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Abstract

Using the spatial price discrimination framework, the relationship between the locations of

firms and their ability to collude is investigated. Gupta and Venkatu (2002) show that in a

duopoly model agglomeration at one point is the most stable location. We find that agglom-

eration stabilizes the cartel when there are three firms, too. When there are more than three

firms, however, agglomeration of all firms is never the most stable location. With four firms, the

following location pattern produced the most stable cartel: two firms at one point and the other

two at the farthest point from the first two.
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1 Introduction

Issues related to cartel stability have been intensively discussed for many years. One concern is

determining under what conditions the firms can easily collude. If these conditions become clear,

anti-monopoly departments can more effectively monitor anti-competitive behavior. In this paper,

we investigate the relationship between the locations of the firms and their ability to collude.

As a result of this analysis, the policy implications are presented. In many countries, a merger

of firms having a large domestic market share was not allowed. Recently, the restrictions on such

mergers have become quite weak. For example, in Japan, a merger of firms with a large share in a

district is permissible, when strong competitors exist outside. The Japanese government assumes

that a firm that has merged with others does not exercise its monopoly power when the potential

competition against the outside firms exists, regardless of the size of the market share of the outside

firm.1 For this reason, the Japanese government is changing its anti-monopoly policy. However,

the current anti-monopoly policy by the Japanese government might be very harmful. On the one

hand, if a firm easily sustains collusion with a potential rival that is distant from the firm (the firm

locating outside the district) but not with another firm that is closer (within the same district), the

outside competitors cannot be considered to be real competitors. Therefore, a substantial welfare

loss of the district would occur when inside firms merge. On the other hand, if it is difficult for a

firm to sustain collusion with a potential rival that is distant from the firm but not with a nearby

firm, the anti-monopoly policy described above would be entirely plausible. Regarding competition

within a country, it would be valuable to know whether or not collusion is more likely occur when

firms are in close proximity to one another.

Chang (1991) have already investigated the relationship between the locations of firms and

their ability to collude.2 He uses a Hotelling-type mill-pricing model, in which consumers pay

the transport costs. Surprisingly, in his model, the more distance between duopolists, the more

stable the cartel. In other words, the maximum distance between duopolists stabilizes the cartel.
1 On May 31, 2004, the Japan Fair Trade Commission (JFTC) published new guidelines on mergers. The guidelines

reflect the mitigation of merger restrictions and consider the potential and actual competitive pressures: import and

entry, the presence of adjacent product and geographic markets, and competition in vertically related markets.

2 See also Ross (1992).
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His findings imply that collusive behavior is more likely between a foreign and a domestic firm

than between domestic firms. Later, Gupta and Venkatu (2002) show that this result is crucially

dependent on Chang’s mill pricing model. They use a spatial price discrimination model (delivered

pricing model), in which firms rather than consumers pay the transport costs. They derive a result

that is opposite to Chang’s (1991): the minimal distance between duopolists stabilizes a cartel.

We also use a spatial price discrimination framework, and investigate the relationship between

the location of firms and their ability to collude. In contrast to Chang (1991), agglomeration at the

center is the most stable location for a cartel when there are two or three firms. When there are

more than three firms, the agglomeration of all firms is never the most stable location. With four

firms, the following location pattern yields the most stable cartel: two firms at the one point and

the other two at the farthest point from the first two. As an example, two market structures will be

presented for consideration. In one market, all producers agglomerate at Nagoya District (central

position in Japan). In another market, some firms locate at Tokyo District (east in Japan), and

other locate at Osaka District (west in Japan). It is important to determine which market structure

will effectively induce collusion. At first glance, the results of Gupta and Venkatu (2002) indicate

that collusion can be sustained more easily in the former market structure. However, our result

suggests that collusion can more easily be sustained in the latter market structure when at least

four firms participate.

In the paper, we use a spatial price discrimination model. There are two reasons for investigat-

ing the spatial price discrimination model.3 First, in international trade, firms often set different

prices for each country (a phenomenon referred to as “market segmentation”). The spatial price

discrimination model describes this situation well.4 Second, it is not always realistic that consumers

directly pay the transport costs (although they may indirectly pay the transport costs through the

higher prices of the products).
3 For an excellent survey of spatial price discrimination models, see Anderson, de Palma, and Thisse (1992, Ch.

8). For the applications of the spatial price discrimination models to the antitrust policies or regulations, see Gupta,

Kats, and Pal (1995), Matsushima (2001), Matsushima and Matsumura (2003), and Matsumura (2003, 2004). In this

paper we use a circular-city model as a main model. For the discussions of circular-city spatial price discrimination

models, see Pal (1998) and Gupta (2004).

4 Lommerud and Sørgard (2001) consider the relationship between trade liberalization and cartel stability.
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The paper is organized as follows. In Section 2, we explain the basic setting. Section 3 dis-

cusses tacit collusion. Sections 4 and 5 present the results of circular-city and linear-city models

respectively. Section 6 provides alternative analysis. Section 7 concludes the paper.

2 The Basic Setting

Let the firms locate at xi (i = 1, 2, ..., n), with x1 ≤ x2 ≤ ... ≤ xn and xi ∈ [0, 1]. Let N denote

the set of firms. We consider two models: circular city and linear city. In the circular-city model,

there is a circular market of length 1 in which infinitely many consumers are uniformly distributed.

The points on the circle are identified with numbers in [0, 1], the north most point being 0 and the

values increasing in a clockwise direction. Thus the north most point is considered both 0 and 1.

In the linear-city model, there is a linear market of length 1 in which infinitely many consumers

are uniformly distributed. The left edge is denoted as 0 (the right edge as 1) and each point x is a

point on the line located at a distance from 0.

The demand at point x ∈ [0, 1] is given by q(p), where the inverse demand is given by p(q)

(p is the price of the homogeneous products and q is the total quantity sold by the firms). We

assume that p′ < 0. Each firm i produces at a constant marginal cost. Without loss of generality,

we assume that the marginal production cost is zero. Let d(x, xi) denote the distance between x

and xi. To ship a unit of the product from its own location to a consumer at point x, each firm pays

a transport cost T (d(x, xi)), in which T ′ > 0 and T (0) = 0. In the circular-city model, the norm

signifies the shorter distance of the two possible ways to transfer the goods along the perimeter.

Let TL(x) ≡ mini∈N T (d(x, xi)) (the transport cost of the firm with the lowest transport cost). The

monopoly price pM (x) is derived from the following first-order condition for the monopolist:

p + p′q = TL(x). (1)

We assume that the second-order condition is satisfied (marginal revenue is decreasing). We also

assume that pM (x) when TL(x) = 0 is larger than T (1/2) in the circular-city model and pM (x) when

TL(x) = 0 is larger than T (1) in the linear-city model. These conditions ensure that the equilibrium

price under Bertrand competition is lower than the monopoly price regardless of the locations of the

firms. Firms are able to discriminate among consumers since they control transportation. Consumer
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arbitrage is assumed to be prohibitively costly. These assumptions are standard in the literature.

3 Tacit Collusion

We investigate a model in which the locations of the firms are given exogenously in the beginning of

the horizon, and the firms then engage in an infinitely repeated game thereafter.5 Let δ denote the

discount factor between periods. We examine the effect of the firms’ locations on the sustainability

of the joint-profit maximizing behavior by the firms. Along the punishment path, the firms are

assumed to use the “grim trigger strategy” of Friedman (1971).6

First, we discuss joint-profit maximization. The joint profits are maximized when p(x) = pM (x)

and the firm having minimum transport cost supplies for market x (recall that pM (x) is derived

by (1)). Let ΠM (x1, x2, ..., xn) denote the maximized total joint profit obtained from all market

x ∈ [0, 1], given the location of the firms. We assume that each firm obtains ΠM
i = ΠM/n when

tacit collusion is maintained.7

Next, we discuss the deviation from the tacit collusion. Given the cooperative pricing of all

other firms, firm 1 can increase its one-shot profit by deviating from the cartel. Firm 1 cuts the

price infinitesimally from the monopoly price pM (x) at each market x and obtains the whole market.

Thus, it obtains
(
pM (x) − T (d(x, xi))

)
q(pM (x)) at this period. Let ΠD

i (x1, x2, ..., xn) be this one-

shot profit of firm 1.

This deviation induces the competition thereafter. Let pC(x) denote the equilibrium price in the

competitive phase. It is given by the unit transport cost of the firm with the second lowest cost. In

the competitive phase, firm i obtains positive profit only from market x, such that d(x, xi) < d(x, xj)

for all j 6= i, and the profit from the market and the margin (price minus cost) is the difference in

its transport cost and in the rival whose cost is the second lowest cost. ΠC
i (x1, x2, ..., xn) the profit

5 If relocation costs are assumed to be negligible, the results change completely. For a discussion in the context of

horizontal product differentiation, see Chang (1992) and Häckner (1995).

6 This punishment strategy is not optimal (See Abreu (1988)). We use the grim trigger strategy for simplicity and

tractability. We believe that the permanent Nash revision is one of very realistic punishment because of its simplicity.

