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I PAPER 

Systematic Generation of Tardos's Fingerprint Codes 

SUMMARY Digital fingerprinting is used to trace back illegal users, 
where unique ID known as digital fingerprints is embedded into a content 
before distribution. On the generation of such fingerprints, one of the im­
portant properties is collusion-resistance. Binary codes for fingerprinting 
with a code length of theoretically minimum order were proposed by Tar­
dos, and the related works mainly focused on the reduction of the code 
length were presented. In this paper, we present a concrete and systematic 
construction ofthe Tardos's fingerprinting code using a chaotic map. Using 
a statistical model for correlation scores, the actual number of true-positive 
and false-positive detection is measured. The collusion-resistance of the 
generated fingerprinting codes is evaluated by a computer simulation. 
key words: fingerprinting, Tardos's code, chaotic map, collusion attack 

1. Introduction 

Digital fingerprinting is a method to insert user's own ill 
into digital contents in order to identify illegal users who 
distribute unauthorized copies. One of the serious problems 
in a fingerprinting system is the collusion attack such that 
several users combine their copies of a same content to mod­
ify/delete the embedded fingerprints. In order to design a 
collusion-resistant fingerprint, two kinds of approaches have 
been studied. One approach is to exploit the spread spec­
trum (SS) technique [1]-[4], and the other approach is to 
devise an exclusive code, known as collusion-resistant code 
[5]-[10], which can trace colluders. 

An early work on designing collusion-resistant binary 
fingerprinting codes was presented by Boneh and Shaw [5] 
underlying the principle referred to as the marking assump­
tion. In this case, a fingerprint is a set of redundant digits 
which are distributed in some random positions of an origi­
nal content. When a coalition of users attempts to discover 
some of the fingerprint positions by comparing their marked 
copies for differences, the coalition may modify only those 
positions where they find a difference in their fingerprinted 
copies. A c-secure code guarantees the tolerance for the col­
lusion attack with c pirates or less. Tardos [10] has proposed 
a probabilistic c-secure code with error probability Cl which 
has a length of theoretically minimal order with respect to 
the number of colluders. On the binary digits of the code­
word, the frequency of "0" and "1" is ruled by a specific 
probability distribution referred to as the bias distribution. 

The code length of Tardos' s code has been reduced 
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by a strict evaluation of tracing error probabilities [11] 
and modifying some parameters using statistical properties 
[12]. However, there are still problems such as the large 
required memory and impossibility of explicit implementa­
tion, which are mainly due to the continuity of probability 
distributions used in the codeword generation. Instead of 
continuous distributed probability, finite probability distri­
butions were explored in [13] in order to reduce the required 
memory as well as the code length. 

In this paper, we present an explicit construction 
method of Tardos's codes using a well-known chaotic map, 
logistic map [14], showing the relation among the proba­
bility distributions of Tardos's codes and the distribution of 
chaotic sequences. We also study the statistical property of 
correlation scores, and present the actual number of true­
positive and false-positive using a proper threshold for deter­
mining colluders. In order to generate the chaotic sequence 
on a computer, the precision becomes a bottleneck because 
it may output a certain periodic values and may converge 
on one value. If the number of digits for representing the 
sequence is sufficiently large, such cases can be neglected. 
Different from the related works of Tardos's code, our in­
terest is mainly in the ease of implementation on a com­
puter. The chaotic map provides us a simple solution for 
calculating the probability distribution from a given initial 
value, which can be secret information in the fingerprinting 
system. Strictly speaking, our constructed code is modified 
version of Tardos 's one. 

2. Preliminaries 

In this section, we first review the original Tardos' s binary 
fingerprinting code [10], and then show the related works. 
Furthermore, we review a well-known chaotic map which is 
analogously related to the parameters of the code. 

2.1 Tardos's Code 

Let N be the allowable number of users in a fingerprinting 
system. The Tardos's fingerprinting scheme distributes a bi­
nary codeword of length L to each user. The codewords are 
arranged as an N x L matrix X, where the J-th row corre­
sponds to the fingerprint given to the J-th user. The genera­
tion of the matrix X is composed of two steps. 

1. A distributor is supposed to choose the random vari­
ables 0 < Pi < 1 independently for every 1 ::; i ::; L, 
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according to a given bias distribution tp, which satisfies 
the following conditions. 

