

PDF issue: 2025-12-05

Fermi surface of the filled skutterudite LaOs4P12

Harima, Hisatomo Takegahara, Katsuhiko

(Citation)
Physica B: Condensed Matter, 403(5-9):906-908

(Issue Date)
2008-04
(Resource Type)
journal article
(Version)
Accepted Manuscript
(URL)
https://hdl.handle.net/20.500.14094/90000872

Fermi Surface of the filled skutterudite ${\rm LaOs_4P_{12}}$

H. Harima a,*, K. Takegahara b,

^aDepartment of Physics, Kobe University, Nada, Kobe 657-8501, Japan ^bDepartment of Advanced Physics, Hirosaki University, Hirosaki 036-8561, Japan

Abstract

A good nesting property of the main Fermi surfaces causes the variety of the phase transitions realized in the filled skutterudites. However, no such transitions are reported in $R^{3+}Os_4P_{12}$. The electronic structure and the Fermi surfaces of $LaOs_4P_{12}$ are calculated to discuss the role of the nesting property in the phase transitions realized in the filled skutterudites.

 $Key\ words$: LaOs₄P₁₂, skutterudite, Fermi surface PACS: 71.18.+y; 71.20.-b

A family of skutterudites RT_4X_{12} (R=rare earth etc., T=Fe, Ru, Os, X=P, As, Sb) has attracted much attention for the variety of physical properties, e.g. metalinsulator transitions of PrRu₄P₁₂[1] and SmRu₄P₁₂[2], heavy fermion behavior of PrFe₄P₁₂[3], and heavy fermion superconductivity of PrOs₄Sb₁₂[4]. Such the properties are strongly related to the characteristics of the Fermi surfaces provided in the unique crystal structure. Actually a good nesting property of the Fermi surfaces of R³⁺Ru₄P₁₂ and R³⁺Fe₄P₁₂ have been revealed by the bandstructure calculations[5], to cause the phase transitions. Experimentally, the dHvA effect is observed to confirm such Fermi surface properties in LaFe₄P₁₂[6] and LaRu₄P₁₂[7]. However, no such the phase transition is realized in R³⁺Os₄P₁₂, though the main Fermi surface consists of the P-p molecular orbital[8]. The recent experimental study has revealed that PrOs₄P₁₂ shows no phase transition down to 0.1 K[9] and a heavy cyclotron mass is observed in the dHvA effect[10]. In this paper, a bandstructure of LaOs₄P₁₂ has been calculated to clarify the Fermi surface property.

The crystal structure of the skutterudites is a unique body centered structure with the space group $\text{Im}\bar{3}$ (T_h^5 , #204). The lattice constant is reported as 8.0844Å[11], but no parameters of P-position has been reported, then $(u,v)=(0.1504,\,0.3539)$ as in LaFe₄P₁₂[6] are used in the calculation. The bandstructure calculation has been carried out by using an FLAPW method within the LDA, as was

done for $LaFe_4P_{12}[6]$. The spin-orbit interaction is taken into account as a second variational procedure.

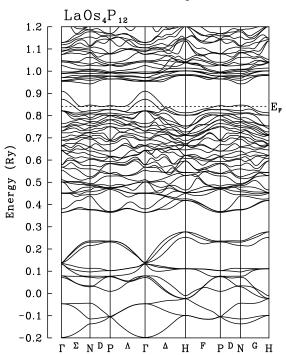


Fig. 1. Eletronic bandstructure of LaOs₄P₁₂

Figure 1 shows the calculated bandstructure for $LaOs_4P_{12}$. Two conduction bands (the 47th and 48th) cross the Fermi level. This is similar to that of $LaFe_4P_{12}[6]$ and $LaOs_4Sb_{12}[12]$. The lower band, consisting of the $Os-d(a_g)$ band, produces the closed hole Fermi surface, while the

^{*} Corresponding author. Tel: +81-78-803-5628 fax: +81-78-803-5628 Email address: hh@kobe-u.ac.jp (H. Harima).

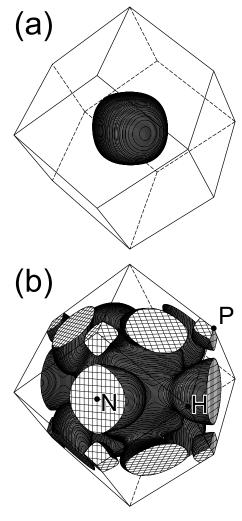


Fig. 2. (a) 47th and (b) 48th Fermi surfaces of LaOs₄P₁₂.

upper band, mainly consisting of the P-p electrons, forms a multiply connected Fermi surface, as shown in Fig. 2.

