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Organization of living things is characterized by dynamical hierarchical structures inheriting 

discrepancy among levels. It can be expressed as a system consisting of two layers; the microscopic 

perspective (Extent) defined by a collection of elements and the macroscopic perspective (Intent) 

defined by the property as a whole, and the interplay between them. First we show that if the 

microscopic and macroscopic perspectives are consistent with each other (an ideal case), then the 

operation between the two layers can be expressed as a sheaf between a lattice and a quotient lattice, 

where a sheaf is a mathematical operation representing the gluing process. Second, we introduce an 

observer who cannot look out over the whole world, and this reveals discrepancy between the two 

layers. Third, we introduce a new mathematical construction, called skeleton, that is derived by the 

sheaf operation. The skeleton reduces the discrepancy between the micro- and macroscopic 

perspectives, and that reveals the perpetual transition between the perspectives. This process yields a 

basic framework of biological organizations. Finally, we argue that the skeleton mediating between 

the two levels is a particular expression for the material cause. 

 

1. Introduction 

 

In this paper, we propose an abstract model for the organization of living systems to 

address the role of material cause. While the concept of self-organization is well accepted in a broad 

sense including non-living matters [1, 2], we believe that organizations of living matters should 

focus on two essential questions: (i) what is the dynamical hierarchy that exists in living things, and 

(ii) is it possible to abstract living things by ignoring the material nature? The two questions are 

intimately connected with each other.  

The first question is always taken up whenever one thinks about a system which has the 

adaptability (or learning) to the open environments, the so-called heterarchy [3-5], such as cognitive, 

learning and evolutionary systems. These systems consist of at least two levels; one level is 

employed to estimate the environments and the other is employed to make the decision for the 

corresponding response. For instance, in brain activities, the level corresponding to higher level 
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activities, that directly related to consciousness, occurs in the frontal lobe, and the lower level 

activities occur in the primary visual and/or auditory areas. The most intriguing thing is the interplay 

between the top-down process and the bottom-up process [6], which can lead to a dynamical 

hierarchy which goes beyond the level of logical self-reference, since logical self-reference entailing 

a contradiction is based on the definite indication of the two layers (whole and part) [7,8]. In brain 

activity each layer cannot be closed and independently separated from the other layers. That is the 

reason why it does not entail a contradiction and is robust although it mimics logical self-reference. 

Moreover dynamical hierarchy contributes to evolution even in a genomic population such 

that each layer is neither closed nor independently separated from the others. Adaptive mutation in 

bacteria shows that the environment estimation cannot be separated from the genesis of variants [9]. 

The complex structures of DNA-sequence and chromosomes are sensitive and so perpetually interact 

with their microscopic environments. It results in the anticipation by the genome society and the 

adaptive mutation [10]. Moreover, cooperative communications are also reported in a bacterial 

colony. Under the selective pressure on the colony, morphotype transition resulting from genetic 

changes appears. These transitions are beneficial to the colony but not directly to the individual cells 

[11,12]. This implies that there are two levels, the individual and the colony levels, and the interplay 

between them. 

How can we describe the interplay between the wo levels such as the individual and the 

population, or the local and the global? If one describes the interplay without contradiction, then the 

difference between the two levels with respect to the logical property is lost. On the contrary, if one 

sticks to the logical self-reference, it entails a contradiction although a real living system should be 

free from contradictions. We believe that both approaches are extreme due to the fact that both are 

based on consistent well defined mathematical expressions [5,7,8]. To resolve the problem, we 

introduce inconsistency in the mathematical expression, and show that (i) inconsistency invalidates 

the basis of self-reference and can avoid a contradiction, and (ii) inconsistent expression for an 

element makes it an agent or an internal observer [5,7,8,13,14]. For example, if a sensor of a cell is 

expressed as an inconsistent map, one cannot indicate the domain and the co-domain of the map so 

that it is impossible to determine whether a cell estimates environments or the cell is estimated. It 

then leads to the openness and adaptability of the cell. In order to overcome this difficulty, we 

introduce an “inconsistent mediator” between the two levels as a third component in order to 

describe the dynamical hierarchy or the interplay between the top-down and bottom-up processes. 

 The second question, “Is it possible to abstract living things by ignoring the material 

nature?” is usually forgotten in science. In the field of artificial life (AL), forgetting the material 

nature is rather purposeful [15] so that any mathematical model and computer program of AL lose 

their material nature. However, there are many endeavors on natural computing or biologically 

inspired computing (e.g., DNA computing, protein computing) [16-18]. The advantage of such 
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computing is the use of material nature as computing resources to make parallel process as massive 

as possible. It recover the material nature in theoretical biology. The notion of AL can be compared 

to that of artificial intelligence (AI) which goes into the impasse of encodingism. After the collapse 

of the concept of AI, robotics has been developed and it has been argued that consciousness cannot 

be separated from the body revealing community [19]. The advantage of thinking embodied mind 

[20] also treat the nature of the body as material. The question “What is the material nature in natural 

computing and robotics?” has not been raised explicitly, and still remains to be an open question. We 

cannot replace living things just by formal expressions without spelling out their material nature. 

Aristotle classified causality into the efficient cause (e.g., carpenter for a house), the 

formal cause (e.g., the blue-print), the material cause (e.g., wood, stone, nails) and the final cause 

(e.g., to living in the house). Here we would like to focus on the material cause. Rosen argued that a 

dynamical approach contains the efficient cause as a map, the formal cause as a parameter related to 

the structural stability, the material cause as an initial and boundary condition. However the final 

cause is missing in science [21]. In contrast, we believe that the material cause is missing in science. 

The material cause is defined such that from which a thing comes into existence as from its parts, 

constitutes, substratum or materials. If a thing is regarded as a subsequent behavior in the framework 

of dynamical systems, then Rosen is right. However, if a thing is regarded as a real thing recognized 

by an observer in a real world, then the statement “from which a thing comes into existence” is not 

restricted to the framework of dynamical systems but rather interpreted as the interface between the 

framework and the outside real world. Here we use the material cause in the latter sense, and then 

re-define the formal and efficient cause in the framework of dynamical systems. 

A dynamical system is a geometrical structure constituted by bundles of trajectories. 

Although one trajectory is an efficient cause and one point in a trajectory is a material cause in the 

sense of Rosen, a trajectory containing points is regarded as one unit and as an efficient cause. A 

whole geometry is regarded as a formal cause. The material cause is a mediator between the formal 

description and outside real world, that is employed to adjust the geometrical structure to a particular 

real phenomenon. Structural stability of a parameter controlling may be a candidate of such a 

mediator. It means that the mediator outside a dynamical system is embedded and re-implemented in 

the framework of dynamical system. It is here called embedding a mediator in a consistent manner. 

Such an embedding, however, falls into infinite regression. Once the mediator is embedded in the 

dynamical system, it loses the status of mediator, and that entails impossibility to implement the 

material cause. The material cause is at the edge of definite description consisting of formal and 

efficient causes that constitutes a dynamic triadic system. Therefore, the mediator as a material cause 

is described in an inconsistent manner. 

Finally we can say that the essential property of biological organization is the dynamical 

hierarchy consisting of two levels that are different from each other with respect to the logical 
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property, and the inconsistent mediator as a third component corresponds to the material cause. In 

Section 2, two levels will be examined in terms of the parts and the whole, and of the Extent 

(collection of fragments) and the Intent (property as a whole). This distinction is consistent with the 

traditional mathematical expression for hierarchical systems, such as the lower level and the higher 

one generated by taking the limit (co-limit) of the lower one. This is typically expressed by a 

mathematical structure called “sheaf” [22], that we will introduce in Section 2. In Section 3 we will 

introduce the lattice and the quotient lattice [23], and we reconstruct the sheaf on a lattice in Section 

4. Those sections yield the basic framework of our model for biological organization. In Section 5, 

we will introduce the interplay between the two levels and introduce an inconsistent mediator called 

“skeleton”. That provides a fundamental structure for biological organization. We will finally argue 

how skeleton corresponding to the material cause can contribute to the robustness and evoluvability 

of a living system. 

 

2. Parts and Whole, and Gluing 

 

 Several decades have passed since it was argued that a system as a whole is not just a 

collection of parts in system theory and cybernetics [24,25]. Although researchers of complex 

systems and artificial life introduce a system consisting of non-linear oscillators to address the 

collective phenomena and/or emergent behaviors, a system consisting of non-linear oscillators is 

defined just as a collection of oscillators, that is not a system as mentioned in section 1. It implies 

that the seed of emergent behavior is just hidden in the non-linear oscillators. On one hand, one 

accepts distinguishability in terms of trajectory. On the other hand, one has to accept 

indistinguishability at the global level where the collective phenomenon can be found as pointed out 

by Diebner [26]. In understanding emergence, two standards superimposed in an inconsistent 

manner are needed in order to reveal the notion of real emergence. Although such thinking may 

sound erroneous, we believe that it is inevitable. A question remains how we can describe the 

dynamical relationship between the local (with distinguishability) and the global (with 

indistinguishability). In other words, how can we define the parts and the whole? 

The definition is reexamined such that a system as a whole is not just a collection of parts. 