• t = 1/300c 
• 0<t'<7f/4, sin2 t'=t, riE[t',7f/2-t'] 
• Pi = sin

2 ri, t::; Pi ::; 1 - t 

Here ri is uniformly and randomly selected from the 
above range. 

2. Each entry Xj,i of the matrix X is selected indepen­
dently from the binary alphabet {O, I} with Pr(Xj,i = 
1) = Pi and Pr(Xj,i = 0) = 1 - Pi for every 1 ::; j ::; N. 

Let C be a set of colluders and c be the number of 
colluders. Then we denote by Xc the c x L matrix of 
codewords assigned to the colluders. Depending on the at­
tack strategy p, which is called C -strategy, the fingerprint 
Y = (YI, ... , YL), Yi E {O, I} contained in a pirated copy is 
denoted by y = p(Xc). In a tracing (accusation) algorithm 
31, a correlation score S j of the j-th user is calculated 

L 

S j = LYiUj,i, 
i=1 

where 

(1) 

if Xj,i = 1 
(2) 

if Xj,i = 0. 

If S j exceeds a threshold Z, the j-th user is decided as guilty. 
The algorithm 31 outputs a list of suspicious users. For con­
venience, we denote the correlation score of an innocent 
user "i" by S j and that of a fixed colluder by S. 

The Tardos' s fingerprinting scheme uses a code length 
L and a threshold Z with the following scaling behavior as a 
function of N, c, and a false-positive parameter CI: 

L = 100c21ln l/cIl, 

Z = 20c lin l/cIl, 

(3) 

(4) 

where I xl denotes the smallest integer that is not less than x. 
At the collusion attack, c colluders try to detect the po­

sitions of the embedded codeword from differences of their 
copies, and then to modify bits of the codeword in these po­
sitions. This attack model is formulated as the following 
assumption; 

Assumption 1: (Marking Assumption): Let we say that 
position i is undetectable for C if the codewords assigned 
to c colluders in C match in i-th position. Then, Yi = Xj,i for 
any j E C. 

Under the marking assumption, C-strategy satisfies the fol­
lowing assumption. 

Assumption 2: Colluders have no information on the i-th 
position of innocent users if it is undetectable. 

On the evaluation of a fingerprinting code, the false­
positive probability, denoted by Pr[F P], and false-negative 
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probability, denoted by Pr[FN], are bounded as follows. 

Definition 1: (Soundness): Let CI E (0, 1) be a fixed con­
stant and let j be an arbitrary innocent user. We say that a 
fingerprinting scheme is cl-sound if, for any C-strategy p, 
the probability Pr[ F P j] that an innocent user j gets accused 
is bounded by 

Pr[FPj] = Pr[j E 3l(p(Xc))] < CI. (5) 

Definition 2: (Completeness): Let C2 E (0,1) be a fixed 
constant. We say that a fingerprinting scheme is C2-
complete if, for any C -strategy p, the false-negative prob­
ability Pr[FN] that no colluder gets accused is bounded by 

Pr[FN] = Pr[C n 3l(p(Xc)) = 0] < C2. (6) 

The original Tardos's code is cl-sound for any coalition C 
of arbitrary size and c2-complete for any coalition C of size 
at most c and C2 = c~/4. If N is larger than 2L+ I, most users 
must share their codewords with another user, thus even if 
a single user distributes his copy, another user will be ac­
cused. The above bounds are not strict, there is a room for 
improvement. 

The false-positive probability Pr[FP] that some inno­
cent users are accused is given by C = CI N. It is shown 
that Tardos's fingerprinting code has an error probability C 
at most as follows; 

Proposition 1: The association of false-positive and false­
negative probabilities are given by the inequality 

Pr[FP or FN] ::; Pr[FP] + Pr[FN] < c, (7) 

when c 2: 4. 

Here we give the proof for completeness. There are (N -
c) innocent users, and a bound of false-positive probability 
Pr[ F P] that some innocent users are accused is given by 

Pr[FP] = 1 - (1- Pr[FPjDN
-

c 

::; (N - c)Pr[FPj] < (N - l)cI. 