In LaFe₄P₁₂, the Fermi surface is connected at the P and the N points, but not at P points in LaOs₄P₁₂, as in Fig. 2 (b). In Fig. 2 (b), it is easy to find a small cube centered at the Γ point, which is the Fermi surface with the good nesting property, derived from the a_u orbital.[8] The Fermi surface becomes small in size due to the existence of the 47th $(d(a_g))$ Fermi surface and the other parts around the N and P points in the 48th Fermi surface, so that the nesting vector becomes smaller than q = (1,0,0). Such the Fermi surfaces around the N and P points originate in the hybridized band from the Os-d and the P-p band. The populations of some components inside the MT (muffintin) spheres are listed in Table 1.

Now let us compare the Fermi surface with that of $LaOs_4Sb_{12}[12]$. The closed surface around the P point does not exist, and the Fermi surface around the N point becomes separated from the surface centered at the Fermi surface, and enlarged to connect each other in $LsOs_4Sb_{12}[12]$.

In the case of $PrRu_4P_{12}$, only one Fermi surface appears in the calculation[5], and only one Fermi surface is observed in $LaRu_4P_{12}$ [7]. In the case of RRu_4P_{12} , the Ru-d bands

Table 1
The populations of some components inside the MT spheres of the 48th band. The Fermi level is 0.84096 Ry.

Energy (Ry) La- f Os- d P- p outside				
Γ point	0.9100 (0.29 0.00	0.33	0.29
N point	0.8472 (0.06 0.20	0.32	0.32
P point	0.8449 (0.07 0.03	0.45	0.35
H point	0.8127 (0.00 0.52	0.07	0.26

are situated relatively lower so that the T-d P-p hybridized bands are also located below the Fermi level. Therefore the Fermi surface is almost a cube, which volume is just a half of the BZ, then it has a strong nesting property with q = (1,0,0). Except R^{3+} Ru₄P₁₂, the T-d bands affect the Fermi surface properties in the filled skutterudites. Even though the extra Fermi surface is realized in LaFe₄P₁₂, PrFe₄P₁₂ undergoes a nonmagnetic phase transition at 6.5 K with q = (1,0,0).[3] On the contrary, no phase transition has been reported down to 0.1 K in PrOs₄P₁₂[9]. It might be because the nesting vector is too smaller than q = (1,0,0).

Obviously any La-compound does not undergo such the phase transition with q=(1,0,0). It strongly indicates that the 4f electrons might play the role in the transitions, besides the nesting property. The non magnetic ground state separated by 30-50 K from a first excited triplet state is indicated for $\text{PrOs}_4\text{P}_{12}[9]$, while in $\text{PrFe}_4\text{P}_{12}$ the first excited triplet state is separated by less than only a several degrees[3]. The small crystalline field splitting yields a large number of freedom in f electrons, e.g., higher multipoles, one of which is realized in $\text{PrFe}_4\text{P}_{12}[13]$. The small crystalline splitting is also necessary to cause the unique phase transitions in the filled skutterudites. The detailed Fermi surface study for $\text{LaOs}_4\text{P}_{12}$ and $\text{PrOs}_4\text{P}_{12}$ will be published in a separate paper.

This work is supported by a Grant-in-Aid for Scientific Research Priority Area Skutterudite (No. 15072204) of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- [1] C. Sekine et al., Phys. Rev. Lett. 79 (1997) 3218.
- [2] K. Matsuhira et al., J. Phys. Soc. Jpn. **71** Suppl (2002) 237.
- [3] Y. Aoki et al., J. Phys. Soc. Jpn., **74** (2005) 209 and the references therein.
- [4] E.D. Bauer et al., Phys. Rev. B 65 (2002) 100506(R).
- H. Harima and K. Takegahara, Physica B 312& 313 (2002) 843.
- [6] H. Sugawara et al., J. Phys. Soc. Jpn. 69 (2000) 2938.
- [7] S.R. Saha et al., Physica **B 328** (2003) 68.
- H. Harima and K. Takegahara, J.Phys.: Condens. Matter 15 (2003) S2081.
- [9] W.M. Yuhasz et a;., J.Phys.: Condens. Matter 19 (2007) 076212.
- [10] H. Sugawara et al., submitted to the proceedings of SCES2007.
- [11] W. Jeitschko and D.J. Braun, Acta Cryst. **B33** (1977) 3401.
- [12] H. Harima and K. Takegahara, Physica C 388-389 (2003) 555.
- [13] J. Kikuchi et al., J. Phys. Soc. Jpn. 76 (2002) 043705.