
Kobe University Repository : Kernel

PDF issue: 2025-11-08

Incremental Learning of Chunk Data for Online
Pattern Classification Systems

(Citation)
IEEE Transactions on Neural Neworks,19(6):1061-1074

(Issue Date)
2008-06

(Resource Type)
journal article

(Version)
Version of Record

(URL)
https://hdl.handle.net/20.500.14094/90001005

Ozawa, Seiichi
Pang, Shaoning
Kasabov, Nikola

IEEE TRANSACTIONS ON NEURAL NETWORKS 1

Incremental Learning of Chunk Data for Online
Pattern Classification Systems

Seiichi Ozawa, Member, IEEE, Shaoning Pang, Senior Member, IEEE, and Nikola Kasabov, Senior Member, IEEE

Abstract—This paper presents a pattern classification system
in which feature extraction and classifier learning are simulta-
neously carried out not only online but also in one pass where
training samples are presented only once. For this purpose, we
have extended incremental principal component analysis (IPCA)
and some classifier models were effectively combined with it.
However, there was a drawback in this approach that training
samples must be learned one by one due to the limitation of
IPCA. To overcome this problem, we propose another extension
of IPCA called chunk IPCA in which a chunk of training samples
is processed at a time. In the experiments, we evaluate the classifi-
cation performance for several large-scale data sets to discuss the
scalability of chunk IPCA under one-pass incremental learning
environments. The experimental results suggest that chunk IPCA
can reduce the training time effectively as compared with IPCA
unless the number of input attributes is too large. We study the
influence of the size of initial training data and the size of given
chunk data on classification accuracy and learning time. We also
show that chunk IPCA can obtain major eigenvectors with fairly
good approximation.

Index Terms—Feature extraction, incremental learning, online
learning, pattern classification, principal component analysis
(PCA).

I. INTRODUCTION

I N MANY real-world applications such as pattern recogni-
tion, data mining, and time-series prediction, we often con-

front difficult situations where a complete set of training sam-
ples is not given when constructing a system. In face recogni-
tion, for example, since human faces have large variations due
to expressions, lighting conditions, makeup, hairstyles, and so
forth, it is hard to consider all variations of face in advance [6],
[31], [35]. In many cases, training samples are provided only
when a system misclassifies objects; hence the system is learned
online to improve the classification performance. On the other
hand, in many practical applications of data mining and time-se-
ries predictions, the data are generally provided little by little
and the property of data source could be changed as time passes.
Therefore, the learning of a system must also be conducted se-
quentially in an online fashion. This type of learning is called in-
cremental learning or continuous learning, and it has recently

Manuscript received January 23, 2006; revised January 11, 2007, February
26, 2007, and September 14, 2007; accepted October 12, 2007.

S. Ozawa is with the Graduate School of Engineering, Kobe University,
Nada-ku, Kobe 657-8501, Japan (e-mail: ozawasei@kobe-u.ac.jp).

S. Pang and N. Kasabov are with the Knowledge Engineering and Discovery
Research Institute (KEDRI), Auckland University of Technology, 1061 Auck-
land, New Zealand (e-mail: shaoning.pang@aut.ac.nz; nkasabov@aut.ac.nz).

Digital Object Identifier 10.1109/TNN.2007.2000059

received a great attention in many practical applications [26],
[30].

In pattern recognition and data mining, input data often have
a large set of attributes. Hence, the informative input variables
are first extracted before the classification is carried out. This
means that when constructing an adaptive classification system,
we should consider two types of incremental learning: one is
the incremental feature extraction, and the other is incremental
learning of classifiers. For this purpose, several incremental al-
gorithms have been independently developed for the feature ex-
traction and the classifier learning. As for the feature extrac-
tion, principal component analysis (PCA) and linear discrimi-
nant analysis (LDA) have been extended to an incremental ver-
sion [9], [20], [25], [27], [36]. Hall and Martin have devised
a smart method to update eigenvectors and eigenvalues incre-
mentally (i.e., the update of an eigenspace) called incremental
principal component analysis (IPCA) [9]. Recently, Ozawa et
al. have extended this IPCA algorithm such that an eigenaxis
is augmented based on the accumulation ratio in order to con-
trol the dimensionality of an eigenspace easily [21]. On the
other hand, Pang et al. [24] have proposed an incremental LDA
(ILDA) algorithm in which a between-class scatter matrix and a
within-class scatter matrix are incrementally updated, and then
the eigenaxes of a feature space are obtained by solving an
eigenproblem. Yan et al. [39] and Zhao et al. [41] have also
proposed different ILDA algorithms. As for classifier learning,
various incremental learning algorithms have been proposed for
neural networks [4], [5], [8], [12], [13], [34], support vector ma-
chine [7], [11], [29], decision tree [14], [33], [37], and so forth.
Memory-based learning approach is another promising solution
[1] where all (or a part) of training samples are accumulated
in memory and they are utilized for learning at every learning
step. The problem of this approach is that large memory ca-
pacity is often needed to store past training samples. To alleviate
this problem, several attempts have been made in which repre-
sentative samples are being selected and kept so that some of
them be added to the current training sample for learning [18],
[38]. Evolving clustering method (ECM) [15] also belongs to
this learning approach where prototype vectors are dynamically
created and updated.

Recently, we have proposed a new scheme of incremental
learning in which feature extraction and classifier learning
are simultaneously carried out online [21], [22], [25]. In our
previous work, IPCA or ILDA were adopted as feature extrac-
tion methods, and ECM or resource allocating network with
long-term memory (RAN-LTM) [18], [22] were adopted as
classifiers. A distinctive feature of the proposed scheme is that
the learning is conducted incrementally one pass; here, one pass

1045-9227/$25.00 © 2008 IEEE

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS

means that training samples are passed through a system only
once for learning purposes [15], [19]. One-pass incremental
learning is quite important and effective especially under the
environments where a system has to learn from a large-scale
data set with limited computational resources [i.e., central
processing unit (CPU) performance and memory]. It was
verified that the classification accuracy of the aforementioned
classification system was improved constantly even if a small
set of training samples were provided at a starting point [22],
[24]. However, some problems still remain for this approach.
The biggest problem is scalability. In our previous approach, a
training sample must be learned one by one even if a chunk of
training sample is available at a time. This causes inefficiency
in computations because the eigenvalue decomposition in IPCA
must be applied to each training sample in the chunk.

To solve this problem, we have proposed an extension
of IPCA [23] called chunk IPCA in which the update of an
eigenspace is completed by performing single eigenvalue
decomposition. For the same purpose, Hall et al. have already
proposed a method of merging eigenspace models incremen-
tally [10]. However, they have not clarified how to determine
new eigenaxes and their criterion on the axis augmentation
is still based on the norm of a residue vector whose proper
threshold could largely depend on the data sets used. In this
paper, we present a complete version of chunk IPCA [23] in
which an effective way to determine a set of new eigenaxes is
proposed and an update equation of the accumulation ratio to
determine the eigenaxis augmentation is derived. In addition,
we combine a simple classifier with chunk IPCA and evaluate
the classification performance for several large-scale data
sets to discuss the scalability of chunk IPCA under one-pass
incremental learning environments.

