(δ̂, s2

δ), where δ̂ and s2
δ are the ordinary least squares estimates, i.e., δ̂ =

(
∑T

t=1 α2
t−1)

−1
∑T

t=1 αt−1αt and s2
δ = (

∑T
t=1 α2

t−1)
−1.
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Table 1: Simulation A (ARCH Model): T = 100 and N −M = 5000

δ = 0.5 δ = 0.9
αt δ αt δ

c RMS AVE RMS RMS AVE RMS

M = 3000
I .683 .447 .147 .530 .700 .247
II 1 .684 .453 .147 .572 .859 .090
II 2 .683 .454 .146 .555 .740 .221
II 4 .683 .452 .147 .540 .720 .232
II 16 .683 .446 .147 .530 .715 .231
III 1 .683 .448 .147 .532 .708 .239
III 2 .683 .447 .147 .531 .708 .238
III 4 .683 .447 .148 .530 .705 .240
III 16 .683 .444 .147 .530 .700 .244
IV .682 .448 .145 .530 .706 .237

M = 5000
I .683 .446 .148 .530 .699 .248
II 1 .684 .453 .148 .573 .854 .097
II 2 .683 .454 .147 .555 .743 .217
II 4 .683 .451 .146 .540 .723 .230
II 16 .683 .446 .146 .530 .714 .231
III 1 .683 .446 .147 .532 .707 .239
III 2 .683 .447 .147 .531 .707 .239
III 4 .683 .447 .146 .531 .703 .242
III 16 .683 .446 .146 .530 .701 .243
IV .682 .450 .144 .530 .705 .239
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Table 2: Simulation B (Stochastic Volatility Model): T = 100 and N −M = 5000

δ = 0.5 δ = 0.9
αt δ αt δ

c RMS AVE RMS RMS AVE RMS

M = 3000
I .916 .422 .156 .937 .865 .081
II 1 .917 .421 .156 .942 .865 .081
II 2 .916 .422 .156 .939 .864 .081
II 4 .916 .421 .156 .939 .864 .081
II 16 .917 .419 .157 .942 .864 .082
III 1 .917 .420 .157 .938 .865 .081
III 2 .916 .420 .157 .938 .864 .082
III 4 .917 .420 .157 .939 .864 .081
III 16 .917 .419 .157 .941 .864 .081
IV .916 .423 .155 1.021 .856 .084

M = 5000
I .916 .423 .155 .937 .865 .081
II 1 .917 .420 .156 .941 .865 .081
II 2 .916 .421 .156 .939 .865 .081
II 4 .916 .421 .155 .939 .864 .082
II 16 .917 .419 .157 .941 .864 .080
III 1 .917 .420 .157 .938 .864 .081
III 2 .916 .419 .157 .938 .865 .081
III 4 .917 .419 .157 .939 .864 .082
III 16 .917 .420 .156 .941 .864 .081
IV .916 .423 .155 1.020 .856 .084
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Table 3: Simulation C (Structural Change Model): T = 100 and N −M = 5000

δ = 0.5 δ = 0.9
αt δ αt δ

c RMS AVE SER RMS AVE SER

M = 3000
I .726 .784 .059 .690 .978 .008
II 1 .726 .785 .058 .690 .978 .008
II 2 .726 .785 .059 .690 .978 .008
II 4 .726 .784 .059 .690 .978 .008
II 16 .726 .784 .059 .691 .978 .008
III 1 .727 .784 .059 .691 .978 .008
III 2 .726 .784 .059 .691 .978 .008
III 4 .726 .784 .059 .691 .978 .008
III 16 .726 .784 .059 .691 .978 .008
IV .726 .785 .059 .690 .978 .007

M = 5000
I .726 .784 .059 .690 .978 .008
II 1 .726 .785 .059 .690 .978 .008
II 2 .726 .785 .059 .690 .978 .008
II 4 .726 .784 .059 .691 .978 .008
II 16 .727 .784 .059 .691 .978 .008
III 1 .727 .784 .059 .691 .978 .008
III 2 .726 .784 .059 .691 .978 .008
III 4 .726 .784 .059 .691 .978 .008
III 16 .727 .784 .059 .691 .978 .008
IV .726 .785 .059 .691 .978 .008
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Table 4: Simulation D (Shifted-Mean Model): T = 100 and N −M = 5000

