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Abstract

We study the relationship between the semistationary reflection prin-
ciple and stationary reflection principles. We show that for all regular
cardinals λ ≥ ω2 the semistationary reflection principle in the space [λ]ω

implies that every stationary subset of Eλ
ω := {α ∈ λ | cf(α) = ω} reflects.

We also show that for all cardinals λ ≥ ω3 the semistationary reflection
principle in [λ]ω does not imply the stationary reflection principle in [λ]ω.

1 Introduction

In this paper we compare the semistationary reflection principle with stationary
reflection principles. The notion of semistationary sets and the semistationary
reflection principle were introduced by Shelah [10](Ch.XIII §1). They are closely
related to the semiproperness of posets. We review this:

Notation 1.1. For countable sets x and y, we write x v y if x ⊆ y and
x ∩ ω1 = y ∩ ω1.

Definition 1.2 (Shelah [10] Ch.XIII, §1, 1.1.Def.). Let W be a set with W ⊇ ω1.
A subset S ⊆ [W ]ω is called semistationary if the set {y ∈ [W ]ω | (∃x ∈ S) x v
y} is stationary in [W ]ω.

Definition 1.3 (Shelah [10] Ch.XIII, §1, 1.5.Def.). For a cardinal λ ≥ ω2,
SSR([λ]ω), the semistationary reflection principle in [λ]ω, is the following:

SSR([λ]ω) ≡ For every semistationary S ⊆ [λ]ω, there exists W ⊆ λ such
that |W | = ω1 ⊆ W and S ∩ [W ]ω is semistationary in [W ]ω.

In [10](Ch.XIII, §1, 1.4.Claim) Shelah shows that a poset P is semiproper
if and only if P preserves ω1 and preserves semistationary subsets of [W ]ω for
every W . He also shows that (†) holds if and only if SSR([λ]ω) holds for every
λ ≥ ω2. Here (†) is the principle, introduced in Foreman-Magidor-Shelah [3],
that every poset preserving stationary subset of ω1 is semiproper. This is known
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to have interesting consequences. Shelah [10](Ch.XII, §2) shows that if Namba
forcing is semiproper then (a strong form of) Chang’s conjecture holds. Hence
(†) implies Chang’s conjecture. Also, Foreman-Magidor-Shelah [3] shows that
(†) implies precipitousness of the nonstationary ideal over ω1.

In this paper we compare the semistationary reflection principle with the
stationary reflection principles defined below. For a regular cardinal λ, Eλ

ω

denotes the set {α ∈ λ | cf(α) = ω}.
Definition 1.4. For a regular cardinal λ ≥ ω2, let SR(λ) denote the following
stationary reflection principle:

SR(λ) ≡ For every stationary B ⊆ Eλ
ω, there exists γ < λ such that

B ∩ γ is stationary.

For a cardinal λ ≥ ω2, let SR([λ]ω) denote the stationary reflection principle in
[λ]ω:

SR([λ]ω) ≡ For every stationary S ⊆ [λ]ω, there exists W ⊆ λ such that
|W | = ω1 ⊆ W and S ∩ [W ]ω is stationary in [W ]ω.

It is easy to see that SR([λ]ω) implies SSR([λ]ω). (See Section 2.2.)
Our main results are as follows:

Theorem 1.5. Let λ be a regular cardinal ≥ ω2. Then SSR([λ]ω) implies SR(λ).

Theorem 1.6. If κ is a supercompact cardinal, then there exists a generic
extension in which SSR([λ]ω) holds for every λ ≥ ω2 but SR([λ]ω) does not hold
for any λ ≥ ω3.

Foreman-Magidor-Shelah [3] shows that if SR([λ]ω) holds for every λ ≥ ω2

then (†) holds. Theorem 1.6 claims that the converse is not true. Also, as we
prove in Section 5, SSR([ω2]ω) implies SR([ω2]ω). Theorem 1.6 is optimal in
this sense.

This paper is organized as follows: In Section 2 we discuss some preliminaries
for this paper. In Section 3 we present a certain type of stationary subset of
[λ]ω which was first introduced by Shelah. This type of stationary set plays a
central role in the proofs of both Theorems 1.5 and 1.6. In Section 4 we prove
Theorem 1.5. In Section 5 we compare SSR([λ]ω) and SR([λ]ω). Among other
things, we prove Theorem 1.6.