This paper is organized as follows. Section II gives a quick
review on the original IPCA. In Section III, we propose an ex-
tension of IPCA called chunk IPCA in which a chunk of training
samples is learned at a time and new eigenaxes are efficiently
selected based on the accumulation ratio. Then, we present a
one-pass incremental learning scheme in which chunk IPCA al-
gorithm is used for eigenspace learning and a naive approach to
prototype update is adopted as the learning of a simple nearest
neighbor classifier (NNC). In Section IV, the scalability of the
proposed incremental learning scheme is studied with seven
large-scale data sets. Section V summarizes this paper and dis-
cusses directions for further work.

II. INCREMENTAL PRINCIPAL COMPONENT ANALYSIS

PCA is one of the most popular and powerful feature extrac-
tion techniques. Since the original PCA is not suited for incre-
mental learning purposes, Hall and Martin have proposed IPCA
algorithm which can update eigenvectors and eigenvalues incre-
mentally [9]. Let us review IPCA briefly.

Assume that training samples
have been presented so far, and an eigenspace model

is constructed by calculating the eigenvec-
tors and eigenvalues from the covariance matrix of , where

is a mean vector of , is an matrix

whose column vectors correspond to eigenvectors, and is a
matrix whose diagonal elements correspond to nonzero

eigenvalues. Here, is the number of eigenaxes spanning the
eigenspace (i.e., eigenspace dimensionality).

Now, assume that the th training sample is
given. The addition of this new sample leads to the changes in
both mean vector and covariance matrix; therefore, the eigen-
vectors and eigenvalues should also be updated. The new mean
input vector is easily obtained as follows:

(1)

The problem is how to update the eigenvectors and eigenvalues.
When updating the eigenspace model , we need to check

if the eigenspace should be enlarged in term of dimensionality.
If the new sample includes almost all energy in the current
eigenspace, the dimensionality does not need to be changed.
However, if the eigenspace includes certain energy in the
complementary eigenspace, the dimensional augmentation is
needed, or crucial information on the new sample might be
lost. In the original IPCA, the judgment of the eigenspace
augmentation is made based on the norm of the following
residue vector :

(2)

where

(3)

Here, means the transposition of vectors and matrices. When
the norm of the residue vector is larger than a threshold value

,1 the dimensionality of the current eigenspace is increased
from to , and a new eigenaxis is added in the direction of

. Otherwise, the dimensionality of the eigenspace remains the
same. These operations are represented by the following:

if
otherwise.

(4)

Note that too large threshold would cause serious approxima-
tion error for eigenspace models.

It has been shown that the eigenvectors and eigenvalues are
updated by solving the following intermediate eigenproblem
[9]:

1) if there is a new eigenaxis to be added

(5)
2) otherwise

(6)

where , is a matrix whose column vectors cor-
respond to the eigenvectors obtained from the previous interme-
diate eigenproblem, and is a -dimensional zero vector. Here,

1In the original IPCA [9], � is set to zero.

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

OZAWA et al.: INCREMENTAL LEARNING OF CHUNK DATA FOR ONLINE PATTERN CLASSIFICATION SYSTEMS 3

and are the new eigenvalue matrices whose diagonal
elements correspond to and eigenvalues, respectively.
Using the solution , we can calculate the new
eigenvector matrix as follows:

1) if there is a new eigenaxis to be added

(7)

2) otherwise

(8)

From (7) and (8), intuitively we can consider that gives a
rotation from old eigenaxes to new ones; hence, let us call
rotation matrix here.

III. PROPOSED SCHEME FOR INCREMENTAL LEARNING

FROM CHUNKS OF DATA

A. Extended IPCA Algorithm for Chunk Data

As stated in Section I, the original IPCA is applied to a single
training sample at a time, and the intermediate eigenproblem
must be solved repeatedly for every training sample. There-
fore, the learning may get stuck in a deadlock if a large chunk
of training samples is given to learn in a short term. That is
to say, the next chunk of training samples could come before
the learning is finished if it takes a long time to update the
eigenspace.

To overcome this problem, we have extended the original
IPCA so that the eigenspace model can be updated with a
chunk of training samples in a single operation [23]. We call
this extended algorithm chunk IPCA and let us describe the al-
gorithm in the following sections.

1) Update of Eigenspace: Let us assume that training
samples have been given
so far and they were already discarded. Instead of keeping
actual training samples, we hold an eigenspace model

, where , , and are a mean
input vector, an eigenvector matrix, and a eigen-
value matrix, respectively. Now, assume that a chunk of
training samples is presented.2

Without the past training samples , we can update the mean
vector as follows:

(9)

Using (9), the new covariance matrix is given by

2The size of a chunk may often be different at every learning stage and we
usually cannot specify it. Although there is no limitation on the chunk size that
can be applicable to the proposed chunk IPCA, we can assume the chunk size
to be fixed for the simplicity of explanation.

(10)

Suppose that eigenaxes are augmented to avoid the serious
loss of essential information when a chunk of training samples

is provided; that is, the eigenspace dimensions are increased
by . Let us denote the augmented eigenaxes as follows:

(11)

Then, the updated eigenvector matrix is represented by
using the rotation matrix and the current eigenvector matrix

(12)

Hence, a new eigenproblem to be solved is given by

(13)
where is a new eigenvalue matrix. Substituting (9)–(11)
into (13), the following intermediate eigenproblem for Chunk
IPCA is obtained.

1) If there is a new eigenaxis to be added (i.e.,)

(14)

2) otherwise

(15)

where

Solving this intermediate eigenproblem, a new rotation matrix
and the eigenvalue matrix are obtained. Then, the cor-

responding new eigenvector matrix is given by (12).
2) Criterion for Eigenaxis Augmentation: As seen from (4), a

new eigenaxis is augmented when the norm of a residue vector

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS

is larger than a threshold value in the original IPCA. How-
ever, this is not a good criterion in practice because a suitable
threshold can be varied depending on the magnitude of input
values. If the threshold is too small, the dimensionality of a fea-
ture space could be excessively large and an efficient feature
space with small dimensions is hard to be constructed; this may
deteriorate both generalization performance and computational
efficiency. On the other hand, if the threshold is too large, essen-
tial information on training samples would be lost unexpectedly.

To reduce the dependency of the threshold on input values,
the following accumulation ratio is often used as a criterion:

(16)

where is the eigenvector matrix whose
column vectors span the -dimensional feature space,

is the eigenvalue of , and is the dimensionality of
the input space, respectively. In the proposed chunk IPCA, the
number of eigenaxes to be augmented is basically determined
by finding the minimum such that holds where
is a positive value between 0 and 1. To introduce this criterion
in the incremental learning scheme, we need an update equation
of (16) which can be calculated without the past training sam-
ples. In the learning algorithm, actually we need two types of
accumulation ratios. One is the accumulation ratio for the -di-
mensional eigenspace spanned by and the other is
that for the -dimensional augmented eigenspace spanned
by . The former accumulation ratio is used
for checking if the current -dimensional eigenspace should be
augmented or not. The latter one is used for checking if further
eigenaxes are needed for the -dimensional augmented
eigenspace.