A system is a formal concept that is expressed as the pair of Intent and Extent. While the Extent is a 

collection of objects, the Intent is expressed as a whole (e.g., [27]). In addition, the Extent is 

normally assumed to be equivalent to the Intent. For example, this can be illustrated by the concept 

of even numbers in the set theory. The Extent is the collection of 0, 2, 4, … and the Intent is 2n 

where n is a natural number. If an even number is replaced by “a system”, the definition of a system, 

however, implies that the Intent is not equivalent to the Extent. On one hand, the Intent has the 

indefiniteness inherited from the definition of natural numbers by n of 2n. On the other hand, the 
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Extent has indefiniteness in the form of  “…”. It implies that the indefiniteness in the Intent (i.e., 

indefiniteness in n) is different from those in the Extent (i.e., indefiniteness in “…”). We then have to 

accept discrepancy between the Intent and the Extent, which is true in the definition of a system. 

In this sense, the contrast between the Extent and the Intent can be interpreted as the 

contrast between the individuals and the context. If the Intent (context) is consistent with the Extent 

(individuals), there is no dynamical negotiation so that the Intent is nothing but just representing the 

standard notion of boundary conditions. In the inconsistent case, Intent can then be regarded as a 

boundary condition where an internal observer sits and witnesses the outside. 

First, we start from the concept of a system that is expressed as the pair of Intent and 

Extent, and we simultaneously accept the indefiniteness of a concept. It leads not only to the 

discrepancy between the Intent and the Extent, but also to the dynamical negotiation between them 

since the pair constitute the unity as a concept of the system. In terms of physics, the microscopic 

and macroscopic perspectives can correspond to the Extent and the Intent, respectively. One can 

imagine in a particular chemical substrate, the collection of molecules and molecular dynamics 

constitutes the Extent of the chemical substrate. If one idealizes a collection of huge number of 

molecules as the concentration and describes the dynamics with respect to the concentration, then 

the Intent of chemical substrate is represented by the reaction equations. Although the Intent and the 

Extent dynamically keep the concept of chemical substrate, researchers normally address only one of 

them. The dynamical process between the micro- and macroscopic perspectives is sometimes 

expressed in the form of Maxwell’s demon [28] or vertical scheme in the context of biologically 

inspired computing [29]. It is, however, too hard to elucidate the process. Dynamical discrepancy 

and negotiation between the micro- (Extent) and macroscopic (Intent) views play an essential role in 

the science of consciousness since researchers have to explain how consciousness is generated from 

a collection of neurons [30]. The consciousness is regarded as the Intent of brain activities. 

Extent

Intent

Gluing （Deduction)

Differentiation (Induction)

 
Fig. 1. Schematic diagram of gluing and differentiation. If a fragment 
is “glued” by a sheaf, fragments are regarded as parts in a whole 
system, and that implies Intent equivalent to Extent. 
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 In order to elucidate the dynamical discrepancy and the negotiation between the Intent and 

the Extent, we use a particular mathematical structure called “sheaf” [22]. It is derived from the 

index set in the set theory [31]. Given an index set, a collection of elements is regarded as the Extent, 

and an index by which the elements are collected is regarded as the Intent. Once the index is 

determined, the Intent is consistent with the Extent, and the fragments are regarded as parts of the 

whole structure (Fig. 1). When this idea is expanded into the topological space, the sheaf can then be 

constructed. Now we introduce the definition of “sheaf”, and then gradually construct the dynamical 

negotiation between the Intent and the Extent. First, we define presheaf in the sense of category 

theory that is sketched in the Appendix. 

 

Definition 2-1 (Presheaf) 

 

 Let X be a topological space, and U, VX be open sets in X.  is a category of X, that an 

object of  is an open set U, and an arrow VU is an inclusion such that VU. Let Sets be a 

category of sets, whose objects are sets and arrows are maps. A presheaf is defined by a functor, F: 

op Sets. 

 

If an arrow VU in  is transformed to an arrow U,V:F(U) F(V) defined by the restriction map, 

F: op Sets is a functor implies that it is a presheaf. Since WVU implies F(U)F(V)F(W), in 

the typical example with F(U) = {continuous maps on U}, for sF(U), then we have V,WU,V(s) = 

V,W(s|V) = s|W = U,W(s). It is also clear to see that given UU, then U,U = idF(U). Hereafter, we 

denote F(U)F(V) as U,V for the presheaf. 

 

 A sheaf is a presheaf satisfying specific conditions, mono-presheaf and gluing conditions 

[22]. Two conditions are defined by the following. 

 

Definition 2-2 (Sheaf) 

 

 A presheaf F: op Sets is a sheaf if and only if it satisfies (i) the mono-presheaf 

condition, and (ii) the gluing condition, where 

 

(i) Mono-presheaf condition: 

 

Let  be an index set. Suppose that U is an open set of X and U = U is an open 

covering of U. For any , if for any s, tF(U), and U, U (s) = U, U (t), then s = t. 



 8

 

(ii) Gluing condition: 

 

Suppose that U is an open set of X and U = U is an open covering of U. Given a 

family (s), with , sF(U),  if , , and  U,UU(s) =  U, UU(t), then 

there exists sF(U) such that , and U, U(s) = s. 

 

Due to the gluing condition, the parts are pasted up into the whole. Once the whole is constructed by 

the sheaf, any fragment can be expressed as a part of the whole. As a result, there is no discrepancy 

between the parts and the whole. 

 Here we sketch our strategy to describe a self-organizing system of living things by using 

the dynamical sheaf. We have introduced a sheaf as an operator indicating the distinction between 

the microscopic perspective (Extent) and the macroscopic one (Intent). We will show that it is 

impossible to obtain an operator (we here call reverse-sheaf) by which the Extent is reconstructed 

from the Intent without a super-observer. This reveals the inconsistency between the Intent and the 

Extent. The reverse sheaf has to be constructed “locally” and ad hoc, that cannot be uniquely 

determined. It implies that we can escape from the self-reference as a meta-physical trap. 

We believe that self-reference is regarded as an evil thing as far as operations can be 

counted, such as “observation (1) of observation (2) of observation … of observation (infinite)”. 

Here it is assumed that the observation is uniquely determined. But actually, this assumption is 

invalid since the observation is open to the outside (i.e., indicating that “observation” falls into, 

namely, the frame problem). Thus, the observation keeps changing perpetually, such as “the 

observation of the measurement of the thinking of …”. As a result, one cannot see self-reference in 

the process since repetition cannot be seen. That is the reason why we argue that self-reference as an 

evil thing is just a meta-physical trap. 

In our mathematical model, if the reverse-sheaf is uniquely determined, one can obtain a 

unique operational “measurement” by the composition of the sheaf and reverse-sheaf, and that falls 

into a meta-physical trap. In our framework, the reverse-sheaf cannot be determined, and indeed, the 

reverse-sheaf destroys the microscopic structure. The next question arises, namely, how one can 

repair the structure. We will show that the form derived from the sheaf, where the functionality of 

the sheaf is lost, can be employed to a special task of repair. The form losing its functionality of 

sheaf is called a skeleton. A skeleton plays as a mediator between the micro- and macroscopic 

perspectives. 

To construct the dynamical gluing derived from the sheaf, we introduce the lattice since it 

is easy to construct the complex tools in the lattice. Before we define the sheaf as a map from the 

lattice to the quotient lattice, we introduce some notions on the quotient lattice. 
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3. Quotient Lattice 

 

 First we define a lattice [23]. A partially ordered set P is a set with a partially order PP, 

where for any a, b, cP, (i) aa, (ii) ab, ba  a = b, (iii) ab, bc  ac. Given a partially 

ordered set P, for a subset of SP, a is the upper bound of S, if, for any xS xa. The least upper 

bound is called join, and is represented by S. Especially, if S is a two-elements set {x, y}, join is 

represented by xy. Dually, the lower bound, meet is defined as the greatest lower bound denoted by  

xy. A lattice is a partially ordered set such that it is closed under the join and the meet for any two 

elements. 

 If a lattice L is distributive (i.e., for any a, b, cL, a(bc) = (ab)(ac) where L is 

finite), it is an open set lattice of a topological space. Since a quotient lattice derived from L is a 

collection of co-limits, we can construct the sheaf from the lattice to its quotient lattice. For this 

purpose, we first define congruence on a lattice. 

 

Definition 3-1 (Congruence on a lattice) 

 

 Given a lattice L, let an equivalence relation on L be  = {<x, y>LL} such that, for x, y, 

zL,  

 

(i) <x, x>; 

(ii) <x, y>  <y, x>;  

(iii) <x, y>, <y, z>  <x, z>. 

 

<x, y> is expressed also as x y or x  y (mod ). An equivalence relation is a congruence on L if, 

for all a, b, c, dL, 

 

            (a  b (mod ) and c  d (mod ))  (ac  bd (mod ) and ac  bd (mod )). 

 

It is convenient to introduce the following proposition. 

 

Proposition 3-2 

 

 An equivalence relation  on a lattice L is a congruence if and only if, for all a, b, cL, 

 

a  b (mod )   ac  bc (mod ) and ac  bc (mod ). 
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Proof. It is shown in [23], as lemma 6.6. 

 

 By using a congruence, a quotient lattice is well defined. 

