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We investigate a gap-formation mechanism of the one-dimensional Kondo-necklace model at zero tempera-
ture. An analytic treatment using the bosonization method shows that the model undergoes the Kosterlitz-
Thouless transition at the critical coupling J.=0, which is described by the quantum sine-Gordon model. This
result is contrary to the previous investigations on the ground-state phase transition, where some finite critical
coupling values have been predicted. To clarify the validity of our analytic calculation result, we estimate the
singlet-triplet gap by employing White’s density matrix renormalization group method; the numerical calcula-
tion is carried out for the systems up to 200 sites with open boundary condition. As a result, we find that the
excitation gap observed in the large J region becomes smaller quickly with the decrease of J. However, the
data show the existence of a small gap for J=0.25, which seems to support J_.=0.

So far, the intensive studies on the valence fluctuation and
heavy fermion systems have been performed using both ana-
lytic and numerical approaches, where the periodic Anderson
model is generally considered to be a canonical one for de-
scribing a variety of properties observed in the Ce and ac-
tinide compounds.! In the model, there are two kinds of elec-
trons: the well-localized f electrons and the propagating
Bloch electrons; we have expected that the quite different
physical phases observed in such compounds should be un-
derstood consistently in the context of the interaction effects
between these two kinds of electrons.

When the energy level of f orbits lies deep in the Fermi
sea and at the same time the Coulomb repulsion force
strongly suppresses the double occupancy of f orbits (i.e., in
the Kondo limit), the f-electron charge degrees of freedom
are quenched. Then, the system is described by the Kondo
lattice model

HKL= —t z
(I,m)o

(clyemg+ He ) +I 2 Spsi, (1)
where the f electrons are reduced to the magnetic moments
S, and they are coupled with the spin components of conduc-
tion electrons s;. The Kondo lattice model is also a standard
one for the compounds in the Kondo regime: there has been
a great amount of investigations, where the 1/N expansion
and the slave boson methods or Gutzwiller-type variational
approaches are often employed.>"® Moreover, for one-
dimensional systems, numerical techniques such as the quan-
tum Monte Carlo simulation and exact diagonalization meth-
ods are also powerful tools and allow us to investigate the
models without any approximations.’~ 1

Focusing on the magnetic aspect. Doniach!! has pointed
out that the model at the half-filling possesses a competition
between the antiferromagnetically ordered state arising from
the Ruderman-Kittel-Kasuya-Yoshida interaction and the
nonmagnetic Kondo singlet state. Further, for the aim of in-
vestigating the competition problem, they have carried out a
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drastic simplification of the Kondo lattice model by neglect-
ing conduction electron charge degrees of freedom and intro-
duced so-called Doniach Kondo-necklace model

Hn=W 2 (T + 7 m)+J 2 S 7, (2)
(I,m) 1

where 7; and S; are the quantum spin operators of length
1/2.1 The XY-coupling term imitates the usual band energy
of the conduction electrons, and the second term represents
the Kondo exchange coupling. In the following, we use the
nearest-neighbor hopping amplitude W as the unit of energy,
and thus the Kondo coupling J is only the model parameter.

In this paper, we will discuss the ground-state properties
of the one-dimensional Kondo-necklace; the gap formation is
mainly argued using both the bosonization method!? and
White’s density-matrix renormalization-group (DMRG) cal-
culation technique.!® The former analytic method has been
successfully applied to one-dimensional quantum systems.
Following the standard procedure, we construct the phase
Hamiltonian of the Kondo necklace, and then we calculate
the excitation gap, using the self-consistent harmonic ap-
proximation method.’* On the other hand, the DMRG
method, which was recently proposed by White, has
achieved great improvements in the efficiency of the numeri-
cal renormalization-group calculation by utilizing the infor-
mation of the reduced density matrix for a physical system
combined with a proper environment.!> As a result, the con-
vergency of the data against the number of states (m) kept in
the DMRG transformation is remarkably accelerated; a
ground state and lower excited states are accurately investi-
gated. In the latter part of this paper, we shall show the
DMRG calculation data on the singlet-triplet gap, which
should be properly reflecting the gap formation of the Kondo
necklace: G(J,N)=E(J,N;1)—E(J,N;0) [E(J,N;M) is
the ground-state energy in the sector of a given total S*=M]
and argue the validity of our prediction from the bosoniza-
tion calculation.
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We start with constructing the phase Hamiltonian of the
Kondo necklace, which may present some significant insight
into the gap formation mechanism. For this aim, we use
Schulz’s method by which the one-dimensional S =1 Heisen-
berg system was transformed to the model described by two
kinds of bosonic fields.!> Actually, in the recent study on the
§'=1/2 quantum Heisenberg ladder with which the necklace
model possesses a similar structure, the ground-state phase
diagram was discussed on the basis of the Wilson’s
renormalization-group treatment of the phase Hamiltonian. '
Here, we only outline the procedure to obtain the phase
Hamiltonian; for a more detailed explanation, see Refs. 15
and 16. First of all, two kinds of spins {S,7} are transformed
into fermion operators by the Jordan-Wigner transformation.
Then, the continuum limit is taken and the dispersion is lin-
earized at Fermi points. For each fermion, the left- and right-
going branches are separated by introducing two kinds of
fermion fields. And then, according to the bosonization pro-
cedure, the fermion system may be properly described by the
density operators (bosons) of the fermion fields. Finally, tak-
ing the appropriate linear combination of the bosonic fields
so as to get the decoupled form for the Kondo coupling part,
we obtain the expression of the phase Hamiltonian,
H o =H s+ HpsgtHross as follows:

H L dx CTI12+D (3, % )*+Y V8w .}, (3
QG5 X 1 1o cos{ i} )

1
HDSG=E f dx CH22+D2(§x‘I’2)2+Y COS{\/g\Pz}

+Y cos{vV2wX,}, C))
and
1 a
Hcross:'z— f dx WaH1H2+; (0, ¥1)(3,¥,), &)
where I, (x)=d.X,(x) and [V (x), T g(»)]

=18, gd(x—y). The coefficients in the Hamiltonian are de-
termined by the Kondo coupling parameter J and the lattice
constant a as C=mal2, D, ,=(1/2xJ/m)a/w, and Y=
—J/a. Here the field operators were shifted appropriately to
keep the coefficient Y minus (cf. Ref. 16).

If the original Hamiltonian Hyy includes the nearest-
neighbor XY coupling, i.e., S7S7,1+S}S7;, the cross term
H_.. does not appear and the former two parts, i.e., the
quantum sine-Gordon (QSG) part and so-called the dual
sine-Gordon (DSG) part, are completely decoupled each
other. This implies that in the region where H s and Hpgg
are both massless, i.e., the Kondo coupling is irrelevant.
H_ . is also irrelevant to the gap formation. In other regions,
the irrelevancy of H ., may become a subtle question. Nev-
ertheless, as a simplest approximation, we neglect the cross
term and treat the two remaining parts separately in the fol-
lowing calculations. We will discuss the point later.

The self-consistent harmonic approximation (SCHA)
method is employed for the quantitative arguments on the
phase Hamiltonian, which is based on the variational prin-
ciple: We set the reference Hamiltonians
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FIG. 1. Schematic phase diagram of the quantum sine-Gordon
model obtained by Wilson’s RG calculation. |u|=+/CD,|Y|. The
Kondo-necklace model with J=0 is located to the original point; as
the coupling takes a finite positive value, the system plunges into
the massive phase.

1
HQSG=5fdx CI*+D(d,%)*+By V1, (6)

1
HDSG=5fdx CH22+D2(¢9X\I’2)2+BWZ\P§+BX2X§,
- (7

where B, (u=¥,, ¥,, and X,) are the variational param-
eters. These are thus determined as to minimize the varia-
tional energies (Hsg); and (Hpsg),, Where (-+-); ({--+),) de-
notes an expectation value evaluated from the ground state of
the SCHA Hamiltonian H g (Hpsg). The harmonic poten-
tial terms in the reference Hamiltonians basically come from
the expansions of the nonlinear cosine terms. By determining
their curvatures self-consistently, we can effectively investi-
gate at the low-energy region whether the mass-generating
cosine terms are relevant or not. After some tedious calcula-
tions, it becomes clear that the Kondo necklace (J>0) is in
the ¥,-massive, ¥,-massless, and X,-massive phase (this
corresponds to the Haldane phase for the Heisenberg ladder
model as argued in Ref. 16). The J dependences of the mass
gaps are then obtained as

2]] 1/(2—9)

Gosg™ , Gpsg™ ., (8)

272

(7T_2J)J} 1/(2—-1/6)

where O9=47/(7m+2J) and O=~4x/(7w—2J), respec-
tively. From these expressions, we can find that, when
6=2J/m is small, GQSC,'v&”‘S and Gpgg~82> (thus
Gqsg<Gpsg holds), which enables us to conclude that the
Kondo necklace in the small-J region is properly described
by H QSG -

Now, we should mention the well-known result of the
quantum sine-Gordon Hamiltonian: Hgss shows the
Kosterlitz-Thouless (KT) transition'” and belongs to the
S=1/2 XXZ universality class: The energy gap vanishes as
the essential singularity form when the system approaches
from the upper region to the transition point. Since para-
metrically the critical KT coupling J. equals zero, the
Kondo-necklace is always in the upper side of the KT phase
(see Fig. 1), where the spin correlation functions decay ex-
ponentially in real space.
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FIG. 2. J dependence of the gap for the 200-site Kondo neck-
lace with an open boundary condition.