First, let us calculate the updated accumulation ratio .
Considering the fact that the total energy of the training samples
in the new -dimensional eigenspace is not changed only by the
rotation of eigenaxes, the calculation of is replaced with
that of . In addition, using the fact that the total amount
of eigenvalues is equivalent to the summation of variances ,
the numerator of in (16) is reduced to

(17)

In (17), the new mean in the feature space is obtained from
(9) as follows:

(18)

Substituting (18) into (17), the numerator of (16) is given by

(19)

where . In the similar manner, the denomi-
nator of (16) is given by

(20)

Then, the update equation for the accumulation ratio is
given by

(21)

where and . To update ,
the summation of eigenvalues is required
to be retained. Hence, the individual eigenvalues

in the denominator of are not necessary for
this update.

Next, let us calculate , where .
Since the updated eigenspace spanned by has the same
dimensions as that spanned by , the following equa-
tion holds: . Then, the numerator of

is calculated as follows:

(22)

As seen from (22), the first term of the brackets includes the
past examples . Therefore, the exact calcu-
lation of the numerator term is impossible under the incremental
learning environment where training samples are supposed to be
discarded after learning. However, since the subspace spanned
by does not have large energy for the past examples, this
term could be ignored as long as the threshold is not too small.3

Then, the accumulation ratio is approximated to the
following:

(23)

3Even though individual fractions of lost energy are negligible, their accumu-
lation would affect the approximation error of an eigenspace model (see, also,
Section IV-E, for further discussion).

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

OZAWA et al.: INCREMENTAL LEARNING OF CHUNK DATA FOR ONLINE PATTERN CLASSIFICATION SYSTEMS 5

As seen from (21) and (23), we need no past sample and no
rotation matrix to update the accumulation ratio. Therefore,
this accumulation ratio is updated with the following informa-
tion: a chunk of given training samples ,
the eigenspace model , and a set of aug-
mented eigenaxes which is obtained by the procedure de-
scribed in the next section.

3) Selection of Eigenaxes: In IPCA, a new eigenaxis is se-
lected so as to be perpendicular to the existing eigenvectors
which are given by the column vectors of . A straightforward
way to get new eigenaxes is to apply Gram–Schmidt orthogonal-
ization technique to the given chunk of training samples [10]. If
the training samples are represented by linearly independent
vectors, the maximum number of eigenaxes to be augmented is

. However, the feature space spanned by all of the eigenaxes
is redundant in general; in addition, if the chunk size is large,
the computation costs to solve the intermediate eigenproblem
in (14) would be considerably expensive. Therefore, we need to
find a smallest set of eigenaxes without losing essential infor-
mation of the given training samples.

The problem of finding an optimal set of eigenaxes is stated
as follows.

Find the smallest set of eigenaxes
for the current eigenspace model
without keeping the past training samples such that
the accumulation ratio of the given training
samples is larger than a threshold .

Assume that we have a candidate set of augmented eigenaxes
. Because the denominator of (23) is con-

stant once the mean vector is calculated at each learning
stage, the increment of the accumulation ratio from to

is determined by the numerator terms. Thus, let us
define the following difference of the numerator
terms between and :

(24)

where

(25)
Equation (24) means that the increments of the accumulation
ratio are determined by the linear sum of . Therefore, to find
the smallest set of eigenaxes, first we find with the largest

, and put it into the set of augmented eigenaxes (i.e.,
and). Then, check if the accumulation ratio of

in (23) becomes larger than the threshold . If not, se-
lect with the second largest , and the same procedure is
repeated until is satisfied. This type of greedy al-
gorithm makes the selection of an optimal set of eigenaxes very

simple. The algorithm of the eigenaxis selection is summarized
in Algorithm 1.

Algorithm 1: Selection of Eigenaxes

Input:
• Eigenspace model .
• A chunk of training samples .
• Threshold of accumulation ratio.

Calculate the mean vector of the given training samples .

Calculate the accumulation ratio based on (21).

if then

terminate this algorithm.

end if

for to do

Obtain the following residue vectors using the th
training sample

where

(26)

end for

Define an index set of .

loop

Find the following residue vector which gives the
maximum increment in (25):

, , and .

if is empty then

terminate this algorithm.

end if

Calculate the updated accumulation ratio
based on (23).

if then

terminate this algorithm.

end if

end loop

Output: Set of augmented eigenaxes .

B. Update of Classifier

The update of a feature space by IPCA leads to the rotation
of eigenaxes and the dimensional augmentation. This means
that the inputs of a classifier change in not only their values

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS

but also the number of input variables. To learn a classifica-
tion system stably even in one-pass incremental learning en-
vironments where no past training sample is kept in memory,
we have proposed two classifier training approaches so far: one
is the training with a prototype-based classifier (ECM [15] plus

-NNC) [21], [24] and the other is the training with a neural net-
work classifier (RAN-LTM) [22]. In these approaches, the clas-
sification accuracy is determined not only by the performance
of feature extraction but also by that of classifier. Therefore, to
focus on the comparison of feature extraction methods, the clas-
sifier should be simple. In this paper, let us adopt an NNC with a
fixed number of prototypes which remove randomly from given
training samples.

For online classification purpose, the prototypes of
NNC must be updated to adapt to the new eigenspace

at every learning stage. This
can be done in a straightforward way. Assume that we keep a
set of reference vectors ,
where is the class label of . Then, the prototype vectors
of NNC are calculated by projecting to the eigenspace as
follows:

(27)

The class label is added to , and a set of prototypes are
defined as . Therefore, the
prototypes of NNC must be updated by projecting the reference
vectors in at every learning stage.

Since NNCs predict a class label by finding the nearest pro-
totype to a query, the training of an NNC is conducted only by
updating the prototypes based on (27). The algorithm of classi-
fier update is summarized in Algorithm 2.

Algorithm 2: Update of Classifier

Input:
• Eigenspace model .
• Reference vectors .

for to do

Calculate the prototype vectors based on (27).

end for

Output: Prototype set .

C. Training of Initial Eigenspace

Assume that a set of initial training samples
is given before the learning

gets started. To form an initial eigenspace model
, the conventional PCA is applied to .

However, before getting , we have to know a threshold of
the accumulation ratio. In many cases, a proper is unknown
and often depends on training data sets. For this purpose, the
cross-validation technique is often used.

First, we define the number of search points and the search
range . Then, the th search point is expressed by

(28)

To estimate the appropriateness of , we evaluate the classifi-
cation performance based on the leave-one-out cross validation.
Namely, training examples are picked for training and
the remaining one is used for test to evaluate the classification
accuracy. All the combinations of training sets are evaluated and
the classification accuracies are averaged over trials. Then,
the next search point is moved to . The same evaluation is
carried out until the final search point is evaluated. If several

’s have the same performance, the smallest one is selected as
.
After selecting the threshold , an initial eigenspace is calcu-

lated by applying PCA to all the training samples in . The
algorithm of the initial training is shown in Algorithm 3.

Algorithm 3: Training of Initial Eigenspace

Input:
• Initial training set .
• The number of search points.
• Search range .
• The number of prototypes.

for to do

Set the threshold of the accumulation ratio using (28).

Call Calculate Eigenspace to obtain the eigenspace
model of .

for to do

Set the query and .

Select samples randomly from as
reference vectors and put them into .

Call Update of Classifier to obtain the prototypes .

Call Classification to predict the class of .

end for

Evaluate the average classification accuracy.

end for

Find all the ’s that give the highest accuracy and put
them into a set .

Set the threshold as follows: .

Call Calculate Eigenspace to obtain the eigenspace model
of .

Output:
• Threshold of accumulation ratio .
• Eigenspace model .