 

Definition 3-3 (Quotient lattice) 

 

 Let  be a congruence on a lattice L, and a set L/ is defined by 

 

           L/ = {[a] | aL} with [a] = {bL | b  a (mod )}. 

 

If meet () and join () are defined by 

 

           [a][b] := [ab],   [a][b] := [ab], 

 

we call <L/, , > the quotient lattice of L modulo . If  is an equivalence relation but not a 

congruence, we call <L/, , > the quasi-quotient lattice of L modulo . 

 

To show that the definition of quotient lattice is well defined, the following proposition is needed. 

 

Proposition 3-4 

 

 An equivalent relation  on a lattice L is a congruence if and only if, 

 

          [a] = [c],  [b] = [d]    [ab] = [cd],  [ab] = [cd]. 

 

Proof. () Assume that  is congruence.  

 

[a] = [c], [b] = [d]  a  c (mod ), b  d (mod ), 

                   ab  cd (mod ), ab  cd (mod )   (congruence) 

 [ab] = [cd],  [ab] = [cd]. 

 

     () a  c (mod ), b  d (mod )  a[c], b[d] 

                                 [a] = [c], [b] = [d]  

                                 [ab] = [cd], [ab] = [cd],   (assumption) 

                                 ab  cd (mod ), ab  cd (mod ). 
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Verification of Definition 3-3. Since [a][b] = [ab] and [a][b] = [ab], we here show that 

they are independent of the elements chosen to represent the equivalence class. Assume c[a] and 

d[b], it is equivalent to have [a] = [c], [b] = [d]. From propositions 3-4, we have [ab] = 

[cd], [ab] = [cd]. Therefore, meet and join in a quotient lattice is well defined. 

 

 If a quotient lattice is defined by using an equivalence relation derived from a subset of the 

lattice, it is easy to construct the sheaf from the lattice (topological space) to the quotient lattice (set).  

It is also easy to extend it to the dynamical sheaf. For this purpose, we introduce the equivalence 

relation derived from the ideal, where the ideal is a non-empty down-set that is closed under the join. 

 

Definition 3-5 (Equivalence relation derived from ideal) 

 

 Let J be an ideal on a lattice L. The equivalence relation derived from J is defined by; 

 

          J := {<x, y>LL | zJ (xz = yz)}. 

 

Verification: We show that J satisfies (i) reflective, (ii) symmetric, and (iii) transitive laws. 

(i) reflective law: Since ideal J contains the least element 0 on L, for any xL, we have 

 

           x = x0 = x0. 

 

It implies that <x, x> satisfies 0J (x0 = x0), and so x  x (mod J). 

(ii) anti-symmetric law: 

 

           x  y (mod J)  zJ (xz = yz)  zJ (yz = xz)  y  x (mod J). 

 

(iii) transitive law: 

 

          x  y (mod J), y  z (mod J)  uJ (xu = yu), vJ (yv = zv). 

 

Since J is an ideal that is closed under join, from uJ and vJ we obtain uvJ. Now,  

 

xu = yu, yv = zv  xuv = yuv, yuv = zuv  xuv = zuv. 

 

It implies x  z (mod J). 
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 An equivalence relation derived from an ideal has the following particular property. 

 

Proposition 3-6 

 

Let J be an equivalence relation on a lattice L, defined by definition 3-5, then J is a block 

of the corresponding partition of L. 

 

Proof.  We prove that J is a block of the corresponding partition of L, that is, if xJ, then [x]J = J. 

In assuming yJ, we obtain xyJ, since xJ. On the other hand, x(xy) = xy = y(xy). It 

implies that x  y (mod J), and so y[x]J . Finally, we have J[x]J . Conversely, in assuming 

y[x]J , 
zJ (xz = yz). Since J is an ideal xJ and zJ, we obtain xzJ. Therefore, we have 

yzJ. Moreover, since zJ, yyzJ and J is an ideal with yJ. It implies that [x]JJ. Finally, we 

have [x]J = J. 

 

 In our model of dynamical gluing, the following theorem plays an important role. 

 

Theorem 3-7 

 

 Let J be an equivalence relation on a lattice L, defined by definition 3-5, then L is 

distributive if and only if J is a congruence on L for every ideal J of L. 

 

Proof. ) (i)Let L be distributive. In assuming that x  y (mod J), 
uJ (xu = yu). For any zL, 

(xu)z = (yu)z, and then we have 

 

          (xz)u = (xu)z = (yu)z = (yz)u. 

 

It means that xz  yz (mod J). In concerning about meet, 

 

          (xz)u = (xu) (zu) = (yu) (zu) = (yz)u. 

 

It means that xz  yz (mod J). It verifies that J is a congruence from proposition 3-2. 

) To prove that L is distributive, first we prove that L is modular, that is, L does not contain N5 as a 

sublattice, and then prove that L does not contain M3 as a sublattice. 

(i) First we prove that for <x, y>L’L’, <x, y>J  <x, y>S where S = JL’, and L’ is a 

sublattice of L. In assuming <x, y>J such that zJS ((xz) = (yz)). Let J = p, with pL’, we 
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have pz = pS, and xzp= yzp. It implies <x, y>S.  

(ii) We assume that L contains N5. From (i), the partition in N5 coincides with that of L, and it is 

satisfied to estimate the equivalence class in N5.  In choosing an ideal J, as shown in top left 

diagram in Fig. 2, we obtain partitions derived from J as shown in the top right in Fig. 2. Since each 

loop indicates an equivalence class, we have 

 

           s1  c (mod J ). 

 

Although s1a  ca (mod J ) since s1a = s1 = ca, we have s1a = a and ca = s0. Since 

 

           s1a  ca  (mod J ), 

 

does not holds, J is not a congruence. That is a contradiction, and it implies that N5 is not contained 

in L. Thus, the lattice L is modular. 

(iii) We assume that L contains M3. From (i), what we have to do is just to estimate the equivalence 

classes in M3.  In choosing an ideal J’, as shown in the bottom left diagram of Fig. 2, we obtain the 

partitions derived from J’ as shown in the bottom right of Fig. 2. Since each loop indicates an 

equivalence class, we have s1  b (mod J’). However, it does not imply s1c  bc (mod J ‘) since 

s1c = c and bc = s0. It means J’ is not a congruence, and that is a contradiction. Therefore, L does 

not contain M3 as a sublattice. 

All together from (ii) and (iii), L is distributive. 

 

s1

s0

s1

s0

a

b

c

a b c

 
Fig. 2. N5 and an ideal J indicated on a diagram placing a loop around the 
elements (above left). Equivalence class derived from J (above right). M3 

and an ideal J’ (below left). Equivalence class derived from J’ (below right). 

 

 A sheaf and a dynamical gluing on the lattice are defined by using the quotient and/or the 
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quasi-quotient lattice of L modulo J . In the next section, we will define the sheaf on the lattice, such 

as an operation from the lattice to the quotient lattice. 

 

4. Gluing on Lattice 

 

 To construct the dynamical gluing process in the lattice theory, we first define the sheaf on 

a lattice. If L is a finite distributive lattice, it can be regarded as an open set lattice of the topological 

space, then the map L L/ can be regarded as an operation from the topological space to the set. 

This leads to the sheaf construction. Before defining the sheaf on the lattice, we need to prove the 

following proposition. 

 

Proposition 4-1 

 

 Let J be an ideal on a finite lattice L, and J is a congruence relation derived from the ideal 

J. We denote x’ = [x]J for any x in L. Then, for any x, y, zL, 

 

(i) x’[x]J 

(ii) xy  x’y’ 

(iii) x = yz  x’ = y’z’. 

 

Proof. (i) Since [x]J is a finite set, we denote [x]J = {a1, a2, …, an}. Also, we define a1  x (mod J) 

and a2  x (mod J) since a1, a2[x]J. From the definition of congruence, we have a1 a2  xx = x. 

Similarly, we have a1 a2… an = [x]J  x, that is, x’[x]J. 

(ii) From x’ = [x]J and (i), we obtain x’  x (mod J) and y’  y (mod J). By the definition of 

congruence, we obtain x’ y’  x y (mod J). Also from the assumption, we have x y = x  x’ (mod 

J), that is, x’ y’  x’ (mod J). This means 

 

             jJ (x’ y’ j = x’ j). 

 

Since L is a finite lattice, the ideal J can be expressed as p where pL. For any xL, [x]J is either J 

or not. If [x]J = J with J = x’, then jx’. If [x]J  J, we obtain jpx’. This leads to x’ j = x’, and 

then x’ y’= x’ y’ j = x’ j = x’, that is, x’y’. 

(iii) From the assumption, we have x’  y’z’ (mod J). Together with (ii), jJ (x’ j = y’z’ j),  

x’ j = x’ and y’ j = y’. Finally, we obtain y’z’= y’ z’ j = x’ j = x’. 
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Definition 4-2 (Lattice as a topological space and as a set) 

 

 Let L be a distributive lattice, and we can regard C(L) as a category on the topological 

space whose object is an element of L such as xL and an arrow is partial order  defined on L. We 

call C(L) the lattice-top-space category. Let J be a congruence derived from the ideal J on L, and 

L/J be a quotient lattice of L modulo J. We can regard C(L/J) as a category on sets whose object is 

a pair of equivalence classes with supremum <[x]J, x’>, where x’ = [x]J. The arrow is denoted by  

(-)y’: [x]J[y]J where y’ = [y]J, xy in L. We call C(L/J) the lattice-set category. An object can 

also be expressed as [x]J that is an abbreviation for <[x]J, x’>. 