Many works adopt this strategy for analyzing stability of agreement. See, among others, Deneckere (1983), Chang

(1991), Häckner (1994, 1995), Lambertini, Poddar and Sasaki (1998), and Maggi (1999).

7 The firms may use the distribution of the total joint profit so as to stabilize the collusion rather than adopt equal

distribution. We discuss this problem in Section 6.
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of firm i in this competitive phase.

The tacit collusion is sustainable if and only if

ΠM

n(1− δ)
≥ ΠD

i +
δΠC

i

1− δ
∀i ∈ N.

Let δ∗i be the δ satisfying the above equation with equality for i ∈ N . If δ < δ∗i , firm i has an

incentive for deviating from the collusion. We have

δ∗i =
ΠD

i −ΠM/n

ΠD
i −ΠC

i

. (2)

Define δ∗ ≡ maxi∈N δ∗i . The tacit collusion is sustainable if and only if δ ≥ δ∗. Following the tradition

of this field, we measure the stability of collusion by this minimum discount factor δ∗.

4 Results in the Circular-city Model

In this section, we present the results of the circular-city model, and, in the next section, we present

similar results obtained in the liner-city model.

First, we present a result in the duopoly with linear demand, and a linear unit transport cost is

used as a benchmark.

Proposition 1: Suppose that n = 2, p = 1− q (linear demand function), and Ti = td(x, xi), where

t is a positive constant and t < 1. Define d(x1, x2) ≡ z. (i) If t is sufficiently small, δ∗ is increasing

in z (monotonicity). (ii) There exists a parameter t, such that δ∗ is not maximized when z = 1/2.

(iii) δ∗ is minimized when z = 0.

Proof See Appendix.

Proposition 1(i) is a circular-city version of Gupta and Venkatu (2002). Proposition 1(i) implies

that, if t is small enough, the agglomeration of two firms stabilizes the collusion most effectively.

Proposition 1(ii) and (iii) state that δ∗ can be non-monotonous with respect to the distance between

two firms,8 and Proposition 1 (iii) states that, even if δ∗ is non-monotone, agglomeration still

stabilizes the collusion most effectively.
8 Using multi-product demand functions, Deneckere (1983) investigates the relationship between the substitutability

of the products of firms and their ability to collude. He shows that a non-monotonous relationship appears in the price-

setting model. Wernerfelt (1989) extends it to an oligopoly model and shows that a non-monotonous relationship also

appears in the quantity-setting model if optimal penal code is used. Chang (1991) shows that such a non-monotonous

relationship does not appear in his location-price model. Our results show that, in the context of spatial competition,
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On the one hand, a decrease in the distance between two firms increases the deviation incentive.

On the other hand, a decrease in the distance between two firms makes the competition between

two firms more severe. As a result, the punishment effect is weakened. Proposition 1 indicates that

the latter effect dominates the former effect, so agglomeration stabilizes the cartel. The intuition

is similar to that of Gupta and Venkatu (2002) discussing a linear-city model. For more detailed

discussions behind these two effects, see Section 3 in their paper.

We present our main results. We show that agglomeration of all firms does not stabilize the

collusion if n ≥ 4.

Proposition 2: Suppose that n ≥ 4. δ∗ is not minimized when either n or n− 1 firms locate at the

same point.

Proof See Appendix.

The agglomeration of two firms makes the competition perfect. Thus, the agglomeration of two

firms is sufficient, and firms need not agglomerate in one location.

Proposition 2 states that total (all firms) and nearly total agglomeration (all but one firm)

never minimize δ∗. This result indicates that no implications should be derived from the results of

duopoly, in which the agglomeration of all firms stabilizes the collusion. For example, the following

two market structures are considered. In one market, all producers agglomerate in the mid of the

U.S.. In another market, some firms locate in the west side of the U.S., and others locate in the

east side in the U.S.. The market structure that are most likely to induce collusive behavior are

examined. At first glance, Proposition 1 indicates that collusion can be sustained more easily in the

former market structure. However, Proposition 2 suggests that deriving such policy implications

from Proposition 1 is quite misleading when the number of firms exceed three.

Proposition 2 says nothing about the triopoly case. We discuss a case with three firms in the

linear demand and linear transport cost functions. This formulation is quite popular in the literature

on delivered pricing models.

Proposition 3: Suppose that n = 3, p = 1− q (linear demand function), and Ti = td(x, xi), where

a result similar to that obtained be Deneckere (1983) (non-monotonousness) can be obtained from the spatial price

discrimination models, not from the mill-pricing model.
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t is a positive constant and t < 1. δ∗ is minimized when x1 = x2 = x3.

Proof See Appendix.

The result is similar to that of Proposition 1. As mentioned above, in the delivered pricing model,

the punishment effect is more important to stabilize the cartel. In the case of a triopoly, when a firm

moves to another point, the degree of the punishment for the other two firms remain unchanged,

but that for the moving firm is weakened. The movement enhances the incentive of the moving

firm to deviate from the cartel and produces instability. Therefore, agglomeration of three firms

stabilizes a cartel.

5 Results in the Linear-city Model

In this section, we briefly discuss the results of the linear-city version. First, we present Proposition

4, which is a linear-city version of Proposition 2.

Proposition 4: Suppose that n ≥ 4. δ∗ is not minimized when either n or n − 1 firms locate at

the same point.

Proof See Appendix.

The proof of Proposition 4 is much more complicated than that of Proposition 2 in the linear-city

version. However, we can derive a similar result in the linear city.

Second, we present the results of two, three, and four-firm cases. We explicitly solve the location

pattern among symmetric locations, minimizing δ∗ in the cased involving the linear-demand and

linear-transport cost.

Proposition 5: Suppose that p = 1− q and Ti = td(x, xi), where t is positive constant and t < 1/2.

Consider the symmetric locations. (i) If n = 2, δ∗ is minimized when x1 = x2 = 1/2. (ii) If n = 3,

δ∗ is minimized when x1 = x2 = x3 = 1/2. (iii) If n = 4, δ∗ is minimized when x1 = x2 = 0 and

x3 = x4 = 1.

In Proposition 5, (i) and (ii) are linear-city versions of Propositions 1 and 3. The proofs are similar

to those of Propositions 1 and 3 and are, therefore, omitted. Proposition 5(iii) makes a sharp

contrast with that presented by Gupta and Venkatu (2002) and our Propositions 1, 3, 5(i), and
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5(ii). We present a proof in the Appendix and explain the intuition here.9

Consider the case of a duopoly. As is mentioned earlier, a decrease in d(x2, x1) makes the

punishment more severe and increases the deviation incentive. The former effect dominates the

latter, so agglomeration decreases δ∗. Consider the case of four firms. Suppose that x1 = x3 and

x2 = x4. A decrease in d(x2, x1) does not affect the punishment effect because the competition is

quite severe regardless of d(x2, x1). A decrease in d(x2, x1) increases the deviation incentive, for the

same reason reported in the case of a duopoly. Thus, a decrease of d(x2, x1) increases δ∗, so the

maximal distance between firms 1 and 2 stabilizes the collusive behavior.

An example mentioned earlier is used again. The following two market structures are consid-

ered. In one product market, all producers agglomerate in the Central Area in Japan. In another

product market, some firms locate in Osaka Area, and others locate in Tokyo Area. The market

structure that are most likely to induce collusive behavior examined. Contrary to the implications

of Propositions 1 and 3, Proposition 5 indicates that collusion can be sustained more easily in the

latter market structure.

6 Alternative Approach of Profit Distribution in Collusive Phase

In the previous sections, we assume that all firms obtains the same profit in collusive phase. However,

firms can strategically use the distribution of the total joint profit so as to stabilize the cartel (i.e.,

minimize the critical discount factor).10 In this section, we assume that firms distribute the total

joint profit so as to minimize the critical discount factor, and examine whether or not our main

results, Propositions 2 and 4, hold.

Under the assumption, ΠM
i is determined so as to minimize the critical discount factor of firm

9 In Proposition 5(iii), we restrict our attention to symmetric locations. Thus, we control two locations and

consider two critical discount factors, δ∗1 and δ∗2 . When we consider a four-firm case in the circular-city model, we

must control three locations and consider four discount factors and the analysis become quite complicated. For this

reason, the results of four firms are presented in the linear-city model rather than in the circular-city model. For the

same reason we does not solve the optimal location pattern in more than four firm models. We believe that restricting

to symmetric locations in the model with four firms with a linear city is quite natural.

10 We owe a referee for this point. We appreciate his(her) constructive comment.
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i, which is given by
ΠD

i −ΠM
i

ΠD
i −ΠC

i

. (3)

Each of the critical discount factor becomes the same across all of the firms. Let δ∗∗ denote the

critical discount factor.

To highlight the relationship between δ∗ and δ∗∗, consider a duopoly case. Suppose that δ∗1 (the

critical discount factor of firm 1 in Section 3) is strictly larger than δ∗∗. Then δ∗2 < δ∗∗ < δ∗1 = δ∗

and ΠM
1 > ΠM

2 . In other words, the firm having a stronger deviation incentive obtains a higher

share of the monopoly profit.