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

OZAWA et al.: INCREMENTAL LEARNING OF CHUNK DATA FOR ONLINE PATTERN CLASSIFICATION SYSTEMS 7

Algorithm 4: Calculate Eigenspace

Input:
• Training set .
• Threshold of accumulation ratio.

Apply PCA to and obtain the eigenvectors
, whose eigenvalues

are sorted in decreasing order.

for to do

Calculate the accumulation ratio based on (16).

if then

exit the loop.

end if

end for

Calculate the mean vector of .

Output: Eigenspace model .

D. Proposed Incremental Learning Algorithm for Chunk Data

In usual situations, the online process of classification
and learning is conducted alternately. After constructing
an initial eigenspace model, whenever a set of queries

is given to a system, the classifica-
tion is conducted as shown in Algorithm 5.

Algorithm 5: Classification

Input:
• Query set .
• Eigenspace model .
• Prototype set .

for to do

Calculate the projection of the query to the
eigenspace using (27).

Obtain the class label as follows:
.

Set to the prediction of .

end for

Output: Prediction .

After the classification is over, all or a part of the queries
are used for training. Assume that of queries are selected4

and the class labels of the queries are provided by a supervisor.

4In some cases, only the queries that the classifier fails to classify might be
selected for training or sometimes all the queries might be used for training.

The pairs are put into a training set
, and the learning of an eigenspace and a classifier gets started.
The number of chunk training samples (i.e., the size of)

is generally changed at every learning stage in an online classi-
fication process. We should note that the proposed classification
system can work even for variable because there is no limita-
tion on the chunk size to be applied to the proposed chunk IPCA.
The main algorithm of learning and classification is summarized
in Algorithm 6.

Algorithm 6: Learning and Classification

Input:
• Chunk IPCA algorithm.
• Initial training set .
• The number of prototypes.
• The number of search points for threshold and search

range .

Initialization:
1) Call Training of Initial Eigenspace to obtain

the threshold and the initial eigenspace model
of .

2) .
3) Select training samples randomly from as

reference vectors and put them into a set .

loop // Prediction and Learning

Input: A new chunk of training samples
.

if then

select training samples randomly
from

put them into

.

end if

Call Update of Classifier to update the prototypes .

Call Classification to predict the class labels of
queries in .

Apply chunk IPCA to
1) Call Selection of Eigenaxes to obtain a matrix of

the augmented eigenaxes.
2) Solve an intermediate eigenproblem in (14) or (15)

to obtain a rotation matrix and an eigenvalue
matrix .

3) Update the mean vector and the eigenvector
matrix based on (9) and (12), respectively.

Update the eigenspace model as follows:

Output: Prediction .

end loop

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS

TABLE I
EVALUATED DATA SETS

Because we assume a continuous learning environment, the
learning in the previous algorithm never converges because a
chunk of training samples is successively provided to a system
forever. However, the convergence at each learning stage is
easily proved. The proposed learning algorithm has only one
conditional loop in Selection of Eigenaxes. This conditional
loop is repeated until the accumulation ratio becomes larger
than the threshold; however, the maximum repetition of this
loop is obviously which is equal to the number of residue
vectors . Therefore, when there is no more
residue vector to be added as an eigenaxis, the algorithm is
terminated.

IV. EXPERIMENTS

A. Experimental Setup

Table I shows the seven data sets for the evaluation of the pro-
posed chunk IPCA. To study on the scalability of the proposed
chunk IPCA, we choose large-scale data sets which have a large
number of data samples and/or attributes. The first six data sets
in Table I are selected from the University of California at Irvine
(UCI) Machine Learning Repository [32], and the last one is a
synthetic data set with 5000 attributes which is compiled from
six different microarray data sets. Each microarray data set is
provided as a two-class classification problem to diagnose NS
cancer, lymphoma, ovarian, leukemia, lung cancer, and breast
cancer. Since these six data sets have only 740 data in total, the
number of learning stages is very small when the chunk size is
large (e.g.,). Thus, we use additional 1480 data for
training and test which are generated from the original data by
adding white noise. Because “internet advertisement data set,”
“letter recognition data set,” “microarray data set,” “musk data
set,” and “spambase data set” are not divided into training and
test samples, we split them randomly into two halves, and the
first and the second subsets are used for training and test, re-
spectively. Although musk database includes two data sets in
the UCI repository, we select the larger one.

To construct an initial eigenspace, a part of training sam-
ples are applied to the conventional PCA. The rate of an ini-
tial data set is denoted by (in percent), which is changed from
0.1% to 20% to investigate the influence of the initial data set
size on the performance. The remaining (percent) of
training samples are sequentially provided to learn as shown in
Fig. 1. As stated in Section III-D, the proposed chunk IPCA

Fig. 1. Presentation of training samples in the assumed incremental learning
environments. At stage 0, an initial training set is given for initial training. For
the sake of simplicity, it is assumed that the same size of data chunk is given over
the following learning stages. A chunk of training samples is randomly selected
from a training data set and it has no overlap with other chunks; hence, all the
training samples are presented only once.

algorithm works even though any size of data chunk is given
at each learning stage. However, for the sake of simplicity, the
chunk size is fixed at a constant over the entire learning pe-
riod. In the experiment in Section IV-C, to study the influence of
chunk size on the performance, the constant is changed from
5 to 100; in the other experiments, is set to 5.

A chunk of training samples is randomly selected and it has
no overlap with other chunks; hence, all the training samples are
presented only once because we assume one-pass incremental
learning environments. Hence, the number of learning stages
is given by , where is the total number
of training samples. Note that the number of training samples
in the last chunk can be less than , and it is given by

. Since the performance of incremental learning
generally depends on the sequence of training samples, 20 trials
with different sequences of training samples are carried out to
evaluate the average performance for the test data sets in Table I.

In Algorithm 6, we need to specify the following four pa-
rameter values: , , , and . The number of prototypes

is set to where is the total number of training
samples. In the leave-one-out cross validation, the number

of searching points should be as large as possible and
the search range should be as broad as possible to
obtain an optimal threshold of accumulation ratio. In our
experiment, the following values are empirically given so that
the computation costs would not be too high: and

. The training samples are allocated
to the prototypes of the NNC on an ongoing basis until
reaches . To make a fair comparison, we give the
same prototypes for the three eigenspace models shown in the
next section.

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

OZAWA et al.: INCREMENTAL LEARNING OF CHUNK DATA FOR ONLINE PATTERN CLASSIFICATION SYSTEMS 9

TABLE II
COMPARISON OF AVERAGE CLASSIFICATION ACCURACY (PERCENT) FOR SEVEN DATA SETS WHEN THE PERCENTAGES p OF INITIAL TRAINING DATA ARE 0.5%
AND 5%. THE VALUES AFTER �MEAN THE STANDARD DEVIATIONS. THE CHUNK SIZE L IS FIXED AT 5 THROUGHOUT THE LEARNING STAGES. THE SINGLE

ASTERISK () AND THE DOUBLE ASTERISK () MEAN THAT THE AVERAGE DIFFERENCE FROM CHUNK IPCA IS STATISTICALLY SIGNIFICANT WITH 5% AND 1%
LEVEL, RESPECTIVELY. WHEN THE INITIAL DATA SET IS SMALL, IT IS CLEAR THAT THE UPDATE OF A FEATURE SPACE IS VERY EFFECTIVE. IN MOST CASES,
THERE IS NO SIGNIFICANT DIFFERENCE FROM BATCH PCA AND IPCA. THIS RESULTS MEANS THAT THE INCREMENTAL LEARNING OF A FEATURE SPACE IS

STABLY CARRIED OUT IN CHUNK IPCA. (A) RATE OF INITIAL DATA (p = 0.5%); (B) RATE OF INITIAL DATA (p = 5%)

B. Performance Comparison

The proposed chunk IPCA is evaluated through a comparison
with the following three eigenspace models.