M = 3000 M = 5000
αt δ αt δ

c RMS AVE SER RMS AVE SER

I .524 .365 .130 .524 .365 .130
II 1 .524 .365 .130 .524 .365 .130
II 2 .524 .365 .130 .524 .365 .130
II 4 .524 .365 .130 .524 .365 .130
II 16 .524 .363 .130 .524 .364 .130
III 1 .524 .364 .130 .524 .364 .130
III 2 .524 .364 .130 .524 .364 .130
III 4 .524 .364 .130 .524 .364 .130
III 16 .524 .363 .130 .524 .363 .130
IV .524 .366 .130 .524 .366 .131

simulation runs are performed in this paper, we have G test statistics when we apply the
diagnostic tests. It is difficult to evaluate G testing results at the same time. Therefore,
given N −M = 5000, we consider using the alternative approach to see if M = 3000 is
sufficient. If the cases of M = 3000 are close to those of M = 5000, we can conclude
that M = 3000 is sufficiently large for Simulations A – E. From Tables 1 – 5, M = 3000
and M = 5000 are very close to each other. In Table 6, the acceptance probabilities on
average are shown, which are obtained in the Metropolis algorithm (see Appendix 1). If
the acceptance probabilities on average are close to zero, the chain does not travel over
the support of the target density. However, we obtain the result that the Metropolis
algorithm works because the acceptance probabilities on average are not close to zero for
Simulations A – E. Thus, in Tables 1 – 5 the cases of M = 3000 are very close to those
of M = 5000 and in Table 6 the acceptance probabilities are far from zero. Therefore,
we can conclude that M = 3000 is large enough, which implies that M = 5000 is also
sufficiently large. Accordingly, hereafter we focus on the cases of M = 5000.

Simulation A (the ARCH(1) model with a white noise) is shown in Table 1. For
δ = 0.5, RMS of αt does not depend on the proposal density, because RMSs of αt are
very close to each other when δ = 0.5. However, in the case of δ = 0.9, from RMSs of
αt, Proposal Densities I, III and IV are better than Proposal Density II. For the cases of
δ = 0.9 and Proposal Density II, AVEs of δ are close to the true parameter value but the
case of c = 1 and Proposal Density II is not realistic because in the case of c = 1 and
Proposal Density II the RMSs of δ are too small, compared with the others. Thus, we
can see that the support of the target density is not included in that of Proposal Density
II, i.e., the target density is far from Proposal Density II.

In Table 2, for the case of δ = 0.5, all the Proposal Densities I – IV are very similar,
although AVEs of Proposal Densities I and IV are slightly close to the true value, compared
with Proposal Densities II and III. However, when δ = 0.9, Proposal Density IV turns
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Table 5: Simulation E (Nonstationary Growth Model): T = 100 and N −M = 5000

c δ1 = .5 δ2 = 25 δ3 = 8
AVE RMS AVE RMS AVE RMS

M = 3000
I .477 .071 26.776 3.578 1.421 7.014
II 1 .499 .112 27.727 16.320 2.814 5.509
II 2 .493 .100 28.485 14.090 2.494 5.801
II 4 .486 .088 29.159 12.295 2.168 6.110
II 16 .493 .079 28.340 10.543 1.766 6.542
III 1 .477 .081 25.607 6.618 2.228 6.065
III 2 .483 .072 26.085 4.958 1.930 6.359
III 4 .490 .065 26.407 3.786 1.727 6.565
III 16 .499 .064 26.362 4.389 1.719 6.618
IV .422 .137 25.593 8.173 2.438 5.997

M = 5000
I .478 .070 26.864 3.632 1.350 7.067
II 1 .498 .112 27.800 16.353 2.794 5.521
II 2 .495 .103 28.094 14.734 2.477 5.815
II 4 .488 .088 29.193 12.767 2.153 6.126
II 16 .493 .080 28.213 11.087 1.732 6.578
III 1 .480 .078 25.473 6.069 2.169 6.121
III 2 .485 .070 26.086 4.449 1.885 6.413
III 4 .493 .062 26.460 3.459 1.691 6.604
III 16 .500 .061 26.409 3.876 1.698 6.652
IV .421 .137 25.808 8.228 2.447 5.990
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Table 6: Acceptance Probability on Average: T = 100 and M = 5000

