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The paramagnetic metallic phase of the one-dimensional Kondo lattice model is studied by the density
matrix renormalization group method. We observe charge and spin Friedel oscillations. They reflect the long-
range charge-charge and spin-spin correlation functions. The observed oscillations are consistent with a
Tomonaga-Luttinger liquid. From the period of the oscillations it is concluded that the Fermi surface is large,
including both the conduction electrons and the localized spins,kF5p(11nc)/2, wherenc is the density of
conduction electrons.@S0163-1829~96!04043-X#

Electron density oscillations as a response to a local per-
turbation provide a clue to understanding electronic states of
a system. Response to an impurity potential is known as
Friedel oscillations. The period of the oscillations is given by
the diameter of the Fermi surface which is defined by the
singular points in the momentum distribution function. As a
local perturbation it is also possible to use a magnetic impu-
rity. Then spin density oscillations are induced. Since these
oscillations are the origin of the Ruderman-Kittel-Kasuya-
Yosida ~RKKY ! interaction, the Friedel oscillations are re-
sponsible for the magnetically ordered structure of rare earth
metals.

Generally speaking, a key to understanding the physics of
heavy fermion systems is the competition between the
RKKY interaction and the Kondo screening effect of the
magnetic moments. The Kondo lattice model is one of the
canonical models for heavy fermions and much effort has
been devoted to elucidate the properties of the model. Re-
cently the ground state phase diagram of the Kondo lattice
model was completed in one dimension.1,2 There are three
phases in one dimension: a ferromagnetic metallic, a para-
magnetic metallic, and an insulating spin liquid phase.

Our concern in the present paper is the metallic phase of
the one-dimensional Kondo lattice model. In one dimension
it has been established that most interacting metallic systems
belong to the universality class of Tomonaga-Luttinger
liquids.3 The asymptotic forms of charge- and spin-
correlation functions are

^n~x!n~0!&5Kr /~px!21A1cos~2kFx!x212Kr

1A2cos~4kFx!x24Kr, ~1!

^S~x!•S~0!&51/~px!21B1cos~2kFx!x212Kr, ~2!

wherekF5pr/2, with r being the density of charge carriers,
is the Fermi momentum andKr is the correlation exponent.

4

In the above equations logarithmic corrections to the 2kF
correlations have been omitted. The momentum distribution
function around kF shows a power law singularity
nk;1/22sgn(k2kF)uk2kFua with a5(Kr11/Kr22)/4.
The anomalous power law decays of the correlation func-
tions naturally reflect themselves in the Friedel oscillations:
the asymptotic form of the charge density oscillations in-
duced by an impurity potential is

dr~x!;C1cos~2kFx!x~212Kr!/21C2cos~4kFx!x22Kr ~3!

as a function of the distancex from the impurity.5–7 Analo-
gously, the spin density oscillations induced by a local mag-
netic field behave as

s~x!;D1cos~2kFx!x2Kr. ~4!

Concerning the one-dimensional Kondo lattice model the
paramagnetic metallic state is expected to belong to the class
of Luttinger liquids. However, in this case the position of the
Fermi points is already a nontrivial problem since the model
consists of two components with completely different char-
acters, the conduction electrons and the localized spins.

There are two different points of view concerning the
above question. If the interaction between the conduction
electrons and the localized spins is strictly zero, it is clear
that the singularity in the momentum distribution function of
the conduction electrons is determined only by the number of
conduction electrons. Thus, if the singular points are not af-
fected by the interaction,kF5pnc/2 is expected. On the
other hand, a different answer is obtained by identifying the
Kondo lattice model as an effective model for the periodic
Anderson model. In the periodic Anderson model the con-
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duction electrons and thef electrons are mixed with each
other through the hybridization matrix elements. Therefore it
is naturally expected thatkF is determined by the total den-
sity of both the conduction electrons and thef electrons;
kF5p(11nc)/2.

In order to draw a conclusion on whether the Luttinger
sum rule includes localized spins or not, it is necessary to
deal with large-size systems because the Luttinger liquid is
characterized by the long-range correlations and the singu-
larity in the momentum distribution function is clearly de-
fined only in the infinite system. For this purpose the density
matrix renormalization group~DMRG! method developed by
White8 is most promising since in the DMRG we can study
long chains and obtain results with only small systematic
errors, which can be estimated from the eigenvalues of the
density matrix.