2 Preliminaries

2.1 Notations

We follow the notations of Jech [4]. Here we present those which may not be
general.

For a regular cardinal γ and an inaccessible cardinal κ, let Col(γ,<κ) denote
the Lévy collapse which forces κ to be γ+.
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For a regular cardinal γ and a limit ordinal δ > γ, let Eδ
γ denote the set

{α ∈ δ | cf(α) = γ}. Note that if cf(δ) > γ then Eδ
γ is stationary in δ.

For a set x of ordinals let

¯supx := sup{α + 1 | α ∈ x} .

In this paper we use ¯sup rather than sup. We are mainly interested in sets of
ordinals which do not have a greatest element. For such x, ¯supx = sup x. The
merit of using ¯sup is that ¯supx is a limit ordinal if and only if x does not have
a greatest element. This makes our definitions and arguments slightly simpler.

2.2 Basics on stationary sets and semistationary sets

For basics on the notion of club or stationary subsets of PκW consult Jech [4].
When κ = ω1, we prefer to use [W ]ω rather than Pω1W . A subset of [W ]ω is
said to be club (stationary) if it is club (stationary) in Pω1W . This paper uses
the following two facts without any reference:

Fact 2.1 (Kueker [6]). Let κ be a regular uncountable cardinal, W be a set with
κ ⊆ W , and let C ⊆ PκW be a club. Then there exists a function f : [W ]<ω →
W such that {x ∈ PκW | f“ [x]<ω ⊆ x ∧ x ∩ κ ∈ κ} ⊆ C. If κ = ω1 then there
exists a function f : [W ]<ω → W such that {x ∈ PκW | f“ [x]<ω ⊆ x} ⊆ C.

Fact 2.2 (Menas [9]). Let κ be a regular uncountable cardinal, and let W and
W̄ be sets with κ ⊆ W ⊆ W̄ .

(1) If C ⊆ PκW is a club then the set {x̄ ∈ PκW̄ | x̄ ∩W ∈ C} is a club in
PκW̄ . Hence if S̄ ⊆ PκW̄ is stationary then the set {x̄ ∩W | x̄ ∈ S̄} is
stationary in PκW .

(2) If C̄ ⊆ PκW̄ is a club then the set {x̄∩W | x̄ ∈ C̄} contains a club in PκW .
Hence if S ⊆ PκW is stationary then the set {x̄ ∈ PκW̄ | x̄ ∩W ∈ S} is
stationary in PκW̄ .

Basics on semistationary subsets of [W ]ω was studied in Shelah [10] (Ch.XIII,
§1). The following lemma is an analogy of Fact 2.2 for semistationary sets. In
the case of (2), a stronger result holds. Part (2) of the following lemma illustrates
a unique property of semistationary sets:

Lemma 2.3. Let W and W̄ be sets with ω1 ⊆ W ⊆ W̄ .

(1) If S̄ ⊆ [W̄ ]ω is semistationary then the set {x̄ ∩W | x ∈ S̄} is semista-
tionary.

(2) If S ⊆ [W ]ω is semistationary then S is also semistationary in [W̄ ]ω.

Proof. (1) is clear from Fact 2.2 (1). We prove (2).
Suppose that S ⊆ [W ]ω is semistationary. Let T := {y ∈ [W ]ω | (∃x ∈

S) x v y} and T̄ := {ȳ ∈ [W̄ ]ω | (∃x ∈ S) x v ȳ}. Then T is stationary
in [W ]ω, and T̄ = {ȳ ∈ [W̄ ]ω | ȳ ∩ W ∈ T}. Hence T̄ is stationary in [W̄ ]ω.
Therefore S is semistationary in [W̄ ]ω.
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2.3 Basics on reflection principles

In this paper we use the following reflection principles which are generalizations
of SR([λ]ω) and SSR([λ]ω):

Definition 2.4. For a cardinal λ ≥ ω2 and a regular cardinal κ with ω2 ≤ κ ≤
λ, let SSR([λ]ω, <κ) and SR([λ]ω, <κ) be the following reflection principles:

SR([λ]ω, <κ) ≡ For every stationary S ⊆ [λ]ω, there exists W ∈ Pκλ such
that ω1 ⊆ W ∩ κ ∈ κ and S ∩ [W ]ω is stationary.