A B C D E
c \ δ 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9

I .619 .674 .690 .586 .532 .479 .629 — .217
II 1 .823 .673 .607 .276 .734 .698 .849 .784 .357
II 2 .738 .672 .513 .226 .625 .557 .704 .639 .327
II 4 .579 .643 .398 .175 .482 .418 .535 .482 .281
II 16 .315 .440 .214 .095 .257 .219 .283 .254 .189
III 1 .698 .772 .597 .348 .653 .604 .678 .648 .564
III 2 .603 .699 .489 .260 .549 .495 .578 .543 .481
III 4 .498 .611 .383 .189 .439 .388 .468 .434 .397
III 16 .298 .413 .211 .097 .249 .214 .271 .245 .246
IV .924 .859 .927 .945 1.000 1.000 1.000 — .811

Table 7: Extended Kalman Smoother (EK) and Importance Resampling Smoother (IR)

— RMS of αt and T = 100 —

Simu- EK IR
lation δ N = 50 N = 100

A 0.5 .706 .718 .720
0.9 .644 .586 .554

B 0.5 1.161 .941 .926
0.9 2.266 1.003 .968

C 0.5 .751 .805 .779
0.9 .692 .801 .750

D 0.5 .523 .547 .535
0.9 .529 .550 .545
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out to be the worst estimator of the four proposal densities, although Proposal Densities
I – III still show a good performance. It is well known that the stochastic volatility model
has fat tails. As for Proposal Density IV, when the (i− 1)-th random draw is in the tails,
the i-th random draw has an extremely large variance. In this case, Proposal Density IV
does not work, compared with the other proposal densities.

Table 3 shows the results of Simulation C (Structural Change Model), where the data
generating process is different from the estimated model. We often have this case in
practice. For all the proposal densities, the obtained results are very similar. It is natural
that AVEs of δ are different from the true values, because the estimated model is not the
true one. For δ, therefore, SER (instead of RMS) is shown in this table. All the values
are very close to each other. We can see no difference among the proposal densities.

In Simulation D (Shifted-Mean Model) of Table 4, similarly we examine the case where
the estimated model is not the true one. The transition equation is assumed to be the
first-order autoregressive process and the autoregressive coefficient is estimated by the
Bayesian approach. Also, for δ, SERs are shown in the table. As a result, we cannot find
any difference among Proposal Densities I – IV, because all the values are similar.

In Table 5, using the nonstationary growth model, the three parameters (δ1, δ2, δ3) are
estimated by the Bayesian approach. For δ1, AVEs are close to the true value and RMSs
of I and III are smaller than those of II and IV. For δ2, AVEs of I, III and IV are close
to the true value but those of II are slightly larger and RMSs of II are larger than the
others. For δ3, all the AVEs are underestimated and RMSs are also large. Thus, it is seen
that δ1 and δ2 are correctly estimated.

As a result, Proposal Densities I and III show a good performance for almost all the
simulation studies. Proposal Density IV is also quite good except for the case δ = 0.9
of Simulation B. Proposal Density II is very bad in δ = 0.9 of Simulation A and δ2 of
Simulation E. Thus, Proposal Densities II and IV are inferior to Proposal Densities I and
III in the sense that Proposal Densities II and IV sometimes show a bad performance.

Furthermore, as mentioned above, Table 6 represents the acceptance probabilities on
average, which are obtained in the Metropolis-Hastings algorithm (see Appendix 1). The
acceptance probability equal to zero implies that the chain stays at the same point, i.e.,
all the random draws generated from the proposal density are discarded. Conversely, the
acceptance probability which is equal to one indicates that the proposal density is the
same distribution as the target density. From Table 6, Proposal Density IV is close to one,
compared with the other proposal densities, because Proposal Density IV approximates
the target density. As for Proposal Densities II and III, the acceptance probabilities on
average are very different, depending on c. As c is large, the acceptance rate decreases.