In this paper, we calculate the Friedel oscillations of the
one-dimensional Kondo lattice model by using the DMRG.
The charge density oscillations are induced naturally by open
boundary conditions and the spin density oscillations are in-
troduced by applying local magnetic fields at both ends.
From the period of the Friedel oscillations we can determine
the Fermi momentum. Surprisingly the Friedel oscillations
are compatible with the large Fermi surface
kF5p(11nc)/2 in spite of the fact that the charge degrees
of freedom are completely suppressed for thef electrons in
the Kondo lattice model.

The Hamiltonian we use in the present study is the usual
one-dimensional Kondo lattice model,

H52t(
is

~cis
† ci11s1 H.c.!1J(

im
Si

msi
m , ~5!

where cis
† (cis) is the creation ~annihilation! operator

of a conduction electron at thei th site, and si
m

5(1/2)(ss8cis
† tss8

m cis8, with tss8
m (m5x,y,z) being the

Pauli matrices, are the spin density operators of the conduc-
tion electrons. The spin densities are coupled to the localized
spins Si

m through an antiferromagnetic exchange coupling
J.

Here we briefly summarize the phase diagram of this
model.1,2 At half filling, nc51, the ground state is a spin
singlet with a gap for excitations.9–12Away from half filling
the ground state is ferromagnetic in the strong coupling
limit.13,14 The ferromagnetic ground state is continuously
connected to the low carrier density limit,nc→0, where the
ferromagnetic state survives even in the limit of weak ex-
change couplings. The paramagnetic metallic ground state
exists only for weak couplings for finite carrier densities.
The phase boundary between the ferromagnetic state and the
paramagnetic state had been determined by the numerical
exact diagonalization of finite clusters, and it was shown that
the critical valueJc goes up with increasing the carrier
density.2

To treat large systems with sufficient accuracy, small
truncation errors in the DMRG calculation are necessary.
Since the truncation errors decrease with increasingJ, we
chose nc54/5 for the calculation of Friedel oscillations,
where the paramagnetic state remains up toJc53.0t. At this
filling there is a small additional ferromagnetic region below
Jc53.0t. It has already been reported in previous exact di-

agonalization studies at slightly different carrier concentra-
tion nc50.75.2 Our DMRG results for clusters of size
N510 and 20 confirm the existence of this ferromagnetic
region betweenJ51.6t and J51.8t at nc54/5. The total
spin of the ferromagnetic state is the same as that for strong
coupling, and the phase transitions are caused by simple
level crossings between the two lowest states withS50 and
S5N(12nc)/2. We calculate Friedel oscillations in the two
paramagnetic states atJ52.5t andJ51.5t.

We first consider the paramagnetic state atJ52.5t. The
charge density oscillations induced by the open boundary
conditions are presented in Fig. 1 by the solid line. As ex-
pected, long-range oscillations characteristic of a Luttinger
liquid are induced by the boundary conditions. Since the
weak decay of the oscillations makes it difficult to determine
the correlation exponentsKr by the present system size, we
focus our attention mainly on the period of the oscillations.
The Fourier components of the oscillations, presented in Fig.
2, show a clear single peak atq52p/5. The single peak at
this wave number is natural in the strong coupling limit
where the conduction electrons and the localized spins form
local singlets, leading to complete spin-charge separation. In
this case we can treat the charge part as spinless fermions
whose correlation functions are characterized by its single
2kF structure given by 2p(12nc). The peak atq52p/5
corresponds to the 2kF structure of the spinless fermions
which is equivalent to 4kF structure of the original fermions.
The result of Fig. 1 means that the charge density oscillations
at J52.5t are already well characterized by the nature of the
strong coupling region.

From the above results, it is not possible to draw a con-
clusion about whether the Fermi surface includes the local-
ized spins, because 4kF52p(11nc)52pnc~mod 2p!. In
order to see the contribution of the localized spins we next
calculate spin density oscillations. If the 2kF structure is
found in the spin density Friedel oscillations reflecting the
spin-spin correlations of Luttinger liquids, it may be possible
to argue whether the Fermi surface includes the localized
spins or not: if the localized spins contribute to the Fermi
surface a 2kF5p/5 structure should appear but if it does not

FIG. 1. Charge density oscillations of the Kondo lattice model.
The system size is 60 sites and the carrier density isnc54/5. The
solid line and the broken line correspond toJ52.5t and J51.5t,
respectively. Typical truncation errors in the DMRG calculations
are 131026 for J52.5t and 331026 for J51.5t.
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a 4p/5 structure appears. To induce the Friedel oscillations
of spin density, we apply local magnetic fields,H local

52h(S1
z2s1

z2SN
z 1sN

z ) to the spins and conduction elec-
trons at the boundary sites. These local magnetic fields with
opposite directions for the two boundary spins induce oscil-
lations that are odd with respect to reflection. This feature
has been used to confirm the convergence of the DMRG.