We now discuss whether or not Propositions in the previous sections hold if we replace δ∗ with

δ∗∗. Consider the duopoly model with circular-city. Because of the symmetry of the circular-city,

δ∗1 = δ∗2 = δ∗, it is obvious that Proposition 1 holds if we replace δ∗ with δ∗∗. We then investigate

whether or not Propositions 2–5 hold if we replace δ∗ with δ∗∗. We find that Proposition 2 holds

and that similar results to Propositions 3, 4, and 5 hold.

Proposition 2’: Consider the circular-city model. Suppose that n ≥ 4. δ∗∗ is not minimized when

either n or n− 1 firms locate at the same point.

Proof See Appendix.

Proposition 3’: Suppose that n = 3, p = 1− q (linear demand function), and Ti = td(x, xi), where

t is a positive constant. If t < 12/17, δ∗∗ is minimized when x1 = x2 = x3.

Proof The procedure to prove the proposition is similar to that of Proposition 3. Because it has

much math, we omit it. The proof is available upon a request.

Proposition 4’: Consider the linear-city model. Suppose that n ≥ 4. (i) δ∗∗ is not minimized

when n firms locate at the same point; and (ii) in addition if δ∗∗ ≥ 1/2, δ∗∗ is not minimized when

n− 1 firms locate at the same point.

Proof See Appendix.

We discuss the additional condition δ∗∗ ≥ 1/2 in Proposition 4’(ii). First, we emphasize that it

is a sufficient but not a necessarily condition. Second, we believe that this condition is not so

restrictive. Consider a duopoly model with a non-spatial homogenous goods market. In this case
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δ∗ = δ∗∗ = 1/2. The condition that δ∗∗ ≥ 1/2 implies that the market with more than two firms

in our spatial model is less or equally stable than the non-spatial duopoly, and we believe it is a

plausible assumption.

Proposition 5’: Suppose that p = 1−q and Ti = td(x, xi), where t is positive constant and t < 1/2.

Consider the symmetric locations. (i) When n = 2, δ∗∗ is minimized when x1 = x2 = 1/2. (ii)

When n = 3, δ∗∗ is minimized when x1 = x2 = x3 = 1/2, if and only if t ≤ 12/31. δ∗ is minimized

when x1 = 0, x2 = 1/2, and x3 = 1/2, if and only if t ≥ 12/31. (iii) When n = 4, δ∗∗ is minimized

when x1 = x2 = 0 and x3 = x4 = 1.

Proof The first case is similar to that of Proposition 5(i). The procedure to prove Proposition

5’(ii) and (iii) is similar to that of Proposition 5(ii) and (iii). Because it has much math, we omit

it. The proof is available upon a request.

Proposition 5(ii)’ is different from Proposition 5(ii). In the symmetric triopoly with linear

city, δ∗ is always minimized by the central agglomeration, while δ∗∗ is minimized by the central

agglomeration only when t is small. We explain the intuition.

Consider the symmetric triopoly with the linear-city, where x1 = 1− x3 and x2 = 1/2. We can

show that δ∗ is decreasing in x1 when x1 is close to 1/2 or 0. On the other hand, we can show that

δ∗∗ is decreasing in x1 when x1 is close to 1/2, and is increasing when x1 is close to 0. In other

words, δ∗∗ is locally minimized when x1 = 0 and x1 = 1/2. First, we explain it.

When x1 is close to 1/2, a decrease in x1 increases monopoly profits and weakens the punishment

effect. The latter effect is stronger than the former one. This is why both δ∗∗ and δ∗ is (at least

locally) minimized when x1 = 1/2.

When x1 is close to 0, an increase in x1 yields the different impacts on δ∗∗ and δ∗. When x1 is

close to 0, δ∗1 = δ∗3 < δ∗2(= δ∗). An increase in x1 strengthens the punishment effect for firm 2 and

it effectively reduces δ∗2(= δ∗). However, an increase in x1 weakens the punishment effect for firms

1 and 3. In the second model (with strategic distribution of monopoly profit), firms 1 and 3 must

be compensated and the compensation increases δ∗∗. In short, in the first model, only δ∗2 affects δ∗,

while in the second model, all of δ∗1, δ∗2, and δ∗3 affect δ∗∗. This is why δ∗∗ is increasing in x1 while

δ∗ is decreasing in x1 when x1 is close to 0.
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Next, we explain why x1 = 0 yields the smaller δ∗∗ than x1 = 1/2 does, when t is large. x1 = 1/2

yields the strongest punishment effect. Regardless of t > 0, x1 = 0 yields larger total joint profits

than x1 = 1/2. As t increases, the difference of the total joint profits between the two situation

(x1 = 0 and x1 = 1/2) increases. Thus, if t is sufficiently large, this effect dominates the punishment

effect. This is the reason why x1 = 0 yields the smaller δ∗∗ than x1 = 1/2 does when t is large.

7 Concluding Remarks

Using the spatial price discrimination framework of Hamilton, Thisse, and Weskamp (1989), we

investigate the relationship between the locations of firms and their ability to collude. First, we

investigate duopoly and triopoly models. We find that firms can sustain collusive pricing most

effectively when they agglomerate in one location. In the case of more than three firms, however,

agglomeration never yields the most stable cartel. In the case of four firms, the following location

pattern makes the collusive pricing most effectively: two firms locate at one point, and the other

two locate at the farthest distance from the first two.

The results suggest that collusive pricing should be monitored in markets with multi-point

agglomeration as well as one-point agglomeration. They also indicate that the location pattern that

adds the most stability to a cartel depends on the number of the firms. If the number of firms in

an industry is quite small, agglomeration in one country induces the most stable cartel; however,

this is not true when there are many firms.

We believe that the extension of a duopoly to an oligopoly has important implications. The

critical discount factor depends on the number of firms, and it is usually (although it is not always)

on the increase in the number of firms. Thus, if the number of firms is large, it is possible that the

critical discount factor will exceed the discount factor of each firm, which is usually independent

from the number of the firms (and is dependent on a real interest rate, a time interval, and so on).

In such a case, it is possible that one location pattern could yield a monopoly outcome by the cartel

and another might not. Thus, from an antitrust viewpoint, the location pattern has significant

importance.
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Appendix

Proof of Proposition 1: Without loss of generality, we assume that x1 = 0 and x2 = h

(h ∈ [0, 1/2]). The monopoly profit of the firms is

ΠM =
∫ h

2

0

(
1 + tm

2
− tm

)
1− tm

2
dm +

∫ h

h
2

(
1 + t(h−m)

2
− t(h−m)

)
1− t(h−m)

2
dm

+
∫ 1+h

2

h

(
1 + t(m− h)

2
− t(m− h)

)
1− t(m− h)

2
dm

+
∫ 1

1+h
2

(
1 + t(1−m)

2
− t(1−m)

)
1− t(1−m)

2
dm

=
12− 6t + t2 + 3t(4− t)(h− h2)

96
.

When one of the firms deviates from the cartel, it earns

ΠD
i =

∫ h
2

0

(
1 + tm

2
− tm

)
1− tm

2
dm +

∫ h

h
2

(
1 + t(h−m)

2
− tm

)
1− t(h−m)

2
dm

+
∫ 1

2

h

(
1 + t(m− h)

2
− tm

)
1− t(m− h)

2
dm

+
∫ 1+h

2

1
2

(
1 + t(m− h)

2
− t(1−m)

)
1− t(m− h)

2
dm

+
∫ 1

1+h
2

(
1 + t(1−m)

2
− t(1−m)

)
1− t(1−m)

2
dm

=
12− 6t + t2 − 2t2(3− 4h)h2

48
.

When the competition phase arises, each firm earns

ΠC
i =

∫ h
2

0
(t(h−m)− tm)(a− t(h−m))dm

+
∫ 1+2h

2

1+h
2

(t(m− h)− t(1−m))(1− t(m− h))dm

+
∫ 1

1+2h
2

(t(1 + h−m)− t(1−m))(1− t(1 + h−m))dm

=
th(3(4− t)− 3(4 + t)h + 8th2)

24
.

The critical discount factor is

δ∗ =
12− 6t + t2 − 3t(4− t)h + 3t(4− 5t)h2 + 16t2h3

2(12− 6t + t2 − 6t(4− t)h + 24th2 − 8t2h3)
. (4)

13



Differentiating δ∗ with respect to h, we have

∂δ∗

∂h
=

3(1− 2h)tf(t, h)
2(12− 6t + t2 − 6t(4− t)h + 24th2 − 8t2h3)2

. (5)

where f(t, h) ≡ (4− (1 + 12h)t)(12− 6t + t2) + 10(3− 2h)h2(4− t)t2. Since 3(1− 2h)t ≥ 0 and the

denominator in (5) is positive, we consider the sign of f(t, h). If t is sufficiently small, f(t, h) > 0,

thus ∂δ∗/∂h in (5) is positive. This implies Proposition 1(i).

f(t, h) > 0 regardless of t < 1, ∂δ∗/∂h in (5) is positive when h = 0. Since lim(t,h)→(1,1/2) f(t, h) <

0, ∂δ∗/∂h in (5) can be negative. These imply Proposition 1(ii).