 In addition, let ’ be an equivalence class derived from an ideal J, and L/’ is a 

quasi-quotient lattice of L modulo ’, where [x]’’ = {x’} and x’ = [x]’. This means that any other 

elements in the equivalence class are ignored. We call C’(L/’) the quasi-lattice-set category. 

 

Verification: It is easy to see that a distributive lattice is a topological space, and C(L) is a category. 

In L/J, with any arrow (-)y’: [x]J [y]J for any a[x]J, we have (-)y’(a) = ay’. Since J is a 

congruence and a  x (mod J), we obtain ay’  xy’ (mod J). From proposition 4-1, we have y’  

y (mod J), and thus xy’  xy (mod J). Because xy, ay’  y (mod J). This implies ay’ [y], 

and therefore it is well defined. For any object [x], there is an arrow (-)x’: [x] [x]. Also, for any 

a[x], (-)x’(a) = ax’ = a since x’a. This implies (-)x’ is an identity. With respect to the 

composition, for xyz in L, (-)y’: [x] [y] and (-)z’: [y] [z] can then be defined. For any 

a[x], 

 

            ((-)z’)((-)y’)(a) = (ay’)z’ = a(y’z’) = az’ = (-)z’(a), 

 

since yz implies y’z’ from proposition 4-1. Therefore, the composition is well defined. Moreover, 

the associative law holds for [x] [y]  [z]  [w] since 

 

            ((ay’)z’) )w’ = ((a(y’z’))w’ = (az’)w’ = aw’, 

(ay’)(z’w’) = (ay’)w’ = a(y’w’) = aw’. 

 

In the quasi-lattice-set category, the only thing that we have to care about is, namely, for x[x]’, 

(-)y(x) = xy = y[y]’. This implies that it is a category. 

 

Theorem 4-3 (Presheaf on a lattice) 

 

 Let J be a congruence derived from the ideal J on a distributive lattice L. An operation 
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F:C(L)opC(L/J) defined as: for any object x in C(L)op, F(x) = <[x]J, x’> where x’ = [x]J; for an 

arrow, xy, x,y = (-)y’: [x][y]; is a presheaf. 

 

Proof. From the definition of arrows in C(L/), it is clear to see that F preserves identity and 

composition. 

 

Definition 4-4 (Semi-presheaf) 

 

Let ’ be an ideal-derived equivalence relation on a lattice L. The operation 

F:C(L)opC’(L/’) is called a semi-presheaf. 

 

Since we do not need the distributive law to show that F:C(L)opC(L/) is a presheaf, it is 

well-defined. 

In C’(L/’), we always choose the greatest element of the equivalence class as its representative, and 

ignore other elements. As a result, [x][y] = [xy] and [x][y] = [xy] are applied to C’(L/’). 

 

Lemma 4-5 (Sheaf conditions on a finite lattice) 

 

 If the topological space is given as a finite set, then the mono-presheaf condition is 

equivalent to the finite mono-presheaf condition, and the gluing condition is equivalent to the finite 

gluing condition and the mono-presheaf condition, where 

 

(i) Finite mono-presheaf condition: 

 

Given an open covering U = V1V2, for any s, tF(U), U, V1(s) = U, V1(t) and U,V2(s) = 

U,V2(t), then s = t. 

 

(ii) Finite gluing condition: 

 

Given an open covering U = V1V2, suppose s1F(V1), s2F(V2) such that U,V1V2(s1) = 

U,V1V2 (s2), then there exists sF(U) such that U,V1(s) = s1 and U,V2(s) = s2. 

 

Proof. (i) Suppose the mono-presheaf condition is satisfied, it is clear to see that the finite 

mono-presheaf condition holds. Conversely, suppose the finite mono-presheaf condition holds, we 

can apply the mathematical induction in terms of the number of covering. Given U = 

V1…VnVn+1 and assume that for any s, tF(U), U,Vi(s) = U,Vi(t) with 1in+1, and also V = 
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VnVn+1. Since 

 

            V,Vk(U,V(s)) = U,Vk(s) = U,Vk(t) = V,Vk(U,V(t)) 

 

with k = n, n+1, we obtain U,V(s) = U,V(t) due to the finite mono-presheaf condition. By decreasing 

the number of open covering such that U = V1…Vn-1V, we already obtain U,Vi(s) = U,Vi(t) with 

1in-1, and U,V(s) = U,V(t). Thus from the assumption of induction, we have s = t. 

 

(ii) Suppose the gluing condition holds, it is clear to see that the finite gluing condition also holds. 

Conversely, suppose the finite gluing condition holds, we again apply the mathematical induction in 

terms of the number of covering. Given U = V1…VnVn+1 and assume siF(Vi) with1in+1 

such that Vi,ViVj(si) = Vj,ViVj(sj). Let V = VnVn+1, we then obtain Vn,VnVn+1(sn) = 

Vn+1,Vn+1Vn(sn+1). Thus, there exists sF(V) such that V,Vn(s) = sn and V,Vn+1(s) = sn+1. Let W = 

ViV = (ViVn) (ViVn+1), then we have 

 

             W, ViVn(Vi,W(si)) = Vi, ViVn(si) = Vn, ViVn(sn) = Vn,ViVn(V,Vn(s)) 

                           = V, ViVn(s) = W, ViVn(V,W(s)). 

 

In a similar manner, we obtain W,ViVn+1(Vi,W(si)) = W,ViVn+1(V,W(s)). Due to the mono-presheaf 

condition, we have Vi,W(si) =V,W(s), that is, 

 

             Vi, ViVn(si) =V, ViVn(s). 

 

By decreasing the number of open covering such that U = V1…Vn-1V, there exists pF(U) such 

that, for 1in-1, U, Vi(p) = si and U, V(p) = s. Thus, for k = n or n+1, we have U, Vk(p) = V, Vk(U, 

V(p)) = V,Vk(s) = sk. 

 

Theorem 4-6 

 

 Let J be an equivalence relation on the lattice L defined by definition 3-5, then J is a 

congruence for any J. The operation F:C(L)opC(L/J) defined as: for any object x in C(L)op, F(x) = 

<[x]J, x’> where x’ = [x]J; for an arrow, xy, x,y = (-)y’: [x]J[y]J, is a sheaf. 

 

Proof. (i) Mono-presheaf condition: Let x be a covering for y and z in L, that is, x = yz. Due to the 

functor F, xy and xz are mapped to arrows, x,y = (-)y’: [x]J[y]J and x,z = (-)z’: [x]J[z]J. 

The assumption of the mono-presheaf condition is given by: for a,b[x]J, ay’ = by’ and az’ = 
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bz’. From proposition 4-1, we obtain x’ = y’z’. Thus, 

 

            a = ax’ = a (y’z’) = (ay’)(az’) = (by’)(bz’) = b (y’z’) = bx’ = b. 

 

(ii) Gluing condition: Given (-)y’: [x]J[xy]J and (-)x’: [y]J[xy]J, if, for a[x]J and 

b[y]J, ay’ = bx’, then there exists c[xy]J such that cx’ = a and cy’ = b, with (-)x’: 

[xy]J[x]J and (-)y’: [xy]J[y]J. Since a[x]J, b[y]J and J is a congruence, we can take 

ab[xy]J. From a[x]J, ax’x’y’, and then we have 

 

            (ab)x’ = (ax’)(bx’) = (ax’)(ay’) = a(x’y’) = a, 

(ab)y’ = (ay’)(by’) = (bx’)(by’) = b(x’y’) = b. 

 

 Fig. 3 shows an example of the sheaf. The equivalence class J derived from the ideal J is 

indicated in the diagram by placing a loop around the elements in the lattice L. The sheaf F is an 

operation from L to the quotient lattice L/J. 

L L/J

F

x

y

[x]J       x’ = [x]

[y]J       y’ = [y]

F
(-)yy x

 
 

Fig. 3. An example of the sheaf from a lattice to a quotient lattice of L modulo 
J, where each equivalence class contains the elements. 

 

Theorem 4-7 (Semi-sheaf) 

 

Let ’ be an equivalence relation derived from the ideal J on the lattice L. An operation 

G:C(L)opC’(L/’) defined as: for any object x in C(L)op, G(x) = [x]’’ = {x’}, where x’ = [x]’; for 

an arrow, xy, x,y = (-)y’: [x]’’[y]’’ satisfies the sheaf condition. Since C(L)op is not a 

topological space in the strict sense, we call G semi-sheaf. 

 

Proof. (i) Mono-presheaf condition: Since [x]’’ = {x’}, if a,b[x]’’, ay = by, then a = b =x. 
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(ii) Gluing condition: Since [x]’’ = {x’}, given (-)y’: [x]’’[xy]’’ and (-)x’: [y]’[xy]’’, the 

condition is trivially true such that for x’[x]’’ and y’[y]’’, x’y’ = y’x’. Then there exists 

x’y’[xy]’’, such that (x’y’)x’ = x’ and (x’y’)y’ = y’.  