The spin density oscillations are presented in Fig. 3 by the
solid line and their Fourier components are shown in Fig. 4.
We clearly see long range oscillations withq5p/5. They are
consistent with a Luttinger liquid prediction, Eq.~4!, if we
assume the large Fermi surface where both the conduction
electrons and the localized spins contribute to the Fermi vol-
ume:

kF5
p

2
~11nc!. ~6!

Now we proceed to the paramagnetic metallic phase in
the weak coupling region. The result of the charge density
oscillations atJ51.5t is presented in Fig. 1 by the broken
line. In this case, too long-range oscillations are induced and
their period is the same asJ52.5t. The similarity is also
seen in the Fourier components shown in Fig. 2 by the bro-
ken line. For these coupling strengths we cannot see a peak
at q52kF5p/5. This means the amplitude of the 2kF oscil-
lations of the charge density is still negligible even in the
case ofJ51.5t. However, as is shown in the inset of Fig. 2,
we find clear 2kF oscillations in addition to the dominant
4kF oscillations at a smaller couplingJ51.0t which is con-
sistent with the general form of the Luttinger liquids.

For the spin density atJ51.5t, the oscillations and their
Fourier components are presented in Fig. 3 and Fig. 4, re-
spectively, by the broken lines. Although a small structure is
also found atq53p/5, the dominant component is at
q5p/5. The structure atq53p/5 is considered to be in-
duced by the coupling mode of the spin density oscillations
with q5p/5 and the charge density oscillations with
q52p/5 whose amplitude is larger than that ofJ52.5t.
Since the structure atq53p/5 decreases rapidly with an
increasing system size compared with the structure at
q5p/5, we observe that it is not an intrinsic property of the
infinite system. Combined with the results of the charge den-
sity oscillations it is concluded that the paramagnetic state at
1.5t is also characterized by the Luttinger liquid with the
large Fermi surface.

At representative values for the exchange coupling con-
stantJ52.5t and J51.5t, we have seen that the paramag-
netic metallic phases of the Kondo lattice model show Frie-
del oscillations characteristic of a Luttinger liquid with a
large Fermi surface. Similar results are obtained at different
concentrations of conduction electrons,nc52/3, J52.0t and
nc56/7, J51.7t. These results are consistent with the pre-
vious work on thet-t8 Kondo lattice model for which it was
shown exactly that its strong coupling limit is described by a
Luttinger liquid with the large Fermi surface.15 Therefore it
is natural to conclude that the paramagnetic metallic phase of
the Kondo lattice model has a large Fermi surface in general.

FIG. 2. Fourier components of the charge density oscillations.
The system size is 60 sites and the carrier density isnc54/5. The
solid line and the broken line correspond toJ52.5t and J51.5t,
respectively. The Fourier transformation is carried out by using the
central 50 sites. The inset shows the result forJ51.0t, for which
typical truncation errors are 431025.

FIG. 3. Spin density oscillations of the Kondo lattice model.
The system size is 60 sites and the carrier density isnc54/5. The
solid line and the broken line correspond toJ52.5t and J51.5t,
respectively. The strength of the local magnetic fieldh is 0.1t.
Typical truncation errors in the DMRG calculations are 131026

for J52.5t and 331026 for J51.5t.

FIG. 4. Fourier components of the spin density oscillations. The
system size is 60 sites and the carrier density isnc54/5. The solid
line and the broken line correspond toJ52.5t andJ51.5t, respec-
tively. The Fourier transformation is carried out by using the central
50 sites.
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This conclusion is consistent with a variational Monte Carlo
study using Gutzwiller projected hybridization form.16 This
conclusion is also consistent with the bosonization study by
Fujimoto and Kawakami.17 Although their work was recently
criticized by White and Affleck,18 it should be noted that the
model used by the latter authors is different from the usual
Kondo lattice model.

The DMRG method has made it possible to observe the
Friedel oscillations corresponding to the large Fermi surface
in the paramagnetic phase of the weak coupling region.
However, it is still difficult to see them in the weak coupling
limit J,t, where the length scale of the Luttinger liquid

properties clearly exceeds the system size studied in the
present work. Calculations on longer systems and the deter-
mination of the correlation exponentKr are important areas
for future investigation.
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