By Eq. (6) and Eq. (8), 

Pr[FP] + Pr[FN] ::; (N - c)Pr[FPj] + Pr[FN] 

< (N - l)cI + c~/4 < c. 

(8) 

(9) 

Since c~/4 ::; CI is true only when c 2: 4, so Eq. (7) is derived. 
Note that the evaluation in Proposition 1 is not always 

sharp. Namely, the inequality in Eq. (8) is motivated by the 
approximation of binomial theorem 

(1- xt 1 - nCIX + nC2x2 - nC3x3 ... 

2: 1 - nx, (10) 

where ° ::; x « 1, however, the approximation is not sharp 
when n is too large relative to x-I. Therefore, when the 
product (N - c) Pr[ F P j] becomes large, the bound given by 
Proposition 1 becomes far from being sharp, e.g., the bound 
of probability can even exceed 1 in some cases. In this pa­
per, an actual number of true-positive and false-positive de­
tection is measured for the evaluation of fingerprinting code. 
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2.2 Related Works 

The main concern in the related works is to reduce the code 
length L. If one assumes that the scores S j and S are 
modeled by Gaussian distribution, then there is the short­
est length code achieving the Pr[ F P j] and Pr[ F N]. Skoric 
et al. [12] assumed that the correlation scores S j and Shave 
the probability density modeled by Gaussian distribution us­
ing the Central Limit Theorem: when a large number of i.i.d. 
variables are summed, the distribution of the sum converges 
to the normal distribution. The tracing algorithm 3{ com­
putes the sum of YiUj,i over L independent terms, and all the 
terms have the same bias distribution. Under the Gaussian 
approximation, the statistical analysis of the Tardos's code 
provides the lower bound on the code length. 

Some hurdles in the fingerprinting system are the large 
required memory and impossibility of explicit implementa­
tion, which are mainly due to the continuity of bias distri­
butions used in the codeword generation. Nuida et al. [13] 
focused on the bias distributions used in the codeword gen­
eration, and provided the discrete bias distributions for the 
purpose of reducing the required memory amount. They 
showed that the optimal distribution has only i c/2l possible 
outputs; thus only ilog21c/2ll-bits memory is required to 
record one output. However, the required memory to record 
all bias distribution is still increased by a factor of L; thus it 
is ilog2i c/2ll xL. 

As given in Eq. (1), the scores S j and S are defined as 
the sum of a large number of stochastic variables. So it is 
expected that S j and S are to have an approximately Gaus­
sian probability distribution. The Gaussian approximation 
of S j and S has been presented in [12], and a strict evalu­
ation of code length and threshold was investigated under a 
designed false-positive probability Cl. Instead of the prob­
ability, we calculate the actual number of true-positive and 
false-positive detection using a properly designed threshold 
based on the Central Limit Theorem and the statistical prop­
erty. 

Let ai, (1 ::; i ::; n) be a set of n i.i.d. random variables 
having finite values of mean j.1 and variance (J"2 > 0. The 
Central Limit Theorem states that as the sample size n in­
creases, the distribution of the sum approaches the normal 
distribution N(nj.1, n(J"2), where nj.1 is a mean and n(J"2 is a 
variance. 

The correlation score S j is the result of sum of Uj,i only 
when Yi = 1. Skoric et al. [12] explored the evaluation of the 
score from the viewpoint of the symmetric property of U j,i, 
and modified the correlation score S j as follows. 

L 

S j = ~(2Yi - l)Uj,i 
i=l 

(11) 

Due to this modification, the distribution of S j approaches 
N(O, L) because all L elements are contributed on the score. 
The modification is also done for the correlation score of 
colluders S, and we denote it by S . It is noted that the Gaus-
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sian approximation is also valid for the modified scores S j 
andS. 

Furon et al. studied the statistics of the score S j and 
S [15]. In the study, without loss of generality, the mean 
and variance of S j are ° and L, and those of S are 2L/ C1[ 

and L(1 - 4/C21[2), respectively. In the paper, they in­
sisted that the use of the Central Limit Theorem was ab­
solutely not recommended when estimating the code length 
because it amounts to integrate the distribution function on 
its tail where the Gaussianity assumption does not hold. The 
Berry-Esseen bound shows that the gap between the Gaus­
sian law and the real distribution of the scores depends on 
their third moment, which a priori depends on the collusion 
process [11]. However, it is reported in [11] that the approx­
imation of the distribution by a Gaussian is accurate starting 
from a value of c between 10 and 20, and the derived code 
length becomes a factor 2 shorter than the estimation using 
Eq. (11). Considering a practical use, it is advisable to apply 
the approximation. 