1) Fixed Eigenspace: An eigenspace is obtained by applying
PCA to an initial training set , and it is fixed over the
entire learning stages. This eigenspace model is adopted to
see the usefulness of updating a feature space.

2) IPCA: An eigenspace model is incrementally updated by
the IPCA algorithm in which the criterion of dimensional
augmentation is based on the accumulation ratio [21].
The eigenspace model is updated with a single training
sample at a time even if the training samples are provided
in a chunk. The same threshold is used as that of chunk
IPCA which is determined through the leave-one-out cross
validation (see Algorithm 3 for details). Because the two
eigenspaces created by IPCA and chunk IPCA have sim-
ilar accumulation ratio, it is expected that these two give
similar classification accuracy. Therefore, a main purpose
of adopting IPCA is to evaluate the computation costs.

3) Batch PCA: An eigenfeature space is updated at every
learning stage by applying PCA to all the training sam-
ples given so far. The computation costs would be more
expensive than the incremental learning methods, but
an accurate eigenspace is always obtained. The dimen-
sionality of an eigenspace is set to the same value as the
proposed chunk IPCA. Therefore, the classification accu-
racy of this method gives a target value for the proposed
chunk IPCA.

Tables II and III, respectively, show the classification accu-
racy (percent) and the learning time (seconds) of the aforemen-
tioned three eigenspace models and the proposed chunk IPCA
when the rate of initial data is 1) 0.5% and 2) 5%. The
chunk size of training samples is fixed at 5 in the experiments

(i.e.,). As seen from Table II(a), the classification ac-
curacy of the fixed eigenspace model is inferior to other models
when only a small part of training samples (0.5%) are given
at a starting point. Moreover, for all of the evaluated data sets,
there is statistical significance in the average difference between
fixed eigenspace and chunk IPCA with 1% level. This result sug-
gests that the features selected from the initial training samples
were inappropriate to classify the remaining training samples
correctly; therefore, we can say that it is effective to update the
feature space to adapt to the change of data distributions. On the
other hand, however, we cannot recognize clear difference be-
tween fixed eigenspace and chunk IPCA in Table II(b) except
for microarray data set. This result means that 5% of training
samples are enough to construct an effective eigenspace for the
large-scale data sets. However, we should note that the impor-
tance of incremental learning is not lost because we cannot know
in advance whether an initial data set includes the whole infor-
mation on training samples given in future.

On the other hand, there is no significant difference in the
classification accuracy between IPCA and chunk IPCA. This is
not a surprising result because the same threshold of the accu-
mulation ratio is given to these two methods in our experiments;
therefore, the eigenspaces generated by these two methods tend
to have similar dimensionality. This means that the eigenspaces
hold the same amount of information on training samples. Com-
paring with batch PCA, the proposed chunk IPCA has a little
lower classification accuracy; however, the difference is not sig-
nificant except for isolet. This means that the proposed method
ensures the quasi-optimality in the construction of eigenspaces
without keeping past training samples.

The computation costs of the eigenspace update are estimated
by measuring the CPU time (seconds) using a Matlab func-
tion cputime. The computers used in the evaluation have twin
Intel Xeon(TM) CPU 3.20 GHz and 2-GB RAM. As seen from
Table III(a) and (b), the computation costs of chunk IPCA are

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS

TABLE III
COMPARISON OF AVERAGE LEARNING TIME (SECONDS) FOR SEVEN DATA SETS WHEN THE PERCENTAGES p OF INITIAL TRAINING DATA ARE 0.5% AND 5%. THE

CHUNK SIZE L IS FIXED AT 5 THROUGHOUT THE LEARNING STAGES. THE VALUES AFTER �MEAN THE STANDARD DEVIATIONS. THE COMPUTATION COSTS OF

CHUNK IPCA ARE SIGNIFICANTLY REDUCED AGAINST BOTH IPCA AND BATCH PCA. (A) RATE OF INITIAL DATA (p = 0.5%); (B) RATE OF INITIAL DATA (p = 5%)

significantly reduced against both IPCA and batch PCA espe-
cially for large-scale data sets.5 The experimental results here in-
dicate that the proposed method possesses excellent scalability
in learning time without sacrificing classification accuracy.

C. Influence of Chunk Size

Fig.2 (a) and (b), respectively, shows the classification accu-
racy of chunk IPCA at the final learning stage and the learning
time when training samples are provided in various chunk size

. Because the actual learning time is quite different depending
on the evaluated data sets, we introduce the relative CPU time
which is normalized by the CPU time for . As seen from
Fig. 2 (a), we simply say that the classification accuracy is not
affected by the chunk size.

On the other hand, as seen from Fig. 2 (b), the learning time
is largely affected by . For the data sets with a fairly small
number of attributes (adult, letter, spambase, musk, and isolet),
the learning time is prone to be shortened as the chunk size be-
comes large. This reduction in computation time mainly comes
from the decrease in the repetition times of solving intermediate
eigenproblems. For the data sets with many attributes (advertise-
ment and microarray), however, the relative CPU time grows as
the chunk size increases.

To understand this result, let us study on the computational
complexity of chunk IPCA. The learning algorithm of chunk
IPCA is mainly composed of the following operations: the se-
lection of eigenaxes and the solving of eigenproblems. Table IV
shows the computational complexity of the two operations in
chunk IPCA when training data are provided.

In Table IV, means the number of augmented eigenaxes. In
the worst case, could be close to the chunk size ; then, the
computational complexity of the eigenaxis selection is roughly
reduced to because is also considered to be in
the worst case. On the other hand, the computational complexity
of solving eigenproblem is . Therefore, in the situation
where many eigenaxes are augmented, the operation in chunk
IPCA is dominated by eigenaxis selection and its computational

5As will be shown in Section IV-C, if the chunk size is large, sometimes chunk
IPCA needs more learning time than IPCA for high-dimensional data sets.

costs are serious when the number of attributes is very large.
This is the explanation about the results of advertisement and
microarray data sets in Fig. 2 (b).

One of the reasons why many eigenaxes are augmented is that
an inappropriate threshold value is chosen in the parameter
selection (i.e., unnecessarily large is selected). However, the
performance of the parameter selection generally depends on
how good initial training data are selected and this cannot be
controlled by a learning system. This property has to be noticed
when chunk IPCA is applied to high-dimensional data sets.

The results of advertisement and microarray data sets in
Fig. 2 (b) demonstrate a limitation of the proposed chunk IPCA
for high-dimensional data sets. However, in real situations, this
problem can be alleviated by setting a smaller (chunk size)
in chunk IPCA than the actual chunk size of given data. For
example, even if 100 samples are given in a chunk, can be set
to 10 in chunk IPCA by splitting the given chunk of 100 data
into ten small chunks; that is, we can perform chunk IPCA with

ten times for the given chunk instead of performing
chunk IPCA with . By doing this, the total learning
time would significantly be reduced for microarray dataset. As
seen from Fig. 2 (b), the training would be at least two times
faster than performing chunk IPCA with . Therefore,
from the practical point of view, the parameter should be set
to a small value (e.g., 5 or 10) for the high-dimensional data
like advertisement and microarray data sets.