SSR([λ]ω, <κ) ≡ For every semistationary S ⊆ [λ]ω, there exists W ∈ Pκλ
such that ω1 ⊆ W ∩κ ∈ κ and S∩ [W ]ω is semistationary.

Here we review basics about the above reflection principles. First we observe
that these are generalizations of SR([λ]ω) and SSR([λ]ω):

Lemma 2.5. Let λ be a cardinal ≥ ω2.

(1) SR([λ]ω) is equivalent to SR([λ]ω, <ω2).

(2) SSR([λ]ω) is equivalent to SSR([λ]ω, <ω2).

Proof. (1). It suffices to show that SR([λ]ω) implies SR([λ]ω, < ω2). Before
starting, take a surjection πα : ω1 → α for each α < ω2 and let f : ω2×ω1 → ω2

be the function defined by f(α, ξ) = πα(ξ) for each 〈α, ξ〉 ∈ ω2 × ω1.
Assume that SR([λ]ω) holds. To show that SR([λ]ω, < ω2) holds, take an

arbitrary stationary S ⊆ [λ]ω. We may assume that every element of S is closed
under f . By SR([λ]ω), we may choose a W ⊆ λ such that |W | = ω1 ⊆ W and
S ∩ [W ]ω is stationary. Note that W is closed under f because stationary many
elements of [W ]ω are closed under f . Because ω1 ⊆ W , if α ∈ W ∩ ω2 then
α ⊆ W . Hence W ∩ ω2 ∈ ω2. Therefore W witnesses that SR([λ]ω, <ω2) holds
for S.

(2). It suffices to show that SSR([λ]ω) implies SSR([λ]ω, < ω2). Assume
that SSR([λ]ω) holds. Take an arbitrary semistationary S ⊆ [λ]ω. Let W ⊆ λ
be a witness of SSR([λ]ω) for S and let W ′ := W ∪ ¯sup(W ∩ ω2). Then ω1 ⊆
W ′ ∩ ω2 ∈ ω2. Moreover S ∩ [W ]ω is semistationary in [W ′]ω by Lemma 2.3.
Hence S ∩ [W ′]ω is semistationary. Therefore W ′ witnesses SSR([λ]ω, <ω2) for
S.

Next we observe that SR([λ]ω, <κ) implies SSR([λ]ω, <κ).

Lemma 2.6. Let λ be a cardinal ≥ ω2 and κ be a regular cardinal with ω2 ≤
κ ≤ λ. Then SSR([λ]ω, <κ) is equivalent to the following principle:

SSR′([λ]ω, <κ) ≡ For every stationary S ⊆ [λ]ω, there exists W ∈ Pκλ such
that ω1 ⊆ W ∩ κ ∈ κ and S ∩ [W ]ω is semistationary.

Therefore SR([λ]ω, <κ) implies SSR([λ]ω, <κ).
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Proof. It suffices to show that SSR′ implies SSR. Assume that SSR′([λ]ω, <κ)
holds. Take an arbitrary semistationary S ⊆ [λ]ω. Then T := {y ∈ [λ]ω | (∃x ∈
S) x v y} is stationary. Let W ⊆ λ be a witness of SSR′([λ]ω, <κ) for T . Here
note that

{y ∈ [W ]ω | (∃x ∈ T ∩ [W ]ω) x v y} = {y ∈ [W ]ω | (∃x ∈ S ∩ [W ]ω) x v y} .

Hence {y ∈ [W ]ω | (∃x ∈ S ∩ [W ]ω) x v y} is stationary and thus S ∩ [W ]ω is
semistationary. Therefore W witnesses SSR([λ]ω, <κ) for S.

The following is very easy:

Lemma 2.7. Let λ and λ′ be cardinals and let κ and κ′ be regular cardinals
such that ω2 ≤ κ ≤ κ′ ≤ λ′ ≤ λ.

(1) SR([λ]ω, <κ) implies SR([λ′]ω, <κ).

(2) SSR([λ]ω, <κ) implies SSR([λ′]ω, <κ′).