2.3 Chaotic Map 

We found that the bias distribution tp of Tardos's code is 
analogously represented by a well-known chaotic map: lo­
gistic map [14]. 

The logistic map is the simplest known non-linear dy­
namical system, and possibly the most studied such system, 
which has perfect chaotic properties. The logistic map is a 
one-dimensional discrete-time system described by the non­
linear difference equation, 

Pi+ 1 = aPi(1 - Pi), (0 < Pi < 1), (12) 

where a is constrained by ° < a ::; 4, and the behavior of Pi 
is sensitive to the value of a. For a < a* = 3.5699456 ... , 
the orbit of Pi is periodic between the several values corre­
sponding to a. For a > a* chaotic behavior sets in, inter­
spersed by finite intervals of stable periodic behavior, and 
when a = 4, it is completely chaotic. In the rest of this pa­
per, we set a = 4 for the generation of the chaotic sequences. 

Generally, a decimal number is treated as floating point 
number on a computer and sometimes the precision is sacri­
ficed for reducing the computing costs. For the countermea­
sure of such a problem, the range of the chaotic sequence 
generated by logistic map is transformed from decimal num­
ber to integer. The modified map is calculated as follows. 

(13) 

And Eq. (13) is simplified further by bit-shift operation. 

(14) 

Here "» a" denotes a-bit-shift operation to the right. The 
value of original logistic map, Pi, is approximately recov­
ered from Pi by dividing the value by 2T. SO, by an inverse 
transform from Pi to Pi, namely Pi = Pd2T

, the desired 
chaotic sequence with T -bit precision can be obtained. 
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3. Proposed Systematic Implementation 

Under the assumption that the probability density function 
of scores S j and S follows Gaussian distribution both for 
innocent users and colluders, we discuss the stochastic ap­
proach for calculating the actual number of true-positive and 
false-positive detection using a threshold Z and the analogy 
of the bias distribution. 

3.1 Design of Threshold 

From the viewpoint of a false-positive error, the statistical 
property o~ a normal distribution helps us to design a proper 
threshold Z(:::; Z). The false-positive probability Pr[F P j], 
which is the probability such that S j exceeds Z, is given by 

A A 1 (Z) Pr[FPj] = PreS j > Z) = -erfc -- , 
2 m (15) 

where "erfc" stands for the complementary error function. 
U sing the inverse function of erfc, we can get the threshold 
Z as follows. 

Z = m· erfc-1(2Pr[FPjD = m· erfc-1(2cd (16) 

The design of threshold Z based on the statistical approach 
is studied in [12]. By imposing, for example, that Cl = 10-8 , 

we find 

(17) 

On the other hand, using Eq. (3) and Eq. (4), the original 
threshold Z is modified by 

and under the parameter Cl = 10-8 we obtain 

Z = 8.72 Vi. (19) 

If a threshold Z is calculated with respect to a given 
probability Cl, then the probability of true-positive per each 
colluder PTP can be calculated. It is the area of proba­
bility density function of S which value exceeds Z. From 
Sect. 2.2, it follows N(2L/cn,L(1 - 4/c2n2)), hence, 

PTP = -erfc -- Z- - , 1 (1 (A 2L)) 
2 -V2(J"~ cn 

(20) 

where 

(J"~ = L( 1 - C2: 2 )' (21) 

Therefore, the expected number of detectable colluders NT P 

is 

NTP = cPTP = ~erfc(-1-(z _ 2L)), 
2 -V2(J"~ cn 

(22) 

and the false-negative probability Pr[FN](= (PFN)C), where 
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innocent users colluders 

FTP 

Z 2L 
en 

Fig. 1 The probability density function of correlation scores S j and S. 

PFN is the probability of false-negative per each colluder, is 

Pr[FN] = (PFN)C 

= (1-PTPr 
= (1 _ ~erfc(-1-(z _ 2L)))C. (23) 

2 -V2(J"~ cn 

The actual number of false positive NFP, which is the av­
erage number of detected innocent users at each detection, 
is 

NFP = (N - c)PFP = (N - C)cl. (24) 

A sketch ofthe probabilities P TP, PFP, and PFN is illustrated 
in Fig. 1. 