 

By introducing the semi-presheaf and the semi-sheaf, we can also address the gluing 

process for the equivalence relation that is not a congruence. However, this implies a serious 

problem in terms of the relationship between the microscopic perspective as a lattice to the 

macroscopic perspective as a quotient lattice. As mentioned before, the equivalence relation derived 

from the ideal is always a congruence if the ideal is a subset of the distributive lattice so that the  

sheaf is well-defined. We, however, believe that the constraint of the distributive lattice is too hard to 

be valid in general gluing processes in order to expand the idea of sheaf to general lattices. This 

results in a semi-sheaf by which any element of the quotient lattice, such as [x]’’, is obtained as a 

singleton set, {x’}. It also implies that the microscopic information is lost through the generalization 

procedure in the macroscopic perspective. Therefore, the next question arisen is whether the 

microscopic information can be reconstructed by a particular operation from the macroscopic 

perspective to the microscopic one. 

 

5. Dynamical Gluing and Skeleton 

 

 Dynamical gluing is defined as a pair of dynamics, from the parts (i.e., a collection of parts 

or Extent) to the whole (i.e., Intent), and one from the whole to the parts. We call the former the 

gluing process and the latter the differentiation process. Although these two dynamics are equivalent 

to each other in the sheaf, there is a discrepancy between the two dynamics. We first assume that the 

sheaf reveals an idealized case with respect to the relationship between the parts and the whole. As 

mentioned above, the equivalence relation derived from the ideal gives the sheaf. Thus we define 

two operations, the Intent and the Extent for the binary relation that can correspond to the two 

aspects of sheaf. In the idealized case, they are equivalent to each other. 

 

Definition 5-1 (Intent and Extent) 

 

 Let X be a set. Given a binary relation RXX, a map E(R): XX2 derived from R is 

called the Extent of R if and only if for <x, y> XX,  

 

E(R)(<x, y>) =   1   if <x, y>R ; 

0   if <x, y>R. 
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Also, a map I(R):X2X such that, for yX, I(R)(y)2X is defined by; for xX I(R)(y)(x) = 1 or 0; is 

called the Intent, if and only if, 

 

            E(R)(<x, y>) = I(R)(y)(x). 

 

 Now we have defined the pair of Intent and Extent resulting from the equivalence relation. 

We recall the equivalence relation J derived from the ideal that is argued in section 3. The next 

theorem shows how to construct the map equivalent to the equivalence class of J. 

 

Theorem 5-2 (Reconstruction of a lattice from a quotient lattice) 

 

 For the binary relation J derived from an ideal JL, there exists a filter KL such that 

 

             [x]J = f- -1(x), 

 

where for any xK, 

 

             f- -1(x) := x     y. 
                         yK, yx 

 

Proof. Since J is an ideal, let J = p with pL. A filter K is given by p. 

(i) We prove [x]J f- -1(x). In taking y[x]J, y  x (mod J), that is, zp (xz = yz). Therefore, 

zp. Since xK =p, zpx. Also, since yyz = xz = x, yx. Next we show that that ux, yu, 

for any up. Assume that yu such that ux, for any zp = J, zpu. From yu, we have yu. 

This implies that u is an upper bound of {z, y}, zyu, therefore we have 

 

           zy  u  x  zx. 

 

It implies that, for any zJ, zy  zx, and so y[x]J. That is a contradiction, and then we have 

yu. Since yx and yu with up and ux, yx   
up, ux u = f- -1(x). 

(ii) We prove that f- -1(x) [x]J. We assume y f- -1(x), then we have y x. From xK = p, we have 

p x. Therefore, x is an upper bound of {y, p}, and ypx. If yp  x, y f- -1(x) since f- -1(x) does not 

involve (yp), and that is a contradiction. It implies yp = x. On the other hand, xp = x since p x. 

As a result, we have 

 

           pJ=p (xp = yp). 
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This implies that y[x]J. 

 
Fig. 4. Some example of [x]J = f- -1(x), where J is the binary relation derived 
from the ideal JF, J = p. In the top row, J = p is indicated on the diagram 
placing a loop around the elements. In the middle row, a loop indicates K = p. 
In the bottom row [x]J = f- -1(x) is indicated by placing a loop around the 
elements. 

 

 Fig. 4 shows some examples of [x]J = f- -1(x) for various lattices. Given an ideal J = p in 

a lattice (upper row), the corresponding filter K = p is determined (middle row), and the partition 

[x]J = f- -1(x) (bottom row) is also determined. 

 It is easy to construct the Extent of J. From the operation f- -1:K(L) one can also 

construct the Intent of J. Strictly speaking, modifying J by J’ can lead to its Intent and Extent. 

 

Theorem 5-2 (Intent and Extent in Reconstruction) 

 

 Let J = p be an ideal on the lattice L, K = p, J’= {<x, y>LK J } and J = {<x, 

y>LL | zJ(xz = yz)}, and for any yK, f- -1(y) = y   
zK, zy z. The map < f- -1>:K2L 

such that, for any xL,  

 

            < f- -1>(y) (x) =   1      if x f- -1(y); 

                           0      if x f- -1(y). 

 

is the Intent of J’, that is, 
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             I(J’ ) = < f- -1>, 

 

such that 

 

                      L2L       ev 

 

            id< f- -1>                     2 

                                  E(J’) 

                      LK 

 

where the broken arrow indicates the unique map that commutes the diagram, and for any <x, g> 

L2L, ev(<x, g>) = g(x). 

 

Proof. The Extent of J’ is defined by E(J’)(<x, y>) = 1 if <x, y>J’; E(J’)(<x, y>) =0 if <x, 

y>J’. Therefore, for any <x, y> LK, 

 

             ev(id< f- -1>)(<x, y>) = ev(<x, < f- -1>(y) >) = < f- -1>(y) (x). 

 

Since < f- -1>(y)(x) = 1  x f- -1(y)  x[y]J ‘  <x, y>J’ I(J’)(<x ,y>) = 1, the diagram is 

commutative. In assuming g: K2X also commutes the diagram, for any <x, y>LK, < f- -1>(y) (x) 

= g(y)(x). Then <f- -1>(y) = g(y) for any yK, and implies <f- -1> = g. 

 

 What is the relationship between the Extent and the Intent, or between J and f- -1? We 

regard the sheaf (and semi-sheaf) as a gluing dynamics with respect to a particular function 

expressed as an equivalence relation derived from the ideal. Since the sheaf leads to the structured 

partition and any structure never holds without wholeness, it reveals the dynamics from the parts to 

the whole. Given J, we can define the sheaf. By contrast, we regard f- -1 as a differentiation 

dynamics that is from the whole to the parts.  

Notice that once the partitioned structure is made through the sheaf, each part forgets the 

structure. It implies that each [x]J in L/J forgets the original lattice L. In this sense, f- -1 can be 

regarded as a process reconstructing the original lattice. Since f--1(x) = xyK, yxy, 

reconstruction by f--1(x) is needed when x is defined, and that requires the whole structure of the 

original lattice. From Theorem 5-2, f--1(x) = [x]J , and then xK f--1(x) = L. This implies the 

paradoxical situation. Before reconstructing a lattice, each x has to know the lattice resulting from 

the reconstruction. In other words, differentiation needs the wholeness that cannot be definitely 
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known. Each x has to assume a quick-fix wholeness of L (Fig. 5). 

 

J : Gluing（Extent） f -1(x): Differentiation(Intent)

L L/J

fragment Structured whole
sheaf

 

Fig. 5. Schematic diagram of the gluing and differentiation process derived 
from the sheaf. If the original lattice L is forgotten in the glued-up structure 
L/J, how can the differentiation process reconstruct L? By contrast, if the 
information about L is not lost, we have [x]J = f- -1(x) by Theorem 5-2. 

 

As shown in Fig. 5, each x has to construct a subspace (indicated by an ellipse) of the 

original lattice in the differentiation process represented by the broken arrow. Since each x has no 

knowledge about the original lattice in constructing the subspace which is independently separated 

from each other, it cannot be expected that the resulting subspaces constitute a unified structure such 

as the lattice. Thus, making a subspace independently separated from each other can lead to the 

collapse of the lattice. Then, how can one overcome this problem? 

We here define a tool called the skeleton that can move freely between the parts and the 

whole. Even if a collection of f- -1(x) can lead to the collapse of the lattice, the skeleton can recover 

the lattice. A skeleton is expressed as the wrecked function. 

 

Definition 5-3 (Skeleton) 

 

 Given a map f(x), f(?) is a skeleton, where ? indicates an indefinite symbol, and 

 

              ‘f(x)’= f(x) + f(?), 
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where any symbol can be substituted to ?. If some m is substituted for ?, 

 

f(m)  f(m) + f(?). 

 

The symbol  indicates an equivalence relation on the product of the set of all symbols, and includes 

=. If an expression f(m) is well defined and has a value, the transition is always stopped and f(?) is 

ignored. If f(m) is not defined, the transition proceeds by using . If f(m) has no value (such a 

situation is indicated by # f(m)), the symbol % representing “no value” is computed, and 

 

f(m)  #f(m) + f(?)  % + f(?). 