D. Influence of Initial Data Size

Fig. 3 (a) and (b), respectively, shows the classification accu-
racy of chunk IPCA and fixed eigenspace for different rates of
initial data. The classification accuracy is evaluated after all the
training samples are learned, and the size of chunk data is fixed
at 5.

As seen from Fig. 3 (a), the classification accuracy of chunk
IPCA is very stable for any size of initial training samples. On
the contrary, the results in Fig. 3 (b) demonstrate that the clas-
sification accuracy for a small size of initial training samples is
seriously deteriorated if the eigenspace is not update over the
training period. For most of the data sets, it seems that at least

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

OZAWA et al.: INCREMENTAL LEARNING OF CHUNK DATA FOR ONLINE PATTERN CLASSIFICATION SYSTEMS 11

Fig. 2. Comparisons of (a) classification accuracy at the final learning stage and
(b) relative CPU time of chunk IPCA for the seven data sets when the chunk size
L is set to 5, 10, 20, 50, and 100. The classification accuracy is almost indepen-
dent of L. On the other hand, the relative CPU time (learning time) is largely
affected by L. For the data sets with a fairly small number of attributes (adult,
letter, spambase, musk, and isolet), the learning time is prone to be shortened as
the chunk size becomes large. For the data sets with many attributes (advertise-
ment and microarray), however, the relative CPU time grows as the chunk size
increases.

TABLE IV
COMPUTATIONAL COMPLEXITY OF CHUNK IPCA TO LEARN A CHUNK OF

L TRAINING SAMPLES. HERE, n, k, AND l ARE THE NUMBER OF INPUT

ATTRIBUTES, THE DIMENSION OF THE CURRENT EIGENSPACE, AND THE

NUMBER OF AUGMENTED EIGENAXES, RESPECTIVELY

5% of training samples are necessary for attaining good classi-
fication performance even if the eigenspace is fixed. However,
for the microarray data set, the classification accuracy of fixed
eigenspace is lower than that of chunk IPCA even if 20% of
training samples are given at a starting point.

These results demonstrate that chunk IPCA can stably im-
prove the accuracy of a classification system to a satisfied level

Fig. 3. Classification accuracy of (a) chunk IPCA and (b) fixed eigenspace
when different sizes of initial training samples are given at a starting point.
Fairly constant accuracy is obtained for chunk IPCA independent of the rate
of initial data, while the accuracy of fixed eigenspace is seriously degraded for
small initial data sets.

from any starting point. This property is very effective and im-
portant as an incremental learning system.

E. Accuracy of Updated Eigenvectors

To see whether an appropriate feature space is constructed by
chunk IPCA, the similarity of eigenvectors obtained by batch
PCA and chunk IPCA is examined. The similarity is measured
by the following directional cosine :

(29)

where and are, respectively, the th eigenvector ob-
tained by batch PCA and chunk IPCA in the th trial, and
is the number of trials to average the similarity. Note that

and are unit vectors. Obviously, if the similarity is one, it
means two eigenvectors are identical.

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS

Fig. 4. Average similarity between eigenvectors obtained by batch PCA and
chunk IPCA for the seven data sets in Table I when the chunk size is fixed at
L = 5 and the rate of initial data sets is set to p = 5%. The similarity is
maintained at above 0.9 for the first eight major eigenvectors except for spam
data set.

Fig. 4 shows the average similarity between the eigenvectors
obtained by batch PCA and chunk IPCA for the seven data sets
in Table I. The chunk size is fixed at and the rate of initial
data sets is set to 5%. The horizontal axis corresponds to
the eigenvector number.

From the results in Fig. 4, we can see that the similarity
is maintained at above 0.9 for the first eight major eigenvec-
tors except for spam data set. As for adult, isolet, and letter
data sets, about 20 major eigenvectors are exactly obtained by
chunk IPCA. Fig. 5 shows the distribution of the normalized
eigenvalues for the major 20 eigenvectors. Here, the th nor-
malized eigenvalue is defined as the eigenvalue of the th eigen-
vector normalized by the sum of all the eigenvalues. As seen
from Fig. 5, the normalized eigenvalues are going down quickly
below 0.1 after around the fifth major eigenvector. From the re-
sults in Figs. 4 and 5, we can say that the proposed chunk IPCA
gives a fairly good approximation to major eigenvectors with
large eigenvalues.

On the other hand, the approximation to minor eigenvectors,
whose normalized eigenvalues are almost zero in Fig. 5, have
large errors. The primary reasons for this is originated from
the approximation error introduced in the derivation of the in-
termediate eigenproblem in (14) and the accumulation ratio in
(23). The cumulative effect of this approximation error could
be small if the threshold of the accumulation ratio was pro-
vided properly. However, it is not easy to know a proper value
of even though the leave-one-out cross validation is intro-
duced into the parameter selection. In the one-pass learning
situation assumed here, training samples are discarded imme-
diately after the learning is finished at every stage. Therefore,
if the distribution of training samples is largely varied from
that in the past, some crucial information might be lost during
learning, and the loss would prevent from constructing an effec-
tive eigenspace. To overcome this problem, we could introduce
an adaptive mechanism for selecting . However, currently, the
approximation error for minor eigenvectors does not affect the

Fig. 5. Average eigenvalues of the major 20 eigenvectors. The ith normalized
eigenvalue is defined as the eigenvalue of the ith eigenvector normalized by the
sum of all the eigenvalues. The normalized eigenvalues are going down quickly
below 0.1 after around the fifth major eigenvector.

classification accuracy as far as we can see from the results in
Table II. Therefore, this problem is left as our future work.

V. CONCLUSION AND FUTURE WORK

In our previous works [21], [24], we have proposed an adap-
tive evolving connectionist model in which IPCA and ECM
are effectively combined. This learning scheme gives a new
concept for pattern recognition systems; that is, feature extrac-
tion and classifier learning are simultaneously carried out on-
line. One drawback of this approach was scalability in terms of
the number of samples and the number of their attributes. This
drawback comes from the limitation of the previous approach
where a training sample must be applied one by one even if a
chunk of training sample is given at a time.

To overcome this problem, we also have proposed a new
method called chunk IPCA [23], in which a chunk of training
samples can be applied at a time to update an eigenspace
model incrementally. In addition, we extended the incremental
learning of a classifier such that it can also be learned with
a chunk of training samples. This paper presents a practical
algorithm of eigenaxis selection in chunk IPCA based on the
accumulation ratio, and we give a complete form of an online
classification system in which the incremental learning of
an eigenspace and a simple NNC is simultaneously carried
out under one-pass learning environments. This brings us an
efficient way to learn a system in terms of computations and
memory.