3.2 Generation of Bias Distribution 

Let Po = sin2 Ro, (0 < Ro < n) be an initial value of a 
chaotic sequence. Then the i-th element is given by 

Pi = sin2 Ri , (0 < Ri < n), 

and the variables Ri is represented by 

0<Ri :::;n/2 

n/2 < Ri < n 

(25) 

(26) 

It is noted that the chaotic behavior of Pi is broken when 
Ri = n /2. However, if the values Pi have infinite precision 
and the initial value Ro is chosen uniformly at random, then 
the probability that Ri takes n/2 is O. Notice that the se­
quence Ri also follows a well-known chaotic map: tent map 
[14]. Here, we suppose T' which satisfies 

(27) 

Then the sequence Ri is uniformly distributed in the range 
[ / 

T' T" 1 2 ,n - 1/2 ]. Smce the orbit of the tent map is sym-
metric with respect to the axis x = n /2, the range of Ri can 
be simplified to [l/2T' ,n/2-1/2T']. The parameter 1/2T' is 
corresponding to t' if it satisfies 0 < 1/2T

' < n / 4. By setting 
the precision T carefully, the remaining condition 

1/2T = 1/300c, (28) 

can be fulfilled. Therefore, the chaotic sequence Pi satisfies 
the conditions of Pi shown at the generation of the matrix X, 
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Table 1 

where each parameter denoted by a capital letter is equiva­
lent to corresponding the parameter of the Tardos's code. It 
is noted that Eq. (28) cannot be perfectly fulfilled by an in­
teger T since 300e is not a power of 2. In this regard, our 
constructed code is different from the original Tardos's one. 

The bias distribution Pi can be generated by the logistic 
map with an initial value Po. It is worth mentioning that 
the required memory is constant and much smaller than the 
original and modified Tardos's codes [10], [13]. 

Let Po be an initial value for the transformed logistic 
map mentioned in Sect. 2.3. We denote by t(Po) the gener­
ated random variables for every 1 :::; i :::; L using the logistic 
map, which have one-to-one correspondence with Pi of the 
Tardos's code. For the generation of a codeword for each 
user, a distributor uniformly and independently chooses ran­
dom variables Xi E [0,2T

]. There is a random function with 
a secret key key which outputs Xi; an example is a pseudo­
random number generator (PRNG). Then each entry Xj,i of 
the matrix X is determined as 

Xi:::; fi(Po), 
Xi> fi(Po). (29) 

The secrecy of t(Po) and Xi for every 1 :::; i :::; L is solely 
dependent on that of Po and key under the assumption that 
the sensitivity of initial state in the chaotic map is intractable 
and the applied PRNG is secure. We can employ the logistic 
map for PRNG, though it is out of our research scope. 

Table 1 shows the required memory to record the bias 
distribution, where the precision for representing the proba­
bility Pi is approximated by single-precision binary floating 
point numbers. Since only the initial value Po of T -bits is 
stored in our method, the required memory is constant. 

4. Numerical Results 

We implement the proposed construction method and eval­
uate the collusion-resistance. Without loss of generality, e 
codewords are randomly chosen to produce a pirated code­
word y . Under the marking assumption, if i-th bit of e code­
words is different, that of pirated codeword y i is selected by 
the following 5 kinds of collusion manner; 

• majority: If the sum of i-th bit exceeds e12, Yi = 1, 
otherwise, Yi = 0. 

• minority: If the sum of the i-th bit exceeds e 12, Yi = 0, 
otherwise, Y i = 1. 

• random: Yi ER {O, I}. 
• all 0: Yi = 0. 
• all 1: Yi = 1. 

We attempt to detect the codewords of colluders as many as 
possible using the threshold Z. It is remarkable that a well­
known collusion attack is averaging e copies and is equiva-
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Table 2 The estimation of the distribution of S j with the number of users 
N = 104

. 

length L mean variance 

1 x 104 0.28 9,977.36 

1 x 105 -0.63 100,043.59 

1 x 106 -5.12 997,897.87 

1-theoretical J 

"" 
. ... experimental 

--- . --r-----~ . 