 

The condition of no value is defined depending on the definition of f(x). The % satisfies a particular 

structure toward which no value is verified, and can be distinguished from each other depending on 

the structure. It is denoted by %1, %2, %3, …%n. The equivalence relation  also satisfies 

 

 f(?)+f(?)  f(?), 

 

where the symbol + just represents the concatenation of expressions, and if f(x) is a set,  

 

f(?)+f(?)  f(?) f(?). 

 

We also define that for an element x, 

 

              {x}  x. 

 

Other conditions specialized to a concrete form of f(x) are also defined if f(x) is defined. 

 

From the definition, f(?) always exists, and it always computes for concrete symbol 

substituted for ?. To define a skeleton for f--1(x), we introduce the following operation. 

 

Definition 5-4 (Point-shift operation) 

 

 Let L be a lattice, and K and S be subsets of L. The point-shift operation, (-)+ is defined as 

 

             (S)+
K  = {zL | zy, (xS)(yx, yK)}. 
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It is clear to see that  
yK, yx y = (x)+

K, and then f- -1(x) = x  (x)+
K. 

 

 Now we define the skeleton of f –1(x) = x  (x)+
K. Note that x is an element of the lattice. 

By introducing the skeleton, what we want is to assimilate an element with a subset of the lattice. In 

this sense, we introduce the symbol “?” that is not only an element but also a set. As for a set S, 

 

               S = S’  S” 

 

makes sense, although for an element, x = x’  x” does not make sense. Imagine S = {x}, a singleton 

set can be expressed as the conjunction of some sets, such that {x} = {x, y}{y, z}. If one 

assimilates x with {x}, the expression S = S’  S” bridges an element with a set. 

From the definition of f –1(x) = x  (x)+
K, x in this expression must be an element of the 

partially ordered set. Thus, x makes sense even though S does not. Note that x is a set when x is 

an element. If one assimilates x with S, and represents it by m, one can obtain 

 

               m = m. 

 

It is also a particular expression bridging an element with a set. 

Note that f –1(x) = x  (x)+
K is well defined if and only if the whole structure L is given, 

since x and K are subsets in L, that is, 

 

               L =  
xK (x  (x)+

K). 

 

It implies that, although each element x needs the whole structure L to compute f –1(x), L results from 

the collection of f –1(x) for all elements. Although it is a contradictory situation, each x needs L. One 

of the hopeful ways is to make a quick-fix L(x) for an element x. In other words, making a decision 

to construct L(x) is destined to be decision with reservation. The next question might arise how one 

can express the notion of “reservation”. The skeleton is nothing but an expression for “reservation”. 

 

Definition 5-5 (Skeleton in f –1(x)) 

 

 Let L be a lattice that can supply all elements used. Let f- -1(x) = x  (x)+
K that is defined 

in the lattice L(x). A skeleton of f- -1(x) is,  

 

f- -1(?) = ?  (?)+, 
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that is obtained by dropping K. It implies that L(?)  f- -1(?). With respect to the equivalence relation 

, it satisfies 

 

           ?  ?, 

           ?  ?’  ?”, 

 

where ? is the concatenation of ?’ and ?”. Since ?  (?’  ?”)  (?’  ?”)  ?’  ?”, the 

symbol ? satisfies 

 

           (?’  ?”)  ?’  ?”. 

 

Either a set or an element can be substituted into ? in ?, then either the set or the element can be 

recognized as the concatenation of the symbols by ?, that is, for the set {a, b, c, …}, we have 

(abc…). 

 The condition of existence of a value is defined as: For any symbol m, a set or an element, 

 

           xL (m  x). 

 

Verification: All we have to show is L(?)  f- -1(?). Since, for yK, L(y) =  
xK (x  (x)+

K).  

 

L(?) =  (?  (?)+)  (?  (?)+) = f- -1(?). 

 

The condition ?  ? reveals the assimilation of a set with an element. The condition ?  ?’ 

 ?” is derived from a set such that S = S’  S”. From the definition, if an element a is substituted 

into ?, a is obtained. Since x  a where x = a, it has a value. If a set {a, b, c, …} is substituted 

into ?, (abc…) is obtained, and 

 

    (abc…)  (a b c …)  a b c …, 

 

is obtained since (abc…) and (a b c …) are not well defined, then  is applied to 

expressions. It implies that the expression such as a b c …, is well defined and can be 

reached by using . If there exists xL such that  

 

x = a b c …, 

 

an expression (abc…) has a value, and then the transition is stopped, and (abc…)  x. If there is 
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no x such that x = a b c …, 

 

(abc…)  %. 

 

Since the symbol % is indefinite, it also satisfies 

 

%  %. 

 

If the symbol % is regarded as an element, % is a set, and then for any y in %, y<a, y<b, y<c,…, 

since % is assimilated with a b c …, and y<%. 

 Although the condition, such as ?  ?, is similar to the definition of the ordinal number, 

they are essentially different from each other. While the relation  is an equivalence relation, it is 

applied to an expression only if the expression is not well defined. Thus, (a b c …)  a b 

c …, but a b c …  (a b c …) does not hold. 

 

Lemma 5-6 

 

 Given f- -1(?) = ?  (?)+, for a partially ordered set S, S f- -1(?) is closed under the meet.  

 

Proof: Any subset, MS, can be substituted into ? in f- -1(?). Let M be {a, b, c, …, d}, and then we 

obtain 

 

            f- -1(S) = f- -1(abc…d) = (abc…d)((abc…d))+  

 (abc…d) ((abc…d))+ 

 abc…d (abc…d)+. 

 

If there exists x = a b c …d, f- -1(S) is equivalent to 

 

                  x (x)+  x (x{x}) = {x}  x. 

 

Since x = a b c …d, 

 

 yx  ya and yb and yc … and yd. 

 

Thus, ya, yb, yc,…, yd. It implies that y is the lower bound of {a, b, c, …, d}. Since yx, x is the 

greatest lower bound of {a, b, c, …, d}, that is x = {a, b, c, …, d}. 
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If there exists no x such that x = a b c …d, we obtain 

 

            f- -1(S)  %  %. 

 

If we obtain %, it implies that % = a b c …d, and then % = {a, b, c, …, d}. Finally, 

if S is not closed under the meet due to a skeleton, new element appears and then S{%1, %2, …} is 

closed under the meet. 

 

Lemma 5-7 

 

Given a lattice L and f- -1(?) = ?  (?)+, if x  x is allowed, a skeleton can indicate an 

ideal. 

 

Proof. Let S be a subset of L. From lemma 5-6, f- -1(S)  x or %, and then x  x or %  %, those 

are ideals. 

 

Example: Given a subset of the set lattice {{a}, {b}, {a, b, c}, {a, b, d}}, and ‘f- -1(x)’ = x  (x)+
K 

+ ?  (?)+, all subsets of {{a}, {b}, {a, b, c}, {a, b, d}} are substituted to ?, that is, 

 

         f- -1({{a}, {a, b, c}})  f- -1({a}{a, b, c})   ({a}{a, b, c})  (({a}{a, b, c}))+ 

             ({a}{a, b, c})  (({a}{a, b, c}))+ 

             {a}{a, b, c}  ({a}{a, b, c})+   {a}  ({a})+ a. 

 

         f- -1({{a, b, d}, {a, b, c}})  f- -1({a, b, d}{a, b, c})  

             ({a, b, d}{a, b, c})  (({a, b, d}{a, b, c}))+ 

             {a, b, d}{a, b, c}  ({a, b, d}{a, b, c})+  

             %  (%)+  %, 

 

where % is equivalent to {a, b}, and the term + ?  (?)+ is omitted. 

 

Definition 5-8 (Differentiation) 

 

Let L be a lattice, KL be a sublattice. For xK,  

 

g- 1(x) = (x  (x)+
K )L(x) = (x )L(x)  ((x)+

K )L(x), 

(x )L(x) = {zL(x) | zx}, 
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((M)+
K )L(x), = {zL(x) | zy, (xM)(yx, yK)}, 

 

where L(x) is a sublattice of L in which K is a filter. The operation (x )L(x) indicates x in L(x). We 

call ‘g- 1’ the differentiation process. We also call 

 

        
xK‘g- 1(x)’ =  

xK (g- 1(x) + g- 1(?)) =  (xK g- 1(x) ) +?  (?)+ 

 

the result of the differentiation, where any element and subset of  
xK g

- 1(x) can be substituted to ? 

in a skeleton. 

b

a

L(a)

L(b)

ｇ-1(a)

ｇ-1(b)

ｇ-1(a) ｇ-1(b)

‘ｇ-1(a) ｇ-1(b)’

a

c d

b

e f g
h

a c db

e f g

h

m n

 

Fig. 6. An example of the differentiation process. The non-lattice g- 1(a)g-1(b) 
is regenerated by ‘g- 1(a)g- 1(b)’ due to the skeleton. In L(a) and L(b) broken 
loop represents K = p. See text for detailed discussion. 

 

Fig. 6 shows an example of the differentiation process, ‘g- 1(x)’. First we assume that the 

set X = {x, y, z, u} and its power set (X) are given. The set lattice is defined as L = <(X), >. 