Up to now, we have discussed the gap formation mecha-
nism of the Kondo-necklace model within the bosonization
treatment. However, in this procedure, some critical approxi-
mations are included; e.g., it is commonly recognized that
the bosonization method may not keep the quantitatively re-
liable parametric relation between the original and the phase
Hamiltonian. Further, the effects of the neglect of H . are
still unclarified. On the other hand, some previous analytic
and numerical investigations have concluded that the
ground-state phase transition occurs at finite coupling values.
For example, according to Doniach’s mean-field calculation,
the ground state changes from the antiferromagnetic state to
the singlet one at J=1."" The result of the real-space
renormalization-group calculation shows that the massless
XY phase remains until a certain value of J (=0.4).!® The
quantum Monte Carlo simulation was also carried out for the
systems up to N=16: The data seemingly exhibit the
change of the correlation function behavior at J=0.4."
However, it may be quite difficult to deduce conclusions on
the ground-state properties from the method. More recently,
Santini and S6lyom have studied the excitation gap by the
exact diagonalization method (up to N=12).2° From a care-
ful finite-size scaling analysis of the data, they have also
concluded that the KT-like transition occurs at J,.=0.24,
which is, however, considerably smaller than the above-
mentioned values.

We now exhibit the numerical data calculated by the infi-
nite system algorithm of the DMRG method: The singlet-
triplet gap was estimated for systems up to 200 sites. Re-
quired from the standard DMRG method, the open boundary
condition was employed. Each site contains two kinds of
spins, i.e., {7;,S,}; they were treated as one composite in our
calculations.

We plot the J dependence of the gap for the largest site
system in Fig. 2. The DMRG truncation error estimator'
Q(m,J)=1—P(m,J) strongly depends upon the number of
states m and J: While at the J=1 case, m=30 is enough to
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FIG. 3. System size dependence of the singlet-triplet excitation
gap. The correspondence between the values of J and the symbol
types are given in the figure. The dotted straight line is to guide the
eyes.

realize Q <107, the states up to m =560 are required to keep
the same order of accuracy for the system with J=1/5. Note
that it may be also possible to get m—o data using an ap-
propriate extrapolation method. However, especially in the
weaker-coupling region, the procedure becomes subtle so
that the result may be significantly affected by a way of
extrapolation. We thus plot the data with the largest m val-
ues. As shown in the figure, the magnitude of the gap be-
comes smaller quickly, but it is clearly visible for J=1/3. In
Fig. 3, the system size dependence of G(J,N) is plotted for
J=1/3, where the low-energy region is magnified. Although
the 1/N dependence of the data with J=1/4 is almost linear,
we can recognize a weak downward convex tendency, which
may indicate the existence of a finite excitation gap at J
=1/4. (Its magnitude may be smaller than =107 at N—.)

Unfortunately, to investigate a weaker-coupling region
and thus to evaluate a smaller gap, we should estimate the
ground-state energies more accurately, since almost all of
convergent digits cancel each other. For this condition, we
think that a proper finite-size scaling analysis technique
should be employed, which remains as a future problem.

In conclusion, we have argued the gap formation mecha-
nism of the one-dimensional Kondo-necklace model using
both the bosonization method and White’s DMRG method.
The phase Hamiltonian was treated using the SCHA method,
and the following results have been derived: Any small
Kondo coupling brings a finite excitation gap, i.e., J.=0,
which is described by the quantum sine-Gordon model. This
means simultaneously that the gap formation is described by
the KT transition and belongs to the S=1/2 XXZ universal-
ity class. To clarify the validity of the bosonization result, we
carried out the DMRG calculation of the Kondo necklace.
Consequently, we have found that, although its magnitude
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becomes quite small, the system possesses an excitation gap
for J=1/4. We however cannot rule out that the mass gap
opens at a finite Kondo coupling value; it is also plausible
that J, takes a finite value due to the effect of the neglected
cross term, which might become relevant in the massive
phase. We thus hope that more accurate calculations may
clarify the point.
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