Since ∂f/∂h < 0, either h = 1/2 or h = 0 minimizes δ∗. From (4) we have

δ∗(1/2)− δ∗(0) =
t(12− 11t)

8(12− 6t + t2 − 3t(4− t) + 6t− t2)
> 0. (6)

This implies Proposition 1(iii). Q.E.D.

Proof of Proposition 2: First, we show that the location pattern x1 = x2 =, ...,= xn does not

minimize δ∗. We prove it by contradiction. Suppose that the location x1 = x2 =, ...,= xn minimizes

δ∗. Without loss of generality, we assume that x1 = 0. Suppose that firm n− 1 and firm n relocate

and choose xn−1 = xn = 1/2. ΠC
i is still zero for all firms. This relocation increases ΠM , and it

decreases ΠD
i for i ≤ n − 2. By the symmetry of the circular city, after the relocation, ΠD

1 = ΠD
n .

Thus δ∗1 = δ∗n. Since the above relocation reduces δ1, it reduces δ∗, which is a contradiction.

Next, we show that the location pattern x1 < x2 =, ...,= xn does not minimize δ∗. We prove

it by contradiction. Without loss of generality, we assume that x1 = 0. Suppose that the location

x1 < x2 =, ...,= xn minimizes δ∗. Under the locations, ΠC
1 > 0 = ΠC

2 =, ...,= ΠD
n . By the symmetry

of the circular city, ΠD
1 = ΠD

2 =, ...,= ΠD
n . Thus, δ∗ = δ∗1 > δ∗2 =, ..., = δ∗n. Suppose that firm 2

relocates to 0. After the relocation, ΠC
1 = 0. This relocation does not affect ΠM and ΠD

i for all

i ∈ N. Thus, this relocation reduces δ∗1 without affecting δ∗i for all i 6= 1, which is a contradiction.

Q.E.D.

Proof of Proposition 3: Without loss of generality, we assume that x1 ≤ h, x2 = h, and

x3 = 1− h, (h ∈ [0, 1/3]).11 We consider two cases: (i) h ∈ [0, 1/4] and (ii) h ∈ [1/4, 1/3].
11 We explain the reason why we can assume x1 ≤ h, x2 = h, and x3 = 1−h, (h ∈ [0, 1/3]) without loss of generality.

Let us consider three points on the circle. Choose a pair of points whose distance is maximum among three possible

14



First, we consider the case in which h ∈ [0, 1/4]. The monopoly profit of the firms is

ΠM =
[∫ x1

0

(
1 + t(x1 −m)

2
− t(x1 −m)

)
1− t(x1 −m)

2
dm

+
∫ x1+h

2

x1

(
1 + t(m− x1)

2
− t(m− x1)

)
1− t(m− x1)

2
dm

+
∫ h

x1+h

2

(
1 + t(h−m)

2
− t(h−m)

)
1− t(h−m)

2
dm

+
∫ 1

2

h

(
1 + t(m− h)

2
− t(m− h)

)
1− t(m− h)

2
dm

+
∫ 1−h

1
2

(
1 + t(1− h−m)

2
− t(1− h−m)

)
1− t(1− h−m)

2
dm

+
∫ 2−h+x1

2

1−h

(
1 + t(m− (1− h))

2
− t(m− (1− h))

)
1− t(m− (1− h))

2
dm

+
∫ 1

2−h+x1
2

(
1 + t(1 + x1 −m)

2
− t(1 + x1 −m)

)
1− t(1 + x1 −m)

2
dm

]

=
12− 6t + t2 − 12tx2

1 + 6t(4− t + tx2
1)h− 12(3− t)th2 − 6t2h3

48
.

If firm 3 deviates from the cartel, it earns

ΠD
3 =

∫ x1

0

(
1 + t(x1 −m)

2
− t(m + h)

)
1− t(x1 −m)

2
dm

+
∫ x1+h

2

x1

(
1 + t(m− x1)

2
− t(m + h)

)
1− t(m− x1)

2
dm

+
∫ h

x1+h

2

(
1 + t(h−m)

2
− t(m + h)

)
1− t(h−m)

2
dm

+
∫ 1−2h

2

h

(
1 + t(m− h)

2
− t(m + h)

)
1− t(m− h)

2
dm

+
∫ 1

2

1−2h
2

(
1 + t(m− h)

2
− t(1− h−m)

)
1− t(m− h)

2
dm

+
∫ 1−h

1
2

(
1 + t(1− h−m)

2
− t(1− h−m)

)
1− t(1− h−m)

2
dm

+
∫ 2−h+x1

2

1−h

(
1 + t(m− (1− h))

2
− t(m− (1− h))

)
1− t(m− (1− h))

2
dm

pairs. Denote two points of the pair x2 and x3, and denote the remaining one point x1 (Choose x2 so as to satisfy

d(x3, x1) ≥ d(x2, x1)). Normalize the midpoint between x2 and x3 as zero (Choose the midpoint from the side in

which x1 exists). Then, denote x2 = h and x3 = 1 − h, where h ≤ 1/2. h is never larger than 1/3. Suppose that

h > 1/3. Then, d(x3, x2) = 1− 2h. d(x3, x1) ≥ h. By definition d(x3, x2) = 1− 2h ≥ d(x3, x1) ≥ h, and it contradicts

h > 1/3.
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+
∫ 1

2−h+x1
2

(
1 + t(1 + x1 −m)

2
− t(m− (1− h))

)
1− t(1 + x1 −m)

2
dm

=
12− 6t + t2 + 6t2x3

1 + 6t2x2
1h− 6t2(4 + x1)h2 + 58t2h3

48
.

When the competition phase arises, firm 3 earns

ΠC
3 =

∫ 1+x1+h

2

1
2

(t(m− h)− t(1− h−m))(1− t(m− h))dm

+
∫ 1−h

1+x1+h

2

(t(1 + x1 −m)− t(1− h−m))(1− t(1 + x1 −m))dm

+
∫ 1−h+1+x1

2

1−h
(t(1 + x1 −m)− t(m− (1− h)))(1− t(1 + x1 −m))dm

=
t(h + x1)(12− 3t− 9tx1 + 2tx2

1 − (24− 3t− 22tx1)h + 8th2)
24

.

The critical discount factor of firm 3, δ∗3 is

δ∗3 =
2[12− 6((1− h)(1 + 3h)− x2

1)t + (1 + 3h− 42h2 + 90h3 − 3x1(3h2 − 2hx1 − 3x2
1))t

2]
J

,

where J = 3[12− 6((1 + 4h− 8h2) + 4(1− 2h)x1)t + (1 + 6h− 30h2 + 42h3 + 6x1(1 + 2h− 11h2) +

6(3− 7h)x2
1 + 2x3

1)t
2] > 0.

Substituting x1 = h = 0 into it yields δ∗3 = 2/3. By the symmetry, δ∗1 = δ∗2 = δ∗3 = 2/3 when

x1 = h = 0.

We prove that x1 = h = 0 minimize δ∗ by showing that δ∗3 is never smaller than 2/3 for any h

and x1.

δ∗3 −
2
3

=
2t

J
(f(h, x1)− g(h, x1)t),

where f(h, x1) ≡ 6((2 − 5h)h + 4(1 − 2h)x + x2
1) and g(h, x1) ≡ 3h(1 + 4h − 16h2) + 3(2 + 4h −

19h2)x1 + 6(3 − 8h)x2
1 − 7x3

1. t, J and f(h, x1) are positive. If g(h, x1) is non-positive, δ∗3 − 2/3 is

positive. If g(h, x1) is positive, f(h, x1)− g(h, x1)t is minimized when t = 1. Thus, δ∗3geq2/3 for any

t < 1 if it holds when t = 1.

[
δ∗3 −

2
3

]

t=1
=

3h(1− 2h)(3− 8h) + 3(6− 20h + 19h2)x1 − 12(1− 4h)x2
1 + 7x3

1

2J
.

This is non-negative for any h and x1 and strictly positive unless h = x1 = 0.
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Second, we consider the case in which h ∈ [1/4, 1/3].

The monopoly profit of the firms is

ΠM =
[∫ x1

0

(
1 + t(x1 −m)

2
− t(x1 −m)

)
1− t(x1 −m)

2
dm

+
∫ x1+h

2

x1

(
1 + t(m− x1)

2
− t(m− x1)

)
1− t(m− x1)

2
dm

+
∫ h

x1+h

2

(
1 + t(h−m)

2
− t(h−m)

)
1− t(h−m)

2
dm

+
∫ 1

2

h

(
1 + t(m− h)

2
− t(m− h)

)
1− t(m− h)

2
dm

+
∫ 1−h

1
2

(
1 + t(1− h−m)

2
− t(1− h−m)

)
1− t(1− h−m)

2
dm

+
∫ 2−h+x1

2

1−h

(
1 + t(m− (1− h))

2
− t(m− (1− h))

)
1− t(m− (1− h))

2
dm

+
∫ 1

2−h+x1
2

(
1 + t(1 + x1 −m)

2
− t(1 + x1 −m)

)
1− t(1 + x1 −m)

2
dm

]

=
12− 6t + t2 − 12tx2

1 + 6t(4− t + tx2
1)h− 12(3− t)th2 − 6t2h3

48
.