To evaluate the scalability and the learning efficiency of the
proposed chunk IPCA, we tested the seven large-scale data sets
with a large number of data samples and attributes. The ex-
perimental results suggested that the proposed learning scheme
worked quite well even if training samples were provided in any
size of chunks at a time. That is to say, the chunk size does
not affect the final classification accuracy of the system and the
learning time can be shortened for large chunk data unless the
number of attributes is too large. Furthermore, we investigated

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

OZAWA et al.: INCREMENTAL LEARNING OF CHUNK DATA FOR ONLINE PATTERN CLASSIFICATION SYSTEMS 13

the influence of initial data size, and the results demonstrate that
chunk IPCA can stably improve the accuracy of a classification
system to a satisfied level from any starting point. Finally, we ex-
amined the approximation error of the eigenvectors. As a result,
chunk IPCA learned major eigenvectors without serious errors,
while minor eigenvectors had large errors. However, as far as we
can see from the experimental results, the error for minor eigen-
vectors does not affect the classification accuracy seriously.

There still remains further work to be done. First, as described
in Section IV-E, the approximation error to minor eigenvec-
tors may prevent from constructing an effective eigenspace if
the sample distributions were largely varied over time. This
can be alleviated by introducing an adaptive mechanism for
the threshold of accumulation ratio. Second, the system per-
formance can be greatly enhanced by introducing ILDA [25]
as feature extraction and by introducing other powerful clas-
sifiers such as neural networks [22] and support vector ma-
chine. Therefore, pursuing the optimal combination of the fea-
ture space learning and the classifier learning is another inter-
esting topic. Third, PCA and LDA transform inputs into linear
features, and these features are not always effective for classi-
fication purposes. Recently, kernel PCA and kernel LDA were
widely noticed as high-performance feature extraction methods
[2], [28], [40]; hence, the extension of incremental learning ap-
proach to kernel PCA and kernel LDA is very promising. One
application of the proposed method is in online learning robotic
systems, where the robots reevaluate online the input informa-
tion and select the most appropriate features for the time [17].
Another application of the proposed method is in computational
neurogenetic modeling, where new EEG data is added incre-
mentally and a gene-regulatory network of relevant genes is de-
rived to optimize a matching fitness function between the model
and the data [3]. Challenging the aforementioned open questions
and pursuing the directions to new application areas are left as
our future work.

ACKNOWLEDGMENT

The authors would like to thank Prof. S. Abe for his helpful
discussions. They would also like to thank the reviewers for
their constructive comments and suggestions that improved this
paper.

REFERENCES

[1] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning,” Artif. Intell. Rev., vol. 11, pp. 75–113, 1997.

[2] G. Baudat and F. Anouar, “Generalized discriminant analysis using a
kernel approach,” Neural Comput., vol. 12, pp. 2385–2404, 2000.

[3] L. Benuskova and N. Kasabov, Computational Neurogenetic Mod-
eling. NY: Springer-Verlag, 2007.

[4] G. A. Carpenter and S. Grossberg, “The ART of adaptive pattern recog-
nition by a self-organizing neural network,” IEEE Computer, vol. 21,
no. 3, pp. 77–88 , Mar. 1988.

[5] D. Chakraborty and N. R. Pal, “A novel training scheme for multi-
layered perceptrons to realize proper generalization and incremental
learning,” IEEE Trans. Neural Netw., vol. 14, no. 1, pp. 1–14, Jan. 2003.

[6] O. Déniz, M. Castrillón, J. Lorenzo, and M. Hernández, “An in-
cremental learning algorithm for face recognition,” in Biometric
Authentication, M. Tistarelli, J. Bigun, and A. K. Jain, Eds. New
York: Springer-Verlag, 2002, pp. 1–9.

[7] C. P. Diehl and G. Cauwenberghs, “SVM incremental learning, adap-
tation and optimization,” in Proc. Int. Joint Conf. Neural Netw., 2003,
vol. 4, pp. 2685–2690.

[8] H.-C. Fu, Y.-P. Lee, C.-C. Chiang, and H.-T. Pao, “Divide-and-con-
quer learning and modular perceptron networks,” IEEE Trans. Neural
Netw., vol. 12, no. 2, pp. 250–263, Mar. 2001.

[9] P. Hall and R. Martin, “Incremental eigenanalysis for classification,”
in Proc. British Mach. Vis. Conf., 1998, vol. 1, pp. 286–295.

[10] P. Hall, D. Marshall, and R. Martin, “Merging and splitting eigenspace
models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 9, pp.
1042–1049, Sep. 2000.

[11] J.-H. Hong and S.-B. Cho, “Incremental support vector machine for un-
labeled data classification,” in Proc. 9th Int. Conf. Neural Inf. Process.,
2002, vol. 3, pp. 1403–1407.

[12] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “An efficient se-
quential learning algorithm for growing and pruning RBF (GAP-RBF)
networks,” IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 34, no. 6,
pp. 2284–2292, Dec. 2004.

[13] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation
using incremental constructive feedforward networks with random
hidden nodes,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892,
Jul. 2006.

[14] D. Kalles and T. Morris, “Efficient incremental induction of decision
trees,” Mach. Learn., vol. 24, no. 3, pp. 231–242, 1996.

[15] N. Kasabov, Evolving Connectionist Systems: Methods and Applica-
tions in Bioinformatics, Brain Study and Intelligent Machines. New
York: Springer-Verlag, 2002.

[16] N. Kasabov and Q. Song, “DENFIS: Dynamic evolving neuro-fuzzy
inference system and its application for time-series prediction,” IEEE
Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144–154, Apr. 2002.

[17] N. Kasabov, Evolving Connectionist Systems: The Knowledge Engi-
neering Approach. London, U.K.: Springer-Verlag, 2007.

[18] M. Kobayashi, A. Zamani, S. Ozawa, and S. Abe, “Reducing compu-
tations in incremental learning for feedforward neural network with
long-term memory,” in Proc. Int. Joint Conf. Neural Netw., 2001, vol.
3, pp. 1989–1994.

[19] H. G. Loos, “Parity madeline: A neural net with complete boolean
repertoire capable of one-pass learning,” in Proc. Int. Joint Conf.
Neural Netw., 1989, vol. 2, pp. 111–118.

[20] E. Oja and J. Karhunen, “On stochastic approximation of the eigenvec-
tors and eigenvalues of the expectation of a random matrix,” J. Math.
Anal. Appl., vol. 106, pp. 69–84, 1985.

[21] S. Ozawa, S. Pang, and N. Kasabov, “A modified incremental principal
component analysis for on-line learning of feature space and classi-
fier,” in PRICAI 2004: Trends in Artificial Intelligence LNAI, C. Zhang,
H. W. Guesgen, and W. K. Yeap, Eds. New York: Springer-Verlag,
2004, pp. 231–240.

[22] S. Ozawa, S. L. Toh, S. Abe, S. Pang, and N. Kasabov, “Incremental
learning of feature space and classifier for face recognition,” Neural
Netw., vol. 18, no. 5–6, pp. 575–584, 2005.

[23] S. Ozawa, S. Pang, and N. Kasabov, “An incremental principal com-
ponent analysis for chunk data,” in Proc. IEEE Int. Conf. Fuzzy Syst.,
2006, pp. 2278–2285.

[24] S. Pang, S. Ozawa, and N. Kasabov, “One-pass incremental member-
ship authentication by face classification,” in Biometric Authentication,
D. Zhang and A. K. Jain, Eds. New York: Springer-Verlag, 2004, Lec-
ture Notes in Computer Science, pp. 155–161.