Also assume that through structuring (gluing), the lattice L shown at left hand is obtained, where a 

= {x, y, z, u} and b = {x, y, z}. The proliferation ‘g- 1’ is applied to a and b, and; 

 

‘g- 1(a)’ = (a  (a)+
K )L(a) +?  (?)+ and ‘g- 1(b)’ = (b  (b)+

K )L(b) +?  (?)+, 

 

where L(a) and L(b) are determined as shown in Fig. 6. In L(a), c = {x, y, u} and d = {y, z, u}. In 

L(b), e = {x}, f = {y}, g = {z} and h = . It results in a set with the skeleton. 

 

 ‘g- 1(a)g- 1(b)’ = {{x, y, z, u}, {x, y, z}, {x, y, u}, {y, z, u}, {x}, {y}, {z}, } 
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               +?  (?)+, 

 

that is not a lattice since {{x, y, z}, {x, y, u}} has no least upper bound. Due to the skeleton, any 

subset of g- 1(a)g- 1(b) are substituted to ?, and that leads to; 

 

  ({{x, y, z}, {x, y, u}})  ({{x, y, z}, {x, y, u}})+ +?  (?)+ 

   {x, y, z}{x, y, u} ({x, y, z}{x, y, u})+ +?  (?)+ 

 #m+?  (?)+, 

 

since {x, y, z}{x, y, u} has no value. New element #m that is equivalent to {x, y} is generated. 

Similarly, #n that is equivalent to {y, z} is obtained. It results in the lattice ‘g- 1(a)g- 1(b)’ as shown 

in Fig.6. 

 

Definition 5-9 (Organization as a pair of gluing and differentiation) 

 

 Let L be a finite lattice, LL be a sublattice and pL, J = p. The gluing is defined by 

F:C(L)opC(L/J), where J = {<x, y>LL | zJ(xz = yz)}. Let K = L/J, the corresponding 

differentiation is defined by ‘g- 1(x)’. The organization on L is defined as the pair < F, ‘g- 1’>. We call 

<L,  
xK‘g- 1(x)’ > the transition of organization. After the differentiation, x  x is allowed, and 

that indicates an ideal. 

 

It is clear to see that F(L) is a lattice. In the differentiation of each x in K, there exists a 

lattice L(x) in which K is a filter. Although  
xKg- 1(x) is not a lattice,  

xK‘g- 1(x)’ is a lattice due 

to the skeleton, and that can be verified by the following theorem. 

 

Theorem 5-10 

 

 Let L be a finite lattice. In any organization on LL, the result of the differentiation, that is 

expressed as  
xK‘g- 1(x)’, is a lattice. 

 

Proof: Even if  
xKg- 1(x) is not closed under the meet,  

xK‘g- 1(x)’ is closed under the meet from 

lemma 5-6. For any x, L(x) including K as a filter contains the greatest element of L, and thus 

xKg- 1(x) has the greatest element. For any subset S in  
xK‘g- 1(x)’, there exists an upper bound 

due to  
xK‘g- 1(x)’. Let the set of the upper bound be Su, there exists a greatest lower bound for Su 

that is the least upper bound for S. Thus,  
xK‘g- 1(x)’ is also closed under the join. 

 

 Fig. 7 shows a typical example of the organization consisting of the gluing and 
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differentiation. First, given a lattice and an ideal, it leads to a partition of the equivalence class 

derived from the ideal. By the gluing process F:C(L)opC(L/J), we obtain the quotient lattice that 

corresponds to the structured wholeness mentioned before. After that, the differentiation process 

xK‘g- 1(x)’ proceeds, that is, each x in K = L/J determines its own wholeness as L(x) and makes 

g-1(x) in L(x). At first, it just results in a collection of g- 1(x) that is  
xKg- 1(x) and is just a partially 

ordered set. When it is accompanied with the skeleton, f- -1(?) = ?  (?)+. Even if  
xKg- 1(x) is 

not a lattice and is just a partially ordered set, it can be replaced by a particular lattice due to the 

skeleton. After the lattice is obtained, the skeleton still remains, and x  x is allowed after a while, 

and then the skeleton can indicate the ideal. As a result, the gluing process can proceed again. These 

operations are iterated, so that the transition <L,  
xK‘g- 1(x)’ > is obtained. For example, from the 

lattice shown in Fig. 7A to the other one shown in Fig. 7F. 

 

?  (?)+

?  (?)+

x

A B C

D
E

F

 
 
Fig. 7. An example of the organization consisting of the gluing and 
differentiation. Given an ideal in a lattice, the equivalence class derived from 
the ideal is obtained (A) and then the quotient lattice is obtained by gluing 

(B). By differentiation  
xKg-1(x) is obtained, although it cannot be a lattice 

(C). Each g-1(x) is indicated by a thick loop. There are skeletons in 

F:C(L)opC(L/J), and subsets of  
xKg-1(x) indicated by thin loops can be 

applied to a skeleton. Due to the skeletons, a new lattice is obtained by 
adding new elements indicated by black dots (D), and at this stage the 
skeleton can represent the ideal indicated by the loop. The ideal leads to the 
equivalence class (E), and results in the new quotient lattice (F). 
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 Since a sheaf is an operation by which the co-limit is taken, it can be regarded as an 

operation from the microscopic description (collection of particles) to the macroscopic one. In the 

lattice description, a sheaf is an operation by which the equivalence class is taken, that is, making 

the structured wholeness. Once the parts (the elements) are glued up, a particle is regarded as a part. 

In this sense, the whole is consistent with the parts. We pay attention to the inverse operation from 

the structured whole to the collection of elements, that is, the differentiation g- 1(x). If the inverse 

process is based on the complete knowledge on the whole structure, it can reconstruct the original 

lattice, otherwise, it collapses. That is a problem with respect to the endo-perspective in which an 

observer cannot see the whole world [5,7,13,14]. Discrepancy between the top-down and the 

bottom-up process can result from the endo-perspective. Now the problem is rephrased by the 

following: If the endo-observer has just a limited partial perspective and has no ability to look at the 

outside, the system (the lattice) collapses. However, a real living system does not collapse. It implies 

that the endo-observer has the ability to look at the outside through a particular interface. In our 

organization scheme, the endo-observer appears as an element in K = L/J. The endo-observer is 

able to look at the outside or to negotiate between the subspaces resulting from the skeleton. That is 

a particular expression for the material cause. 

 The idea of skeleton appears only when the outside of the formal framework is addressed. 

Recall the pair of Intent and Extent in the even number case. Analogously, we can say that the 

process is an induction in which the Intent 2n is obtained from the sequence 0,2,4, … Similarly the 

process is a deduction in which an concrete number, such as 4, is obtained from 2n. If it is sufficient 

to describe the concept only by using the pair of Intent and Extent, there is no room to think about 

the outside of the pair. In this sense, the induction and deduction can be compared to the sheaf and 

the reverse-sheaf such as f- -1(x). The case that we concentrate on, however, is an inconsistent case 

between the Intent and the Extent, and that leads to the reference of the outside of the formal 

framework. Referring to the outside is explicitly expressed as a skeleton. It is nothing but just a 

process of abduction. 

 

6. Discussion and Conclusion 

 

 In our framework, there is an intrinsic discrepancy between the microscopic and 

macroscopic perspectives. A special mediator between them called skeleton is introduced. The 

essential point is that a skeleton is implicitly embedded in the explicit framework of the pair of 

micro- and macroscopic perspectives since the function of skeleton appears by depriving the 

original functionality for f- 1(x). We here discuss about the material cause and the skeleton. Our 

mathematical model with the skeleton is a model for the hierarchical structure with the material 

cause. 
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 Imagine two levels in making a house. At the upper level, one can design the house. Only 

in that level, we can examine the relative location of the rooms by assuming that all one can do is 

just examining. At the lower level, we make each room, such as a toilet, a kitchen, by some tools. 

We assume that each room is made independently that is separated from each other. Since there are 

differences between the two levels with respect to the work (examining and making), the two levels  

can be regarded as a metaphoric model for the micro- and macroscopic perspectives. Note that a  

problem exists as follows: Each room is made by itself in the lower level. Thus, when all rooms are 

examined at the upper level, one might find that the location of the toilet is not adequate such that 

the door of the toilet is facing the garden. One then has to relocate the toilet door. However, all the 

tools one has is only specialized to make a toilet, or is specialized in the lower level. So it is 

formally impossible to repair. Our answer to resolve the problem is the “material cause” of the tool. 

Note that a big wrench for water pipe is specialized to make a toilet and cannot be used for any 

other purpose from a first thought. However, a big wrench is a heavy object made of iron and can 

also be used as a hammer. If one regards the heavy iron object that we call the wrench as a hammer, 

then one can break the wall and fix the location of the door. 

 The material cause has latent functions hidden in the tool specialized to a particular 

purpose. We here abstract the concept of material to construct a formal model with the material 

cause  by embedding a mediator in an inconsistent manner (i.e., a formal model implemented in a 

material framework). We first recall the idea of material as a particular constraint. For example, the 

aim of the artificial life is to be free from the constraint of material such that any life on the earth is 

based on carbon in order to concentrate only on the formal cause. The function of material as a 

constraint is regarded as an operation indicating the distinction of the reality from the possibility. 