Next, in Table 7 we compare the suggested Bayesian procedure with the extended
Kalman smoother (EK) and the importance resampling smoother (IR), where given fixed
δ the estimates of the state mean are examined in the RMS criterion. See Appendix 2
for IR. Precision of EK depends on nonlinearity and nonnormality of the system, but IR
approaches the true state mean as N goes to infinity. However, under the same computa-
tional burden as the suggested Bayesian approach, IR shows a very poor performance from
Table 7. For each time period, the order of computation is given by N for the Bayesian
approach discussed in this paper and N3 for IR (see Appendix 2). That is, N = 50
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for IR is more computer-intensive than N = 10000 for the Bayes estimator. Remember
that N = 8000, 10000 is used in Tables 1 – 5. We can find that the Bayes estimator
performs much better than IR from Tables 1 – 5 and 7. Sometimes, EK is better than
IR (for example, δ = 0.5 of A, C and D). In Table 7, δ is not estimated, where the true
values are utilized for Simulations A and B but the cases of δ = 0.5, 0.9 are computed for
Simulations C and D. However, the parameter δ is unknown in general and therefore it
should be estimated. It is extremely time-consuming for IR to estimate the parameter δ
and the state means α1|T , α2|T , · · ·, αT |T simultaneously using the maximum likelihood
estimation method, because the iterative procedure such as the Newton-Raphson opti-
mization method has to be taken for estimation of δ, where the i-th iteration of δ is
updated after generating all the random draws of the state variables given the parameter
value in (i−1)-th iteration. Thus, judging from computational cost and estimation of the
unknown parameter, the Bayesian approach discussed in this paper is preferred to EK
and IR.

5 Summary

Carlin, Polson and Stoffer (1992) and Carter and Kohn (1994, 1996) and Chib and Green-
berg (1996) introduced the nonlinear and/or non-Gaussian state-space models with Gibbs
sampling. They investigated the nonlinear state-space models in the Bayesian framework,
where the nuisance parameters introduced in the state-space model are assumed to be
stochastic. The state-space models that they used are quite restricted to some functional
forms, because they studied the special state-space models such that it is easy to gen-
erate random draws from the underlying assumptions or they considered the case where
rejection sampling works well. In this paper, we have shown the nonlinear and non-
Gaussian smoother using both Gibbs sampling and the Metropolis-Hastings algorithm,
which would be suitable to any nonlinear and non-Gaussian state-space model. Thus, un-
der the Bayesian approach we have introduced the nonlinear and non-Gaussian smoothing
procedure in more general formulation than the existing studies.

Moreover, it is known that choice of the proposal density is a critical problem to
the Metropolis-Hastings algorithm. In this paper, therefore, several types of the proposal
density functions have been investigated. As a result from Monte Carlo studies, for choice
of the proposal density, we have obtained the very similar RMSs among Proposal Densities
I – IV except for a few cases (i.e., the case δ = 0.9 and small c of Proposal Density II in
Simulation A, and the case δ = 0.9 of Proposal Density IV in Simulation B). In such a
sense, the proposed procedure is quite robust to choice of the proposal density, but use of
the transition equation might be recommended for safety because Proposal Density I has
shown a good performance for all the simulation studies examined in this paper.
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Appendices

Appendix 1: Metropolis-Hastings Algorithm

Smith and Roberts (1993), Tierney (1994), Chib and Greenberg (1995, 1996) and Geweke
(1996) discussed the Metropolis-Hastings algorithm, which is the random number gen-
eration method such that we can generate random draws from any density function.
Consider generating a random draw of z from P (z), which is called the target density
function. Let us define P∗(z|x) as the proposal density and the acceptance probability as:

ω(x, z) = min

(
P (z)P∗(x|z)

P (x)P∗(z|x)
, 1

)
if P (x)P∗(z|x) > 0 and ω(x, z) = 1 otherwise.

Random number generation by the Metropolis-Hastings algorithm can be implemented
as follows:

(i) Take an initial value of x, which is denoted by x(0).

(ii) Given x(i−1), generate a random draw (say z) from P∗(·|x(i−1)) and a uniform random
draw (say u) from the interval between zero and one.

(iii) Set x(i) = z if u ≤ ω(x(i−1), z) and set x(i) = x(i−1) otherwise.