Proof. (1) Assume that SR([λ]ω, <κ) holds. Take an arbitrary stationary S′ ⊆
[λ′]ω. Then S := {x ∈ [λ]ω | x ∩ λ′ ∈ S′} is stationary. Hence there exists
W ∈ Pκλ such that ω1 ⊆ W∩κ ∈ κ and S∩[W ]ω is stationary. Let W ′ := W∩λ′.
Then W ′ ∈ Pκλ′ and ω1 ⊆ W ′ ∩ κ ∈ κ. Moreover S′ ∩ [W ′]ω = {x ∩W ′ | x ∈
S∩[W ]ω}. Thus S′∩[W ′]ω is stationary. Therefore W ′ witnesses SSR([λ′]ω, <κ)
for S′.

(2) Assume that SSR([λ]ω, <κ) holds. Take an arbitrary semistationary S′ ⊆
[λ′]ω. Let S, W and W ′ be as in (1). Then, using Lemma 2.3, the same argument
as (1) shows that S′ ∩ [W ′]ω is semistationary. Let W ′′ := W ′ ∪ ¯sup(W ′ ∩ κ′).
Then W ′′ ∈ Pκ′λ

′ and ω1 ⊆ W ′′∩κ′ ∈ κ′. Moreover S′∩ [W ′]ω is semistationary
in [W ′′]ω by Lemma 2.3. Hence S′ ∩ [W ′′]ω is semistationary. Therefore W ′′

witnesses SSR([λ′]ω, <κ′) for S′.

We end this section with the following:

Lemma 2.8. Let λ be a cardinal ≥ ω2 and κ be a regular cardinal with ω2 ≤
κ ≤ λ.

(1) (Feng-Jech [2]) Assume that SR([λ]ω, <κ) holds. If S ⊆ [λ]ω is stationary
then the set {W ∈ Pκλ | S ∩ [W ]ω is stationary } is stationary in Pκλ.

(2) Assume that SSR([λ]ω, <κ) holds. If S ⊆ [λ]ω is semistationary then the
set {W ∈ Pκλ | S ∩ [W ]ω is semistationary } is co-bounded, that is, there
exists W ∗ ∈ Pκλ such that S ∩ [W ]ω is semistationary for every W ∈ Pκλ
with W ∗ ⊇ W .

Proof. (2) is clear from Lemma 2.3 (2). We prove (1).
Take an arbitrary stationary S ⊆ [λ]ω and an arbitrary function f : [λ]<ω →

λ. It suffices to find a W ∈ Pκλ such that W ∩ κ ∈ κ and W is closed under
f . Let S′ be the set of all x ∈ S closed under f . Then S′ is stationary. Hence
there exists W ∈ Pκλ such that ω1 ⊆ W ∩ κ ∈ κ and S′ ∩ [W ]ω is stationary.
Note that W is closed under f because stationary many elements of [W ]ω are
closed under f . Moreover S ∩ [W ]ω is stationary because S′ ⊆ S. Therefore W
is a desired one.
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3 Sup depending stationary sets

Here we present a type of stationary set which plays a central role in the proofs
of both Theorems 1.5 and 1.6:

Lemma 3.1 (The case when n = 1 is due to Shelah). Suppose that 0 < n < ω
and that µ0 < µ1 < · · · < µn are regular uncountable cardinals. Moreover,
suppose that A ⊆ Eµ0

ω is stationary and that, for each m with 1 ≤ m ≤ n,
〈Am

α | α ∈ µm−1〉 is a sequence of stationary subsets of Eµm
ω . Let S be the set

of all x ∈ Pµ0µn such that

(1) x ∩ µ0 ∈ A,

(2) ¯sup(x ∩ µm) ∈ Am
¯sup(x∩µm−1)

for each m with 1 ≤ m ≤ n.

Then S is stationary in Pµ0µn.

This type of stationary set was considered by Shelah, and in Shelah-Shioya
[12] and Shelah [11], such sets are used to obtain consequences of the stationary
reflection principle. The proof of the above lemma for the case when n =
1 can be found in Shelah-Shioya [12]. Although there are no difficulties in
generalization, we give the complete proof of Lemma 3.1.

We use the following game a:

Definition 3.2. Suppose that 0 < n < ω and that µ0 < µ1 < · · · < µn are
regular uncountable cardinals. For an α ∈ µ0 and a function f : [µn]<ω → µn

let a(〈µ0, µ1, . . . , µn〉, α, f) be the following two players game of length ω:
In the k-th stage, first Player I plays a 〈βm

k | 1 ≤ m ≤ n〉 and then Player
II plays a 〈γm

k | 1 ≤ m ≤ n〉 so that βm
k ≤ γm

k < µm for each m.