Carbon distinguishes real lives on earth from possible ideal lives. For example, a ball-point pen, that 

is a tool for writing distinguishes real pattern drawn by the pen from the possible ideal patterns. 

Although it is possible to imagine a black 1m2 pattern on a paper, but it would not be real if it is 

drawn solely by a ball-point pen. 

 The latent function of a tool contradicts the function such as indicating the distinction of 

the reality from the possibility. In the case of the ball-point pen, one can find the latent functionality 

of the pen such as the hardness on the point when inks are lost. By utilizing the hardness on the 

point, one can write down something by scratching a sheet of paper. It implies that even if the ink is 

lost one can still write down more. This is inconsistent with the distinction between the reality and 

the possibility mentioned before. A wrench for water pipe has also dual functions, where the explicit 

function may contradict the latent implicit functions. The explicit function indicates the distinction 

of the real special function from all possible functions by a general tool, while the implicit function 

invalidates that distinction. We here generalize that idea and abstract the role of material as a dual 

function; the former explicit one indicates the distinction between the reality and the possibility, and 
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the latter implicit one invalidates the former distinction. A dual function is defined by the 

inconsistency between the explicit and implicit functions. 

In our framework, the material cause corresponds to the skeleton that is the wrecked map. 

By assimilating domains with co-domains of a map, the notion of the map is destroyed, and that 

leads to the skeleton. The skeleton f-1(?) and the reverse sheaf f-1(x) are the two sides of the same 

coin, and they correspond to the implicit latent function and the explicit function of a “mathematical 

tool”, respectively. The function of f-1(x) is to indicate the distinction between the microscopic and 

macroscopic perspectives, on one hand, and the function of skeleton f-1(?) is to invalidate such a 

distinction, on the other hand. Actually, an element of the macroscopic perspective is an element of 

the lattice since any equivalent set is a singleton set. Therefore, the aim of f-1(x) is to distinguishably  

assign an element of the lattice in the domain by assigning a subset of the lattice in the co-domain. 

In f-1(x) one has to distinguish an element from a subset, and in f-1(?) one has to assimilate an 

element with a subset by introducing . That is the reason why a skeleton has double functions in 

which one contradicts the other, and it is well-defined in terms of the material cause. 

Moreover, a skeleton carries the material cause. In real living systems the material cause 

contributes to the local-global negotiation. Cytoskeleton has a function to maintain an individual 

cell as a three dimensional structure (intra-cellular level). At the inter-cellular level cytoskeleton 

reveals a special radiated structure and can contribute to the bondage of cells. Why is it possible? 

Because a cytoskeleton consists of microtubules, the arrangements of microtubules can be changed 

depending on its own micro-environment. It is almost impossible to spell out all functions of 

microtubules in advance. We have to accept the microtubules as a material carrying latent functions. 

The relationship between the lattice (microscopic perspective) and the quotient lattice 

(macroscopic perspective) can be deciphered in terms of molecular dynamics. As mentioned in 

Section 2, the contrast between the microscopic and macroscopic perspectives can be illustrated by 

the contrast between the molecular dynamics approach and the dynamical system approach with 

respect to the notion of concentration. Note that the concentration cannot be obtained only by 

summing up a huge numerous molecules. The function of individual molecules depends on the 

micro-environment surrounding the molecule or the “context of molecules”. Even if the number of 

molecules are the same, the function of a society of molecules is different from each other. We have 

to pay attention to the difference in quality, and that constitutes the essential discrepancy between 

the molecular dynamics and the dynamical system with respect to the concentration. There are some 

mathematical approaches in which the microscopic perspective of biochemical substrates is 

expressed as a lattice and the macroscopic one is expressed as a quotient lattice [34]. We will apply 

our idea of dynamical negotiation to the robust biochemical cycle with skeleton according to that 

framework. 

 Starting from the definition that a system is not only a collection of parts, we focus on the 
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biological organization in which two hierarchical levels interact with each other. The two 

hierarchical levels can correspond to the Intent and the Extent or correspond to the macro- and the 

microscopic levels, respectively. Since the macroscopic description has the property of a whole and 

the microscopic one is a collection of elements, the macroscopic description is regarded as a limit 

(co-limit) of microscopic one no matter whether they contain a structure. 

 There are several researches on hierarchical systems in terms of the category theory. The 

operation taking a co-limit called the co-limit functor raises the upper layer, and it yields the 

hierarchical layers which are different from each other with respect to the logical property [32,33]. 

These models are, however, too static to understand the biological organization. In our dynamical 

sheaf scheme, we argue that a sheaf is an ideal and a static case in which the Intent is equivalent to 

the Extent. This is expressed as a one-to-one relationship between J and f-1(x). It corresponds 

exactly to the Cartesian closed category and the Cartesian cut from which an object is independently 

separated from an observer. 

 On the other hand, the endo-perspective is in contrast to the Cartesian cut, and it cannot be 

assumed that an observer cannot look out to the whole world, but this does not mean that an 

observer’s perspective is restricted. An observer always attempts to witness the outside or the rest of 

his own perspective. The dynamical interfacing between the inside and outside is expressed as a 

dynamical negotiation between the Intent and the Extent, or the macro- and microscopic 

perspectives in our dynamical gluing model. On one hand, there is a discrepancy between the Intent 

and the Extent since an observer cannot look out to the whole world. On the other hand, an observer 

can empirically observe a phenomenon as one unity or one concept, and that leads to the 

negotiation. 

 The negotiation between the Intent and the Extent can be revealed only through the 

skeleton. Although there are two operations, one is from the lattice (Extent; a collection of elements) 

to the quotient lattice (Intent; a whole as an equivalence class) and the another is the inverse 

operation. These two operations contribute to the interaction but not to the negotiation. Here the 

interaction is defined by the well-defined operations between the Intent and the Extent, and never 

contains inconsistency. The consistency is kept as long as an element of the lattice cannot be 

assimilated with a subset of the lattice, while the structure of the lattice is broken without the eye by 

which the whole structure can be overlooked. The question arises how a lattice can be reconstructed, 

and our answer is the skeleton. A skeleton introduces an inconsistency by breaking this forbidden 

clause by the mixing an element with a set. It contributes to reconstruct the lattice. Strictly speaking, 

the inconsistency contributes to the implementation of a skeleton that can lead to the negotiation 

different from the interaction. Negotiation is revealed due to the help of the inconsistency outside 

the formal description. As mentioned before, it is nothing but just the material cause. Since the 

description and/or expression results from the interaction between the subject and the world from 
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any perspective, any material property can be expressed as a contradiction, a paradox, a discrepancy 

and/or an impossibility, and also as the negotiator for the subject and the world. The material cause 

is expressed at the edge of the formal expression. It negotiates between the formal perspective and 

the outside with the material nature. 

 Although the significance of the body and/or the embodied mind has been focused in 

robotics, there still exists one quest: What does the body or the material remain? It would be too 

optimistic if one thinks that an embodied mind can be implemented by a particular program 

(artificial intelligence) encapsulated by a particular material (artificial body). Although the 

encapsulation may implement real interactions between a formal system (program) and a natural 

system (body), there are only little negotiation between them. If one has to pay attention to the 

negotiation between the formal and natural system, one has to implement the outside of the formal 

system and the inconsistency. Actually, the formal system consisting of data and a program should 

be redesigned and reconstructed such that the propagating data, that perpetually breaks the program 

and the skeleton-like structure, repairs and reconstructs the program. It also reveals the perpetually 

propagating modification of a program through destruction. The outside material nature can then be 

implemented and re-entered in the formal system and that is the essence of the notion of skeleton. 
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Appendix: A functor in the category theory 

 

 In the text, we define the presheaf as a functor from a category of the topological space to 

a category of the set. Here we define the category and show what a functor is. 

 

A category is an abstract system of the pair of objects and arrows. An object is represented by the 

capital symbol such as A, B, C,… An arrow is a directed edge from an object to another, and is 

represented by the non-capital such as f, g, h… An arrow from A to B is represented by f:AB, 

where domf = A and codomf = B. A pair of objects and arrows is a category if it satisfies the 

following axioms. 

 

(i) Composition of arrows is an arrow, namely, given f:AB and g:BC, gf:AC is an arrow. 

(ii) Arrows satisfy associative law, namely, given f:AB, g:BC and h:CD, hgf = h(gf) = 

(hg)f. 

(iii) Any object A has an identity arrow idA:AA such that for f:XA, f = f idA, and for g:AY, 

g= idAg. 

 

A category of sets is a category in which an object is a set and an arrow is a map. In a category of the 

topological space, an object is an open set and an arrow is an inclusion relation. For example, since 

the inclusion is a partial order, it satisfies the reflective and transitive laws, that leads to (ii) and (iii). 

 Given categories C and D, a functor F:C D is defined as: An object C in C is 

transformed to FC in D, and an arrow f:CC’ is transformed to Ff:FCFC’, with the following 

two conditions satisfied: 

 

(i) For any identity arrow idC:CC in C, F idC = idFC :FCFC in D. 

(ii) For arrows, f:CC’ and g:C’C” in C, Fgf = Fg(Ff):FCFC”. 

 

A presheaf is just defined as a functor from a category of the topological space to a category of the 

set. 