(iv) Repeat (ii) and (iii) for i = 1, 2, · · · , N .

Then, x(N) is taken as a random draw from P (x) for sufficiently large N .
Note that P (z) is not necessarily a probability density function, i.e., it is possibly a

kernel of the target density function, because of the form of the acceptance probability
ω(x, z). Furthermore, the proposal density has to satisfy the following conditions: (i)
we can quickly and easily generate random draws from the proposal density and (ii) the
proposal density should be distributed with the same range as the target density. See, for
example, Geweke (1992) and Mengersen, Robert and Guihenneuc-Jouyaux (1999) for the
MCMC convergence diagnostics.

Appendix 2: Importance Resampling Smoother (IR)

The density-based recursive algorithm on filtering is given by:

P (αt|Yt−1) =
∫

Pα(αt|αt−1, δ)P (αt−1|Yt−1)dαt−1, (11)

P (αt|Yt) =
Py(yt|αt, γ)P (αt|Yt−1)∫
Py(yt|αt, γ)P (αt|Yt−1)dαt

, (12)

where the initial condition is given by:

P (α1|Y0) =





∫
Pα(α1|α0, δ)P (α0)dα0, if α0 is stochastic,

Pα(α1|α0, δ), if α0 is nonstochastic.
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The density-based recursive algorithm on smoothing utilizes both the one-step ahead
prediction density P (αt+1|Yt) and the filtering density P (αt|Yt), which is represented by:

P (αt|YT ) = P (αt|Yt)
∫ P (αt+1|YT )Pα(αt+1|αt)

P (αt+1|Yt)
dαt+1

for t = T − 1, T − 2, · · · , 1. Given P (αt|Yt) and P (αt+1|Yt), the smoothing algorithm
shown above is a backward recursion from P (αt+1|YT ) to P (αt|YT ).

Let αi,t|s be the i-th random draw of αt from P (αt|Ys). Equation (11) indicates one-
step ahead random draw as follows:

αi,t|t−1 = ft(αi,t−1|t−1, ηi,t, δ), (13)

for i = 1, 2, · · · , N . Given αi,t|t−1, i = 1, 2, · · · , N , the filtering density (12) is approxi-
mated as:

P (αi,t|t−1|Yt) ≈ Py(yt|αi,t|t−1, γ)
∑N

j=1 Py(yt|αj,t|t−1, γ)
, (14)

which implies that the one-step ahead prediction random draw αi,t|t−1 is taken as a fil-
tering random draw with probability P (αi,t|t−1|Yt). By resampling, we have αi,t|t for
i = 1, 2, · · · , N and t = 1, 2, · · · , T . Thus, αi,t|t for i = 1, 2, · · · , N is recursively obtained.

Suppose that αi,t|t and αj,t+1|T are available for i, j = 1, 2, · · · , N . Next, consider
generating (α1,t|T , α2,t|T , · · ·, αN,t|T ) given (α1,t+1|T , α2,t+1|T , · · ·, αN,t+1|T ). Equation (14)
evaluated at αt = αi,t|t is approximated as:

P (αi,t|t|YT ) ≈ 1

N

N∑

j=1

Pα(αj,t+1|T |αi,t|t, δ)∑N
m=1 Pα(αj,t+1|T |αm,t|t, δ)

, (15)

where in the denominator of equation (15) the one-step ahead prediction density , i.e.,
P (αj,t+1|T |Yt), is also approximately evaluated as:

P (αj,t+1|T |Yt) =
∫

Pα(αj,t+1|T |αt, δ)P (αt|Yt)dαt

≈ 1

N

N∑

m=1

Pα(αj,t+1|T |αm,t|t, δ).

Equation (15) implies that the filtering random draw αi,t|t is taken as a smoothing random
draw with probability P (αi,t|t|YT ).

For time t, we need to compute the two summations with respect to j and m in order
to obtain P (αi,t|t|YT ) for i = 1, 2, · · · , N . Accordingly, in equation (15), the order of
computation is given by N3 for each time period t. For the Markov chain Monte Carlo
procedure discussed in this paper, the order of computation is N for time t, which is much
less computer-intensive than the resampling procedure in the smoothing algorithm.
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