When x1 < 1− 3h, if firm 3 deviates from the cartel, it earns

ΠD
3 =

∫ x1

0

(
1 + t(x1 −m)

2
− t(m + h)

)
1− t(x1 −m)

2
dm

+
∫ x1+h

2

x1

(
1 + t(m− x1)

2
− t(m + h)

)
1− t(m− x1)

2
dm

+
∫ 1−2h

2

x1+h

2

(
1 + t(h−m)

2
− t(m + h)

)
1− t(h−m)

2
dm

+
∫ h

1−2h
2

(
1 + t(h−m)

2
− t(1− h−m)

)
1− t(h−m)

2
dm

+
∫ 1

2

h

(
1 + t(m− h)

2
− t(1− h−m)

)
1− t(m− h)

2
dm

+
∫ 1−h

1
2

(
1 + t(1− h−m)

2
− t(1− h−m)

)
1− t(1− h−m)

2
dm

+
∫ 2−h+x1

2

1−h

(
1 + t(m− (1− h))

2
− t(m− (1− h))

)
1− t(m− (1− h))

2
dm

+
∫ 1

2−h+x1
2

(
1 + t(1 + x1 −m)

2
− t(m− (1− h))

)
1− t(1 + x1 −m)

2
dm

=
12− 6t + 3t2 + 6t2x3

1 − 6t2(4− x2
1)h + 6t2(12− x1)h2 − 70t2h3

48
.
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When 1− 3h < x1 < 1/2− h, if firm 3 deviates from the cartel, it earns

ΠD
3 =

∫ x1

0

(
1 + t(x1 −m)

2
− t(m + h)

)
1− t(x1 −m)

2
dm

+
∫ 1−2h

2

x1

(
1 + t(m− x1)

2
− t(m + h)

)
1− t(m− x1)

2
dm

+
∫ x1+h

2

1−2h
2

(
1 + t(m− x1)

2
− t(1− h−m)

)
1− t(m− x1)

2
dm

+
∫ h

x1+h

2

(
1 + t(h−m)

2
− t(1− h−m)

)
1− t(h−m)

2
dm

+
∫ 1

2

h

(
1 + t(m− h)

2
− t(1− h−m)

)
1− t(m− h)

2
dm

+
∫ 1−h

1
2

(
1 + t(1− h−m)

2
− t(1− h−m)

)
1− t(1− h−m)

2
dm

+
∫ 2−h+x1

2

1−h

(
1 + t(m− (1− h))

2
− t(m− (1− h))

)
1− t(m− (1− h))

2
dm

+
∫ 1

2−h+x1
2

(
1 + t(1 + x1 −m)

2
− t(m− (1− h))

)
1− t(1 + x1 −m)

2
dm

=
12− 6t + t2 + 2t2x1(3− 3x1 + 4x2

1)− 6t2(1 + 6x1 − 4x2
1)h− 6t2(3 + 8x1)h2 − 16t2h3

48
.

When 1/2− h < x1, if firm 3 deviates from the cartel, it earns

ΠD
3 =

∫ 1−2h
2

0

(
1 + t(x1 −m)

2
− t(m + h)

)
1− t(x1 −m)

2
dm

+
∫ x1

1−2h
2

(
1 + t(x1 −m)

2
− t(1− h−m)

)
1− t(x1 −m)

2
dm

+
∫ x1+h

2

x1

(
1 + t(m− x1)

2
− t(1− h−m)

)
1− t(m− x1)

2
dm

+
∫ h

x1+h

2

(
1 + t(h−m)

2
− t(1− h−m)

)
1− t(h−m)

2
dm

+
∫ 1

2

h

(
1 + t(m− h)

2
− t(1− h−m)

)
1− t(m− h)

2
dm

+
∫ 1−h

1
2

(
1 + t(1− h−m)

2
− t(1− h−m)

)
1− t(1− h−m)

2
dm

+
∫ 2−h+x1

2

1−h

(
1 + t(m− (1− h))

2
− t(m− (1− h))

)
1− t(m− (1− h))

2
dm

+
∫ 1

2−h+x1
2

(
1 + t(1 + x1 −m)

2
− t(m− (1− h))

)
1− t(1 + x1 −m)

2
dm

=
12− 6t + 3t2 − 2t2x1(3− 9x1 + 4x2

1)− 6t2(3− 2x1 + 4x2
1)h + 42t2h2 − 32t2h3

48
.
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When x1 < 1− 3h, if the competition phase arises, firm 3 earns

ΠC
3 =

∫ 1+x1+h

2

1
2

(t(m− h)− t(1− h−m))(1− t(m− h))dm

+
∫ 1−h

1+x1+h

2

(t(1 + x1 −m)− t(1− h−m))(1− t(1 + x1 −m))dm

+
∫ 1−h+1+x1

2

1−h
(t(1 + x1 −m)− t(m− (1− h)))(1− t(1 + x1 −m))dm

=
t(h + x1)(12− 3t− 9tx1 + 2tx2

1 − (24− 3t− 22tx1)h + 8th2)
24

.

When x1 > 1− 3h, if the competition phase arises, firm 3 earns

ΠC
3 =

∫ 1−h

1
2

(t(m− h)− t(1− h−m))(1− t(m− h))dm

+
∫ 1+x1+h

2

1−h
(t(m− h)− t(m− (1− h)))(1− t(m− h))dm

+
∫ 1−h+1+x1

2

1+x1+h

2

(t(1 + x1 −m)− t(m− (1− h)))(1− t(1 + x1 −m))dm

=
t(1− 2h)(2t + 3(4− 3t)x1 − 3tx2

1 + (12− 17t + 12tx1)h + 23th2)
24

.

We show that the critical discount factor of firm 3 is larger than 2/3. The critical discount factor

of firm 3 is

δ∗3 =
2[12− 6((1− h)(1 + 3h)− x2

1)t]
K

+
2[(4− 33h + 102h2 − 102h3 − 3x1(3h2 − 2hx1 − 3x2

1))t
2]

K
,

if x1 < 1− 3h,

=
2[12− 6((1− h)(1 + 3h)− x2

1)t]
L

+
2[(1− 6h + 21h2 − 21h3 + 9(1− 2h)(1− 4h)x1 − 3(3− 11h)x2

1 + 12x3
1)t

2]
L

,

if 1− 3h ≤ x1 < 1/2− h,

=
2[12− 6((1− h)(1 + 3h)− x2

1)t]
M

+
2[(4− 24h + 57h2 − 45h3 − 9(1− 2h)x1 + 3(9− 13h)x2

1 − 12x3
1)t

2]
M

,

if 1/2− h ≤ x1.

K = 3[12− 6(1 + 4h− 8h2 + 4(1− 2h)x1)t + (3− 18h + 66h2 − 86h3 − 6(1 + 2h− 11h2)x1 + 2(9−
21h + x1)x2

1)t
2], L = 3[12 − 6(1 + 4h − 8h2 + 4(1 − 2h)x1)t + (−3 + 36h − 96h2 + 76h3 + 24(1 −
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2h)2x1 + 4(3h + 2x1)x2
1)t

2], M = 3[12− 6(1 + 4h− 8h2 + 4(1− 2h)x1)t + (−1 + 24h− 72h2 + 60h3 +

12(1− 2h)2x1 + 12(2− 3h)x2
1 − 8x3

1)t
2].

δ∗3 −
2
3

=
12[2h− 5h2 + 4(1− 2h)x1 + x2

1]t
K

+
2[1− 15h + 36h2 − 16h3 − 3(2 + 4h− 19h2)x1 − 6(3− 8h)x2

1 + 7x3
1]t

2

K
,

if x1 < 1− 3h,

=
12[2h− 5h2 + 4(1− 2h)x1 + x2

1]t
L

+
2[4− 42h + 117h2 − 97h3 − 3(5− 14h + 8h2)x1 − 3(3− 7h)x2

1 + 4x3
1]t

2

L
,

if 1− 3h ≤ x1 < 1/2− h,

=
12[2h− 5h2 + 4(1− 2h)x1 + x2

1]t
M

+
2[5− 48h + 129h2 − 105h3 − 3(7− 8h)(1− 2h)x1 + 3(1− h)x2

1 − 4x3
1]t

2

M
,

if 1/2− h ≤ x1.

If δ∗3 − 2
3 is positive when t = 1, δ∗3 is larger than 2/3 for any h and x1 (for the same reason in case

(i)).

[
δ∗3 −

2
3

]

t=1
=

[1− 3h + 6h2 − 16h3 + 3(6− 20h + 19h2)x1 + 12(4h− 1)x2
1 + 7x3

1]
K

,

if x1 < 1− 3h,

=
[4− 30h + 87h2 − 97h3 + 3(1− 2h)(3 + 4h)x1 + 3(7h− 1)x2

1 + 4x3
1]

L
,

if 1− 3h ≤ x1 < 1/2− h,

=
[5− 36h + 99h2 − 105h3 + 3(1− 2h)(1 + 8h)x1 + 3(3− h)x2

1 − 4x3
1]

2M
,

if 1/2− h ≤ x1.