I β1
0 , . . . , βn

0 β1
1 , . . . , βn

1 · · · · · · β1
k, . . . , βn

k · · · · · ·
II γ1

0 , . . . , γn
0 γ1

1 , . . . , γn
1 · · · · · · γ1

k, . . . , γn
k · · · · · ·

Player II wins if clf (α∪ {γm
k | 1 ≤ m ≤ n∧ k ∈ ω} )∩ µ0 = α, where clf (x)

denotes the closure of x under f . Otherwise Player I wins.

Note that a(〈µ0, µ1, . . . , µn〉, α, f) is an open game for Player I. Hence it is
determined. The following is a key lemma:

Lemma 3.3. Suppose that 0 < n < ω and that µ0 < µ1 < · · · < µn are
regular uncountable cardinals. Then for every function f : [µn]<ω → µn,
there are club many α ∈ µ0 such that Player II has a winning strategy in
a(〈µ0, µ1, . . . , µn〉, α, f).

Proof. Take an arbitrary function f : [µn]<ω → µn and let A be the set of all
α ∈ µ0 such that Player I has a winning strategy in a(〈µ0, µ1, . . . , µn〉, α, f). It
suffices to show that A is nonstationary.

Assume that A is stationary. For each α ∈ A, take a winning strategy σα for
Player I in a(〈µ0, µ1, . . . , µn〉, α, f). Let θ be a sufficiently large regular cardinal.
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Then we can take an elementary submodel M of 〈Hθ,∈, 〈σα | α ∈ A〉〉 such that
α∗ := M ∩ µ0 ∈ A.

By induction on k, we construct a sequence of moves 〈β1
k, . . . , βn

k , γ1
k, . . . , γn

k |
k ∈ ω〉 in a(〈µ0, µ1, . . . , µn〉, α∗, f) so that γ1

k, . . . , γn
k ∈ M for each k ∈ ω.

Suppose that k ∈ ω and that 〈β1
l , . . . , βn

l 〉 and 〈γ1
l , . . . , γn

l 〉 have been chosen for
each l < k. Let

〈β1
k, . . . , βn

k 〉 := σα∗( 〈γ1
l , . . . , γn

l | l < k〉 ) ,

and for each m with 1 ≤ m ≤ n, let

γm
k := ¯sup{πm ◦ σα ( 〈γ1

l , . . . , γn
l | l < k〉 ) | α ∈ A} ,

where πm : µ1 × · · · × µn → µm is the m-th projection. Clearly βm
k ≤ γm

k for
each m. Note that γm

k < µm since µm is regular and A ⊆ µ0 < µm. Note also
that γm

k ∈ M because 〈γ1
l , . . . , γn

l | l < k〉 ∈ M . This completes the induction.
First note that 〈β1

k, . . . , βn
k , γ1

k, . . . , γn
k | k ∈ ω〉 is a sequence of moves in

a(〈µ0, µ1, . . . , µn〉, α∗, f) in which Player I has played according to winning
strategy σα∗ . Hence Player I wins. On the other hand, α∗ ∪ {γm

k | 1 ≤ m ≤
n∧k ∈ ω} ⊆ M , and M is closed under f . Thus clf ( α∗∪{γm

k | 1 ≤ m ≤ n∧k ∈
ω} )∩ µ0 ⊆ M ∩ µ0 = α∗. Therefore clf (α∗ ∪ {γm

k | 1 ≤ m ≤ n∧ k ∈ ω} ) = α∗,
so that Player II wins with this sequence of moves. This is a contradiction.

Now we prove Lemma 3.1:

Proof of Lemma 3.1. We prove Lemma 3.1 by induction on n. Suppose that
n = 1 or that n > 1 and that the lemma holds for n− 1. We prove the lemma
for n. Take an arbitrary function f : [µn]<ω → µn. It suffices to find x∗ ∈ S
such that x∗ is closed under f and x∗ ∩ µ0 ∈ µ0.

By Lemma 3.3, there exists α∗ ∈ A such that Player II has a winning strategy
σ∗ in a(〈µ0, µ1, . . . , µn〉, α∗, f). Let S′ be the set of all y ∈ Pµ1µn such that

(1) y ∩ µ1 ∈ A1
α∗ ,

(2) ¯sup(y ∩ µm) ∈ Am
¯sup(y∩µm−1)

for each m with 2 ≤ m ≤ n.