I'-..... 
---

L 106 

r-------I'-..... --- L 105 

-r------
I L ~ 104 

10
2

2 4 6 10 12 14 16 18 20 

number of colluders 

(a) mean 

.,,' 
I ..... " I",,,. 

1-theoretical J 
.... experimental 

10 
5 ', 

I 4 " 

I 3 

10 

10 2 4 6 

L := 10' 

L := 10 

L := 10 

10 12 14 16 18 20 

number of colluders 

(b) variance 

Fig. 2 The evaluation of the distribution of S . 

lent to "majority" attack if a detector rounds decimal num­
bers to the nearest symbols "0" and "I." Hence, the follow­
ing experiments are derived under the majority attack. 

4.1 Distribution of S j and S 

For the evaluation of the validity of our design of a threshold 
Z, we calculate the mean and variance of correlation scores 
S j except for the colluders' ones. The precision parameter 
of logistic map is set T = 30, and the number of users is 
fixed to N = 104 in this simulation. The collusion model is 
majority attack. Table 2 shows the results of various code 
lengths, where the results are the average values of 102 tri­
als. We can see that the distribution of S j is approximately 
N(O, L). We also show the mean and variance of colluders' 
scores in Fig. 2, where the solid lines are theoretical figures 
calculated by N(2LI eJ[, L(l - 41 e2J[2)) and dot ones are ex­
perimental results. Although the variance oscillates when 
the number of colluders is small, the correlation score of im­
plemented fingerprinting codes almost follow the theoretical 
distribution. 
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Fig. 3 The average number of detected colluders NTP with each 
precision T. 

4.2 Precision T 

From the conditions of Tardos's fingerprinting codes, the 
precision parameter T must satisfy Eq. (28), hence 2T = 
300c. For example, if c = 10, then T ~ 11.56. Here, the 
dynamical degradation of digital chaotic systems realized in 
finite precision should be considered. The related problems 
include short cycle-length, non-ideal distribution and corre­
lation, etc. There are only 2T values to represent the chaotic 
orbits. So the cycle length of any chaotic orbit will be not 
larger than 2T. Some quantization errors will be introduced 
when the chaotic map is iterated, which makes the dynamics 
of digital chaotic systems badly depart from the theoretical 
one. One of the remedies to overcome the degradation is to 
use higher precision. For the evaluation of the performance 
with each precision T, NTP and Pr[FN] are examined un­
der the conditions; the code length L = 104 , the number of 
users N = 104 , the false-positive probability Cl = 10-8 , and 
the number of trials is 103 with differently selected initial 
values for the chaotic map. The collusion model is majority 
attack. The results are shown in Fig. 3 and Fig. 4. From the 
results, when T ;::: 16, the degradation of the performance 
is slight. However, from the viewpoint of security, we rec­
ommend to use T ;::: 30 because of the key space for the 
bias distribution. It is noted that we can not exclude the 
possibility of short cycle-length even if the precision is in­
creased. By carefully selecting the initial value, such a case 
can be avoided. Hereafter, the simulation is performed using 
a fixed precision T = 30. 

4.3 Evaluation of Our Codes 

We implement the proposed generation algorithm and eval­
uate the number of positively detected colluders, the ac­
tual number of false-positive detection NFP, and the false­
negative probability Pr[FN]. In the simulation, we fixed the 
code length L = 104 and the number of users N = 104

. Fig­
ure 5 shows the average number of detected colluders NTP 
with 104 patterns of trials using majority attack. The com­
parison with Tardos's code is shown in Fig. 6. We also com­
pare the false-negative probability Pr[F N], which results are 
plotted in Fig. 7 and Fig. 8. We can see that the performance 
of our code is very close to the theoretical analysis and the 
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Fig. 6 The comparison of the experimental values of NTP. 

original Tardos's code. The results of 5 kinds of collusion at­
tacks are shown in Fig. 9 and Fig. 10. The similar results are 
derived for the original Tardos's code, hence they are omit­
ted. As the consequence, we can say that there is no distinct 
difference for those collusion attacks and that our code has 
the same performance as Tardos' s code under these typical 
5 attacks. 