[25] S. Pang, S. Ozawa, and N. Kasabov, “Incremental linear discriminant
analysis for classification of data streams,” IEEE Trans. Syst. Man Cy-
bern. B, Cybern., vol. 35, no. 5, pp. 905–914, Oct. 2005.

[26] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: An in-
cremental learning algorithm for supervised neural networks,” IEEE
Trans. Syst. Man Cybern. C, Human Syst., vol. 31, no. 4, pp. 497–508,
Aug. 2001.

[27] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear
feedforward neural network,” Neural Netw., vol. 2, no. 6, pp. 459–473,
1989.

[28] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component
analysis as a kernel eigenvalue problem,” MPI Tech. Rep. 44, 1996.

[29] A. Shilton, M. Palaniswami, D. Ralph, and A. C. Tsoi, “Incremental
training of support vector machines,” IEEE Trans. Neural Netw., vol.
16, no. 1, pp. 114–131, Jan. 2005.

[30] S. Thrun and L. Pratt, Learning to Learn. Norwell, MA: Kluwer,
1998.

[31] S. L. Toh and S. Ozawa, “A face recognition system using neural net-
works with incremental learning ability,” in Proc. 8th Australian/New
Zealand Conf. Intell. Inf. Syst., 2003, pp. 389–394.

[32] University of California at Irvine, Machine Learning Repository,
Irvine, CA [Online]. Available: http://www.ics.uci.edu/~mlearn/ML-
Repository.html

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS

[33] P. E. Utgoff, “Incremental induction of decision trees,” Mach. Learn.,
vol. 4, no. 2, pp. 161–186, 1989.

[34] S. Wan and L. E. Banta, “Parameter incremental learning algorithm
for neural networks,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp.
1424–1438, Nov. 2006.

[35] J. Weng, C. H. Evans, and W.-S. Hwang, “An incremental learning
method for face recognition under continuous video stream,” in Proc.
4th IEEE Int. Conf. Autom. Face Gesture Recognit., 2000, pp. 251–256.

[36] J. Weng, Y. Zhang, and W.-S. Hwang, “Candid covariance-free in-
cremental principal component analysis,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 25, no. 8, pp. 1034–1040, Aug. 2003.

[37] J. Weng and W.-S. Hwang, “Incremental hierarchical discriminant re-
gression,” IEEE Trans. Neural Netw., vol. 18, no. 2, pp. 397–415, Mar.
2007.

[38] K. Yamauchi, N. Yamaguchi, and N. Ishii, “Incremental learning
methods with retrieving of interfered patterns,” IEEE Trans. Neural
Netw., vol. 10, no. 6, pp. 1351–1365, Nov. 1999.

[39] J. Yan, Q.-S. Cheng, Q. Yang, and B. Zhang, “An incremental subspace
learning algorithm to categorize large scale text data,” in Prof. 7th Asia-
Pacific Web Conf., 2005, pp. 52–63.

[40] M. Yang, “Kernel eigenfaces vs. kernel fisherfaces: Face recognition
using kernel methods,” in Proc. IEEE Int. Conf. Autom. Face Gesture
Recognit., 2002, pp. 215–220.

[41] H. Zhao, P. C. Yuen, and J. T. Kwok, “A novel incremental principal
component analysis and its application for face recognition,” IEEE
Trans. Syst. Man Cybern. B, Cybern., vol. 36, no. 4, pp. 873–886, Aug.
2006.

Seiichi Ozawa (M’02) received the B.E. and M.E.
degrees in instrumentation engineering and the Ph.D.
degree in computer science from Kobe University,
Kobe, Japan, in 1987, 1989, and 1998, respectively.

Currently, he is an Associate Professor at the Grad-
uate School of Engineering, Kobe University. From
2005 to 2006, he was a Visiting Researcher at Ari-
zona State University, Tempe. His primary research
interests include neural networks, machine learning,
intelligent data processing, and pattern recognition.

Dr. Ozawa is a member of the International
Neural Network Society (INNS), the Institute of Electrical Engineers of Japan
(IEEJ), the Institute of Electronics, Information and Communication Engineers
(IEICE), the Society of Instrument and Control Engineers (SICE), and the
Institute of Systems, Control and Information Engineers (ISCIE).

Shaoning Pang (M’04–SM’05) received the B.Sc.
degree in physics and the M.Sc. degree in electronic
engineering from Xinjiang University, China, in 1994
and 1997, respectively, and the Ph.D. degree in com-
puter science from Shanghai Jiao Tong University,
China, in 2000.

From 2001 to 2003, he was a Research Associate
at the Pohang University of Science and Tech-
nology (POSTECH), South Korea. Currently, he
is a Permanent Senior Research Fellow at Knowl-
edge Engineering and Discovery Research Institute

(KEDRI), Auckland University of Technology, Auckland, New Zealand. His
research interests include support vector machine (SVM) aggregating intelli-
gence, incremental machine learning, bioinformatics, and neural computing
for industrial applications.

Dr. Pang has been serving as a Program Member and Session Chair for sev-
eral international conferences including International Symposium on Neural
Networks (ISNN), International Conference on Neural Information Processing
(ICONIP), and International Conference on Neural Networks and Signal Pro-
cessing (ICNNSP). He was a best paper winner of the 2003 IEEE ICNNSP and
an invited speaker of BrainIT 2007. He is currently acting as a regular paper
reviewer for a number of refereed international journals and conferences. He is
a Member of the Institute of Electronics, Information, and Communication En-
gineers (IEICE) and Association for Computing Machinery (ACM).

Nikola Kasabov (SM’97) received the M.Sc. degree
in computer science and engineering, the M.Sc. de-
gree in applied mathematics, and the Ph.D. degree in
mathematical sciences from the Technical University
of Sofia, Sofia, Bulgaria, in 1971, 1972, and 1975, re-
spectively.

Currently, he is the Founding Director and the
Chief Scientist of the Knowledge Engineering and
Discovery Research Institute (KEDRI) and the
Chair of Knowledge Engineering at the School of
Computing and Mathematical Sciences at Auckland

University of Technology, Auckland, New Zealand. He has worked at the
University of Otago, New Zealand; University of Essex, U.K.; University
of Trento, Italy; Technical University of Sofia, Bulgaria; University of Cal-
ifornia at Berkeley, CA; RIKEN Brain Science Institute, Tokyo, Japan; and
TU Kaiserslautern Germany. He has published more than 400 publications,
which include 12 books and 28 patents. His main research interests are in the
areas of: evolving connectionist systems, neurocomputing, soft computing,
bioinformatics, brain study, speech and image processing, and novel methods
for data mining and knowledge discovery.

Dr. Kasabov is a Fellow of the Royal Society of New Zealand and the New
Zealand Computer Society. He is a Vice President of the International Neural
Network Society (INNS), and the President of the Asia Pacific Neural Network
Assembly (APNNA). He is an Associate Editor of the IEEE TRANSACTIONS

ON NEURAL NETWORKS, the IEEE TRANSACTIONS ON FUZZY SYSTEMS, Neural
Networks, and other journals. He has chaired a series of artificial neural net-
works, expert systems, and evolving intelligence conferences in New Zealand
since 1993.

Authorized licensed use limited to: Seiichi Ozawa. Downloaded on October 21, 2008 at 22:20 from IEEE Xplore. Restrictions apply.