This is positive for any x1 and h. Q.E.D.

Proof of Proposition 4: First, we show that the location pattern x1 = x2 =, ...,= xn does not

minimize δ∗. We prove it by contradiction. Suppose that the location x1 = x2 =, ...,= xn minimizes

δ∗. Without loss of generality, we assume that xn ≥ 1/2. Suppose that firm 1 and firm 2 relocate
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and choose x1 = x2 = 0. ΠD
i is still zero for all firms. This relocation increases ΠM and decreases

ΠD
i for i ≥ 3. We compare ΠD

1 with ΠD
n . πD

1 (y) = πD
n (xn − y) for all y ≤ xn. In other words, both

firms obtain the same profits from markets lying to the left of firm n’s location. πD
1 (y) < πD

n (y)

for all y > xn because T1(d(y, 0)) > Tn(d(y, xn)). In other words, firm 3 obtains a larger profit

than firm 1 from markets to the right of firm n’s location. Thus ΠD
1 ≤ ΠD

n , so δ∗1 ≤ δ∗n. Since the

relocation decreases δ∗n and δ∗n > δ∗1, the relocation decreases δ∗, which is a contradiction.

Next, we show that the location pattern x1 < x2 =, ...,= xn does not minimize δ∗. We prove

it by contradiction. Suppose that the location x1 < x2 =, ...,= xn minimizes δ∗. Suppose that

δ∗1 > δ∗n. If firm 2 relocates (chooses) x2 = x1. It reduces ΠC
1 but does not change ΠM or ΠD

i .

Thus, it reduces δ∗1 without changing δ∗n, so it reduces δ∗, which is a contradiction. Therefore, if the

location x1 < x2 =, ...,= xn minimizes δ∗, then δ∗1 ≤ δ∗n.

We consider two cases: (i) 0 = x1 < x2 =, . . . , = xn and (ii) 0 < x1 < x2 =, . . . ,= xn. We now

show that, in both cases, δ∗ is not minimized. We prove them by contradiction.

Consider case (i). We assume that 0 = x1 < x2 =, . . . , = xn and δ∗1 ≤ δ∗n, and that the location

pattern minimizes δ∗. We relocate firm 2 at x1 = 0. This relocation decreases δ∗1 without affecting

δ∗n, and, then, δ∗1 < δ∗n. We again relocate firms 1 and 2 from 0 to ε, where ε is positive and

sufficiently small. The second-round relocation increases ΠM and reduces ΠD
n . Thus, it reduces δ∗n.

The second-round relocation increases δ∗1. Since δ∗1 < δ∗n and these are continuous with respect to x1

and x2, there exists ε(> 0), such that δ∗1 ≤ δ∗n. Therefore, the second relocation decreases δ∗, which

is a contradiction.

Consider case (ii). We assume that 0 < x1 < x2 =, ...,= xn, δ∗1 ≤ δ∗n and that the location

pattern minimizes δ∗. We relocate firm 2 to 0. This relocation decreases δ∗1 and δ∗n since it increases

ΠM and ΠD
i for i = 1, 3, ..., n. After the relocation, ΠC

2 < ΠC
1 and ΠD

2 < ΠD
1 , so δ∗2 < δ∗1. Since the

relocation decreases δ∗1 and δ∗n and δ∗2 < δ∗1 , it decreases δ∗, which is a contradiction. Q.E.D.

Proof of Proposition 5(iii): The joint profit is maximized by

(p1(x), p2(x), p3(x), p4(x)) =





(1+td(x,x1)
2 ,+∞, +∞, +∞) if x ∈ [

0, x1+x2
2

]
,

(+∞, 1+td(x,x2)
2 , +∞, +∞) if x ∈ [x1+x2

2 , x2+x3
2

]
,

(+∞,+∞, 1+td(x,x3)
2 , +∞) if x ∈ [x2+x3

2 , x3+x4
2

]
,

(+∞,+∞, +∞, 1+td(x,x4)
2 ) if x ∈ [x3+x4

2 , 1
]
.

(7)
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The joint-profit maximization is achieved by the market division because it economizes the transport

costs. Note that we assume the symmetric locations, i.e., x1 = 1− x4 and x2 = 1− x3.

ΠM =

[∫ x1

0

(1− t(x1 − x))2

4
dx +

∫ x1+x2
2

x1

(1− t(x− x1))2

4
dx +

∫ x2

x1+x2
2

(1− t(x2 − x))2

4
dx

+
∫ x2+x3

2

x2

(1− t(x− x2))2

4
dx +

∫ x3

x2+x3
2

(1− t(x3 − x))2

4
dx

+
∫ x3+x4

2

x3

(1− t(x− x3))2

4
dx +

∫ x4

x3+x4
2

(1− t(x4 − x))2

4
dx +

∫ 1

x4

(1− t(x− x4))2

4
dx

]

=
12− 6(1− 4(1 + x1)x2 + 6(x2

1 + x2
2))t + (1− 6x2 + 12x2

2 + 6(x1 − x2)(x1 + x2)2)t2

48
. (8)

We consider the one-shot gain when firm 2 deviates from the collusive behavior. Consider the

firm 2’s deviation. Given pi(x) in (7), firm 2 chooses p2(x) so as to maximize its own profits. Let

pD
2 denote the price of firm 2 when it deviates.

pD
2 =





1+td(x,x1)
2 (−ε) if x ∈ [

0, x1+x2
2

]
,

1+td(x,x2)
2 if x ∈ [x1+x2

2 , x2+x3
2

]
,

1+td(x,x3)
2 (−ε) if x ∈ [x2+x3

2 , x3+x4
2

]
,

1+td(x,x4)
2 (−ε) if x ∈ [x3+x4

2 , 1
]
.

(9)

Let ΠD
2 denote the one-shot profit of the deviator.

ΠD
2 =

∫ x1

0

(
1 + t(x1 − x)

2
− t(x2 − x)

)
1− t(x1 − x)

2
dx

+
∫ x1+x2

2

x1

(
1 + t(x− x1)

2
− t(x2 − x)

)
1− t(x− x1)

2
dx

+
∫ x2

x1+x2
2

(1− t(x2 − x))2

4
dx +

∫ x2+x3
2

x2

(1 + t(x− x2))2

4
dx

+
∫ x3

x2+x3
2

(
1 + t(x3 − x)

2
− t(x− x2)

)
1− t(x3 − x)

2
dx

+
∫ x3+x4

2

x3

(
1 + t(x− x3)

2
− t(x− x2)

)
1− t(x− x3)

2
dx

+
∫ x4

x3+x4
2

(
1 + t(x4 − x)

2
− t(x− x2)

)
1− t(x4 − x)

2
dx

+
∫ 1

x4

(
1 + t(x− x4)

2
− t(x− x2)

)
1− t(x− x4)

2
dx

=
6− 6(1− 2x2 + 2x2

2)t
24

(10)

+
((1− x1)(1 + x1 + 10x2

1)− 6(1 + x1)x2 + 3(5 + 2x1)x2
2 − 12x3

2)t
2

24

22



If firm 2 deviates from the collusive behavior, it earns ΠD
2 now and ΠC

2 thereafter. ΠC
2 is:

ΠC
2 =





∫ x2

x1+x2
2

(t(x− x1)− t(x2 − x))(1− t(x− x1))dx

+
∫ x1+x3

2

x2

(t(x− x1)− t(x− x2))(1− t(x− x1))dx

+
∫ x2+x3

2

x1+x3
2

(t(x3 − x)− t(x− x2))(1− t(x3 − x))dx

= t(x2−x1)(12(1−2x2)+(−3+9x1+2x2
1+(3−22x1)x2+8x2

2)t)
24 , if x2 ≤ x1 + x3

2
,

∫ x1+x3
2

x1+x2
2

(t(x− x1)− t(x2 − x))(1− t(x− x1))dx

+
∫ x2

x1+x3
2

(t(x3 − x)− t(x2 − x))(1− t(x3 − x))dx

+
∫ x2+x3

2

x2

(t(x3 − x)− t(x− x2))(1− t(x3 − x))dx

= t(1−2x2)(12(x2−x1)+(2+9x1−3x2
1−(17+12x1)x2+23x2

2)t)
24 , if x2 ≥ x1 + x3

2
.

(11)

Substituting these results and i = 2 into (2), we have that, when x2 < (1 + x1)/3,

δ∗2 =
36− (6(7− 6x2

1)− 24(3− x1)x2 + 60x2
2)t

8Y

+
(7 + 72x2

1 − 86x3
1 − 6(1 + x1)(7 + x1)x2 + 54(2 + x1)x2

2 − 90x3
2)t

2

8Y
, , (12)

where Y ≡ 6 − 6(1 − 2x1 + 4x1x2 − 2x2
2)t + (1 − 3x1 + 18x2

1 − 8x3
1 − 3(1 + 4x1 + 8x2

1)x2 + 12(1 +

3x1)x2
2 − 20x3

2)t
2, and that when x2 ≥ (1 + x1)/3,

δ∗2 =
36− (6(7− 6x2

1)− 24(3− x1)x2 + 60x2
2)t

8Z

+
(7 + 72x2

1 − 86x3
1 − 6(1 + x1)(7 + x1)x2 + 54(2 + x1)x2

2 − 90x3
2)t

2

8Z
, (13)

where Z ≡ 6 − 6(1 − 2x1 + 4x1x2 − 2x2
2)t − (1 + 9x1 − 12x2

1 + 10x3
1 − 3(5 + 8x1 − 2x2

1)x2 + 6(7 +

3x1)x2
2 − 34x3

2)t
2.