Due to the limitation of computational resources, the 
number of trials for evaluating the false-positive detection 
is only 104 times. Considering the precision of the data, we 
show the number of false-positive N F P in the cases Cl = 10-5 

and 10-6 in Fig. 11 . Since the actual number of false­
positive NFP is almost equal for different number of collud­
ers, the average NFP for different Cl is shown in Table 3. It is 
noted that the theoretical value is (N - C)cl ~ Cl X 104 under 
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Fig. 8 The comparison of the experimental values of Pr[FN]. 
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Fig. 9 The comparison of average number of detected colluders NT? for 
5 kinds of collusion attacks. 

the above conditions. Compared with the theoretical val~ 
ues, the derived N FP is smaller; when t:l is 10-8, it is 22%. 
Though N FP of the original Tardos's code is slightly better 
than that of our code, the difference can be negligible. 

From the above results, we can say that the proposed 
implementation method successfully generates Tardos's fin~ 
gerprinting code. However, the actual number of false~ 
positive NFP seems to be lower than the theoretical one. 
It may come from the reason mentioned in Sect. 2.2 be~ 
cause it amounts to integrate the distribution function of S j 
on its tail. Optimistically interpreting the experimental re~ 
sults, there is still room to improve the bounds of Pr[ F P] 
and Pr[FN] . 

It is possible to apply any existing PRNGs whose prop~ 
erties have been well investigated for the generation of bias 
distribution. For the fulfillment of the conditions subjected 
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Fig. 10 The comparison offalse·negative probability Pr[FN] for 5 kinds 
of collusion attacks. 
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Fig. 11 The comparison of the average number of false· positive N FN for 
5 kinds of collusion attacks. 

Table 3 The comparison of average number of false·positive NFP for 5 
kinds of collusion attacks, where the numbers in parentheses are that of 
Tardos's code. 

I 

Collusion I ~---=-----r-----::---Er---l --=-----r------,-------l 

attack 1O~5 1O~6 1O~ 7 1O~8 

majority 0.489 x 1O~1 0.374 X 1O~2 0.232 X 1O~3 0.105 X 1O~4 

(0.480 x 1O~ 1 ) (0.377 X 1O~2) (0.300 X 1O~3) (0.263 X 1O~4) 

minority 0.687 x 1O~1 0.623 X 1O~2 0.595 X 1O~3 0.474 X 1O~4 

(0.669 X 1O~1) (0.614 X 1O~2) (0.595 X 1O~3) (0.789 X 1O~4) 

random 0.587 X 1O~1 0.536 X 1O~2 0.405 X 1O~3 0.263 X 1O~4 

(0.524 X 1O~1) (0.422 X 1O~2) (0.363 X 1O~3) (0.263 X 1O~4) 

all 0 0.597 x 1O~1 0.536 X 1O~2 0.405 X 1O~3 0.263 X 1O~4 

(0.524 X 1O~1) (0.422 X 1O~2) (0.363 X 1O~3) (0.263 X 1O~4) 

all 1 0.546 x 1O~1 0.418 X 1O~2 0.337 X 1O~3 0 

(0.508 X 1O~1) (0.393 X 1O~2) (0.305 X 1O~3) (0.211 X 1O~4) 

average 0.583 x 1O~1 0.498 X 1O~2 0.395 X 1O~3 0.221 X 1O~4 

(0.541 X 1O~1) (0.445 X 1O~2) (0.385 X 1O~3) (0.358 X 1O~4) 

to the bias distribution, however, any modification of ex~ 
isting PRNGs should be required, which may degrade the 
randomness of its output and the performance of generated 
code. On the other hand, our construction is based on the 
analogy between the bias distribution and logistic map, and 
our simulation results confirm the traceability of the con~ 
structed fingerprinting code. 
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s. Conclusions 

In this paper, we have discussed about the stochastic ap­
proach for designing a threshold for determining colluders 
and the analogy of the bias distribution of Tardos's finger­
printing code with a logistic map, and proposed a system­
atic generation method. Our theoretical analysis under the 
assumption of Gaussianity gives us the actual number of 
detectable colluders as well as the actual number of false­
positive. Different from the conventional schemes, the ran­
dom variables Pi, (l :::; i :::; L) is generated from a secretly 
selected initial value for the logistic map, which reduces the 
required memory. 
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