First, we will show that, given x1, either x2 = x1 or x2 = 1/2 minimizes δ∗2 under the assumptions

that x2 ∈ [x1, 1/2] and t ∈ (0, 1/2]. Since the derivation is quite technical, we show it at the last

part of the proof and skip it for a moment.

Second, we show δ∗2 is minimized at x2 = x1 by comparing δ∗2(x1, x1) and δ∗2(x1, 1/2).

δ∗2|x2=x1 =
36− 6(7− 12x1 + 8x2

1)t + (7− 42x1 + 132x2
1 − 128x3

1)t
2

8Aα
, (14)
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δ∗2 |x2=1/2 =
144− 12(7 + 4x1 − 12x2

1)t + (7− 42x1 + 276x2
1 − 344x3

1)t
2

8Aβ
,

δ∗2|x2=1/2 − δ∗2|x2=x1 =
3t(1− 2x1)2(4− (1− 2x1)t)(3 + 6x1(1− 3x1)t− x2

1(3− 8x1)t2)
4AαAβ

,

where Aα ≡ (6− 6(1− 2x1 + 2x2
1)t + (1− 6x1 + 18x2

1 − 16x3
1)t

2) and Aβ ≡ (24− 12t + (1− 6x1 +

36x2
1 − 40x3

1)t
2). For any t ∈ (0, 1/2] and x1 ∈ [0, 1/2], this is positive. Therefore, given x1, δ∗2 is

minimized at x2 = x1.

Third, we show that δ∗ is minimized at x2 = x1. When x1 = x2, δ∗1 = δ∗2. An increase of x2 from

x2 = x1 never decreases δ∗2, so it never decreases δ∗ = max(δ∗1, δ∗2). Thus, x2 = x1 minimizes δ∗.

Fourth, we show that δ∗ is minimized at x1 = x2 = 0. When x1 = x2, δ∗ = δ∗1 = δ∗2. The value

is δ∗2|x2=x1 in (14). Differentiating it with respect to x1, we have:

∂δ∗2|x2=x1

∂x1
=

3t[24x1 + 3(1− 4x1 − 8x2
1)t− (1− 30x2

1 + 64x3
1 − 64x4

1)t
2 + x1(1− 4x1)(1− 3x1 + 4x2

1)t
3]

2A2
α

.

For any t ∈ (0, 1/2] and x1 ∈ [0, 1/2], this is positive. This implies that δ∗ is minimized at

x1 = x2 = 0.

Finally, we complete the skipped technical part of the proof. We show that δ∗2 is minimized at

either x2 = x1 or x2 = 1/2.

First, we show that for the range x2 ∈ [(x1 + 1)/3, 1/2], δ∗2 is minimized when x2 = 1/2.

Differentiating δ∗2 with respect to x2, we have:

∂δ∗2
∂x2

=
3k(x2)
8Y 2

, (15)

where k(x2) ≡ 4t2(80+9(1−2x1)t)x4
2−4t2(8(51−62x1)−(1−2x1)(13−62x1)t)x3

2−4t(9(57−16x1)−
3(237−178x1−138x2

1)t+(49−255x1 +921x2
1−920x3

1)t
2)x2

2−4(132−6(84+7x1−12x2
1)t+2(203−

63x1− 48x2
1− 190x3

1)t
2− (31− 150x1 + 639x2

1− 458x3
1− 348x4

1)t
3)x2 + 48(3 + 5x1)− 12(34 + 32x1 +

3x2
1−24x3

1)t+2(135+56x1−42x2
1−36x3

1−268x4
1)t

2− (21−86x1 +368x2
1 +180x3

1−968x4
1 +152x5

1)t
3

and Y is defined at (12).

Differentiating k(x2) four times, we have

k′(x2) = 16t2(80 + 9(1− 2x1)t)x3
2 − 12t2(8(51− 62x1)− (1− 2x1)(13− 62x1)t)x2

2

−8t(9(57− 16x1)− 3(237− 178x1 − 138x2
1)t + (49− 255x1 + 921x2

1 − 920x3
1)t

2)x2

24



−4(132− 6(84 + 7x1 − 12x2
1)t + 2(203− 63x1 − 48x2

1 − 190x3
1)t

2)

+4(31− 150x1 + 639x2
1 − 458x3

1 − 348x4
1)t

3

k′′(x2) = 48t2(80 + 9(1− 2x1)t)x2
2 − 24t2(8(51− 62x1)− (1− 2x1)(13− 62x1)t)x2

−8t(9(57− 16x1)− 3(237− 178x1 − 138x2
1)t + (49− 255x1 + 921x2

1 − 920x3
1)t

2)

k′′′(x2) = 96t2(80 + 9(1− 2x1)t)x2 − 24t2(8(51− 62x1)− (1− 2x1)(13− 62x1)t)

k′′′′(x2) = 96t2(80 + 9(1− 2x1)t).

k′′′′(x2) is positive for any x1 ∈ [0, 1/2] and t ≤ 1/2. k′′′(1/2) = −744t2(1−2x1)(8− (1−2x1)t) < 0.

k′′′(x2) is negative for any x1 ∈ [0, 1/2] and t ≤ 1/2. Since k′′′(x2) is negative, k′′((1 + x1)/3) < 0

implies k′′(x2) < 0 for all x2 ∈ [(x1 + 1)/3, 1/2].

k′′((1 + x1)/3) = −8t(1539− 432x1 − (1069− 1018x1 + 406x2
1)t)

3

− 8t(90− 540x1 + 2709x2
1 − 3096x3

1)t
2

3
< 0.

Since k′′(x2) < 0, k′((1 + x1)/3) < 0 implies k′(x2) < 0 for all x2 ∈ [(x1 + 1)/3, 1/2].

k′((1 + x1)/3) = −8(1782− (2187− 2754x1 + 324x2
1)t + (758− 2334x1 + 4128x2

1 − 3796x3
1)t

2)
27

+
8(54− 432x1 + 2403x2

1 − 5562x3
1 + 4104x4

1)t
3

27
< 0.

Since k′(x2) < 0, k((1 + x1)/3) < 0 implies k(x2) < 0 for all x2 ∈ [(x1 + 1)/3, 1/2].

k((1 + x1)/3) =
t(1− 2x1)(−2592 + (2916 + 1944x1 − 10368x2

1)t)
27

− t(1− 2x1)(958− 1428x1 + 2640x2
1 − 5504x3

1)t
2)

27

+
t(1− 2x1)(75− 600x1 + 3960x2

1 − 9960x3
1 + 7680x4

1)t
3

27
< 0.

Since the numerator in (15) is negative for any x2 ≥ (1+x1)/3, δ∗2 is minimized at x2 = 1/2 among

x2 ∈ [(x1 + 1)/3, 1/2].

Next we consider the range x2 ∈ [x1, (x1 +1)/3] and show that δ∗2 is minimized at either x2 = x1

or x2 = (x1 + 1)/3.

Differentiating δ∗2 with respect to x2, we have:

∂δ∗2
∂x2

=
l(x2)
8Y 2

, (16)
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where l(x2) ≡ −40t2(19− 9(1− 2x1)t)x4
2 + 20t2(8(6 + 7x1)− (1− 2x1)(19 + 34x1)t)x3

2 − 2t(18(3−
16x1) + 60(3 + 19x1 − 9x2

1)t− 5(11 + 48x1 − 66x2
1 − 136x3

1)t
2)x2

2 − 4(132− 6(30− 47x1 − 12x2
1)t +

12(4−37x1 +24x2
1−3x3

1)t
2− (4− 87x1 +153x2

1−242x3
1 +444x4

1)t
3)x2 +48(3+5x1)− 12(16− 4x1−

15x2
1 − 24x3

1)t + 6(11− 44x1 − 4x2
1 + 60x3

1 − 56x4
1)t

2 − (7− 54x1 + 78x2
1 − 32x3

1 − 324x4
1 + 672x5

1)t
3

and Y is defined at (12).

Differentiating l(x2), we have:

l′(x2) = −160t2(19− 9(1− 2x1)t)x3
2 + 60t2(8(6 + 7x1)− (1− 2x1)(19 + 34x1)t)x2

2

−4t(18(3− 16x1) + 60(3 + 19x1 − 9x2
1)t− 5(11 + 48x1 − 66x2

1 − 136x3
1)t

2)x2

−4(132− 6(30− 47x1 − 12x2
1)t + 12(4− 37x1 + 24x2

1 − 3x3
1)t

2)

−4(4− 87x1 + 153x2
1 − 242x3

1 + 444x4
1)t

3.

We define g(t) ≡ l′(x2)/(12t). We show that g(t) is negative for any t. When t = 1/2, g(t) is:

g(1/2) =
−428− 327x1 − 711x2

1 − 170x3
1 + 444x4

1 − (521 + 888x1 − 750x2
1 + 680x3

1)x2

8
(17)

+
15(77 + 116x1 + 68x2

1)x
2
2 − 40(29 + 18x1)x3

2

8
< 0. (18)

Differentiating g(t) twice, we have:

g′(t) = 6(30− 47x1 − 12x2
1)− 18(3− 16x1)x2 − 24(4− 37x1 + 24x2

1 − 3x3
1)t

+(120(3 + 19x1 − 9x2
1)x2 − 240(6 + 7x1)x2

2 + 1520x3
2)t

+(3(4− 87x1 + 153x2
1 − 242x3

1 + 444x4
1) + 15(11 + 48x1 − 66x2

1 − 136x3
1)x2)t2

−(45(1− 2x1)(19 + 34x1)x2
2 − 1080(1− 2x1)x3

2)t
2

g′′(t) = −24(4− 37x1 + 24x2
1 − 3x3

1) + 120(3 + 19x1 − 9x2
1)x2 − 240(6 + 7x1)x2

2 + 1520x3
2

+6((4− 87x1 + 153x2
1 − 242x3

1 + 444x4
1) + 5(11 + 48x1 − 66x2

1 − 136x3
1)x2)t

−90((1− 2x1)(19 + 34x1)x2
2 − 24(1− 2x1)x3

2)t.

g′′(t) is a linear function with respect to t. Thus g′′(0) < 0 and g′′(1/2) < 0 implies g′′(t) < 0 for

any t.

g′′(0) = −8(12− 111x1 + 72x2
1 − 9x3

1 + (45 + 285x1 − 135x2
1)x2 − (180 + 210x1)x2

2 + 190x3
2) < 0
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g′′(1/2) = −84 + 627x1 − 117x2
1 − 654x3

1 + 1332x4
1 − (195 + 1560x1 − 90x2

1 + 2046x3
1)x2

+(586 + 1860x1 + 3060x2
1)x

2
2 − (440 + 2160x1)x3

2 < 0.

We show that g′(1/2) is positive.

4g′(1/2) = 540 + 387x1 − 981x2
1 − 582x3

1 + 1332x4
1 − (771 + 2668x1 − 1170x2

1 + 2040x3
1)x2

+(2025 + 3540x1 + 3060x2
1)x

2
2 − (1960 + 2160x1)x3

2 > 0.

Since g′′(t) < 0, g′(1/2) > 0 implies that g′(t) > 0 for any t ≤ 1/2. As mentioned earlier, g(1/2) is

negative. Since g′(t) > 0, we have g(t) < 0 for any t. As defined earlier, g(t) = l′(x2)/(12t) and,

then, l′(x2) is negative for any x2. After tedious calculation, we obtain that l(x1) is positive and

l(1/2) is negative. Thus, among x2 ∈ [x1, (x1 + 1)/3], either x2 = x1 or x2 = (x1 + 1)/3 minimizes

δ∗2.

From these facts, we have that δ∗2 is minimized at x2 = x1, x2 = (x1 + 1)/3, or x2 = 1/2.

As shown above, among x2 ∈ [(x1 + 1)/3, 1/2], δ∗2 is minimized when x2 = 1/2. Thus, δ∗2 is never

minimized when x2 = (x1 + 1)/3. Q.E.D.

Proof of Proposition 2’: First, we assume that x1 = x2 =, ...,= xn and show that it does

not minimize δ∗∗. We prove it by contradiction. Suppose that the location x1 = x2 =, ...,= xn

minimizes δ∗∗. Without loss of generality, we assume that x1 = 0. Suppose that firm n − 1 and

firm n relocate and choose xn−1 = xn = 1/2. ΠC
i is still zero for all firms. This relocation increases

ΠM , and it decreases ΠD
i for i ≤ n − 2. By the symmetry of the circular city, after the relocation,

ΠD
1 = ΠD

n .

Since the situations are symmetric both before and after the relocation, all firms obtain the

equal share in the monopoly profit. Since the above relocation increases ΠM
i , reduces ΠD

i and does

not affect ΠC
i , it reduces δ∗∗, which is a contradiction.

Next, we assume that 0 = x1 < x2 =, ...,= xn and show that it does not minimize δ∗. We

prove it by contradiction. Suppose that the location x1 < x2 =, ...,= xn minimizes δ∗∗. Under the

locations, ΠC
1 > 0 = ΠC

2 =, ...,= ΠD
n . By the symmetry of the circular city, ΠD

1 = ΠD
2 =, ...,= ΠD

n .

Thus, δ∗ = δ∗1 > δ∗2 =, ..., = δ∗n. This implies that ΠM
1 > ΠM

i /n > ΠM
n . Suppose that firm 2 relocates

to 0. After the relocation, ΠC
1 = 0. This relocation does not affect ΠM and ΠD

i for all i ∈ N. By
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the symmetry, ΠM
1 = ΠM

n = ΠM
i /n. Since the relocation increases ΠM

n and does not affect neither

ΠC
n or ΠD

n , it reduces δ∗∗, which is a contradiction. Q.E.D.

Proof of Proposition 4’: (i) We prove it by contradiction. Suppose that the location x1 = x2 =

, ...,= xn minimizes δ∗∗. Without loss of generality, we assume that xn ≥ 1/2. Suppose that firm 1

and firm 2 relocate and choose x1 = x2 = 0. ΠC
i is still zero for all firms. As is shown in the Proof

of Proposition 2, this relocation increases ΠM and decreases ΠD
i . Thus, the relocation decreases

δ∗∗, which is a contradiction.

(ii) We assume that δ∗∗ ≥ 1/2. We prove Proposition 4’(ii) by contradiction. Suppose that the

location x1 < x2 =, ...,= xn minimizes δ∗∗.

Suppose that ΠM
1 ≤ ΠM

n . Suppose that firm 2 relocates and chooses x2 = x1. It reduces ΠC
1 and

ΠM , ΠD
1 , and ΠD

n remain unchanged. Thus, it reduces ΠM
2 , resulting in an increase of ΠM

n and a

decrease of δ∗∗, which is a contradiction.

Suppose that ΠM
1 ≥ ΠM

n . Suppose that firm 2 relocates and chooses x2 = x1. Define ΠM ′
1 (i =

1, 2) as follows:
ΠD

1 −ΠM ′
1

ΠD
1

= δ∗∗.

ΠM ′
1 is the required firm 1’s profit in collusive phase after the relocation under the condition that

the relocation does not affect firm 1’s critical discount factor. By the symmetry between firms 1

and 2 after the relocation, firm 2 also obtains ΠM ′
1 after the relocation so as to maintain the critical

discount factor.

Since the relocation reduces firm 1’s profit in competitive phase and does not affect ΠD
1 , the

relocation saves firm 1’s share of monopoly profit (i.e., ΠM ′′
i −ΠM ′

1 must be positive, where ΠM ′′
i is

firm i’s profit in the collusive phase before the relocation). On the other hand, the relocation may

increase ΠD
2 , so it may increase firm 2’s share of monopoly profit (i.e., ΠM ′

1 − ΠM ′′
n can be either

positive or negative). If ΠM ′′
i − ΠM ′

1 > ΠM ′
1 − ΠM ′′

n , firms can maintain δ∗∗ and can re-distribute

ΠM
i −ΠM ′

1 − (ΠM ′
1 −ΠM

n ) to all firms, resulting in the increase of δ∗∗, which is a contradiction. We

then show that it is in fact positive.

We have that ΠM ′′
1 −ΠM ′

1 = δ∗∗ΠC′′
1 , where ΠC′′

1 is firm 1’s profit in the competitive phase before
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the relocation, and it is

ΠC′′
1 =

∫ (x1+xn)/2

0
q
(
T (d(xn, x))

)(
T (d(xn, x))− Td((x1, x))

)
dx.

We also have ΠM ′
1 −ΠM ′′

n = (1− δ∗∗)(ΠD′′
1 −ΠD′′

n ), where ΠD′′
i is firms i’s one-shot deviation profit

before the relocation. If x1 ≤ 1− xn, we have ΠD′′
1 −ΠD′′

n ≤ 0 so ΠM ′′
i −ΠM ′

1 > ΠM ′
1 −ΠM ′′

n holds.

If x1 > 1− xn, we have

ΠD′′
1 −ΠD′′

n =
∫ x1−(1−xn)

0
q
(
pM (T (d(x1, x))

)(
T (d(xn, x))− T (d(x1, x))

)
dx.

Since the monopoly price is higher than the competitive price (i.e., q
(
pM (T (d(x1, x)))

)
< q

(
T (d(xn, x))

)
)

and (x1 +xn)/2 > x1− (1−xn), we have ΠC′′
1 > ΠD′′

1 −ΠD′′
2 . Under these conditions ΠM ′′

i −ΠM ′
1 >

ΠM ′
1 −ΠM ′′

n if δ∗∗ ≥ 1/2, which is a contradiction. Q.E.D.
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