Then S′ is stationary in Pµ1µn. If n = 1 then this is clear. ((2) claims nothing.)
If n > 1 then this follows from the lemma for n− 1.

Choose y∗ ∈ S′ such that α∗ ⊆ y∗ and such that y∗ is closed under σ∗ and
f . For each m with 1 ≤ m ≤ n, take a cofinal sequence 〈βm

k | k ∈ ω〉 in y∗∩µm.
Moreover let

〈γ1
k, . . . , γn

k 〉 := σ∗( 〈β1
l , . . . , βn

l | l < k〉 )
for each k ∈ ω. Note that 〈γm

k | k ∈ ω〉 is a cofinal sequence in y∗ ∩ µm for
each m with 1 ≤ m ≤ n. This is because y∗ is closed under σ∗. Finally let
x∗ := clf (α∗ ∪ {γm

k | 1 ≤ m ≤ n ∧ k ∈ ω} ). We show that x∗ ∈ S and
x∗ ∩ µ0 ∈ µ0.

First note that x∗ ⊆ y∗ because α∗ ∪ {γm
k | 1 ≤ m ≤ n ∧ k ∈ ω} ⊆ y∗

and y∗ is closed under f . Then, because 〈γm
k | k ∈ ω〉 is cofinal in y∗ ∩ µm,

¯sup(x∗ ∩µm) = ¯sup(y∗ ∩µm) for each m with 1 ≤ m ≤ n. Hence, by (2) above,
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(i) ¯sup(x∗ ∩ µm) ∈ Am
¯sup(x∗∩µm−1)

for each m with 2 ≤ m ≤ n.

Moreover x∗∩µ0 = α∗. This is because σ∗ is a winning strategy for Player II in
a(〈µ0, µ1, . . . , µn〉, α∗, f). Also recall that ¯sup(x∗ ∩ µ1) = ¯sup(y∗ ∩ µ1) ∈ A1

α∗ .
Thus

(ii) ¯sup(x∗ ∩ µ0) ∈ A,

(iii) ¯sup(x∗ ∩ µ1) ∈ A1
¯sup(x∗∩µ1)

.

Now it follows from (i), (ii) and (iii) that x∗ ∈ S and x∗ ∩ µ0 ∈ µ0.
This completes the proof.

4 SSR([λ]ω) and SR(λ)

In this section, we prove Theorem 1.5. In fact, we prove the following more
general theorem:

Theorem 4.1. Let λ and κ be regular cardinals such that ω2 ≤ κ ≤ λ. Then
SSR([λ]ω, <κ) implies SR(λ).

By Lemma 2.5 and 2.7, Theorem 1.5 follows from Theorem 4.1. Theorem
4.1 can be easily obtained from Lemma 3.1 and the following lemma:

Lemma 4.2. Let λ be a cardinal and κ be a regular cardinal such that ω2 ≤
κ ≤ λ. Assume that S ⊆ [λ]ω and that there exists W ∈ Pκλ such that ω1 ⊆
W ∩ κ ∈ κ and S ∩ [W ]ω is semistationary. Let W ∗ ∈ Pκλ be such that

(1) ω1 ⊆ W ∗ ∩ κ ∈ κ and S ∩ [W ∗]ω is semistationary,

(2) for every W ∈ Pκλ, if ω1 ⊆ W ∩ κ ∈ κ and S ∩ [W ]ω is semistationary
then ¯supW ∗ ≤ ¯supW .

Then

S0 := {y ∈ [W ∗]ω | (∃x ∈ S ∩ [W ∗]ω) x v y ∧ ¯supx = ¯sup y}
is stationary in [W ∗]ω.

Proof. Assume that S0 is not stationary. Then S1 := {y ∈ [W ∗]ω | (∃x ∈
S ∩ [W ∗]ω) x v y ∧ ¯supx < ¯sup y} is stationary. For each y ∈ S1, choose
xy ∈ S with xy v y and ¯supxy < ¯sup y and choose αy ∈ y with ¯supxy ≤ αy.
Then there exists α′ ∈ W ∗ such that S′ := {y ∈ S1 | αy = α′} is stationary.
Let W ′ := W ∗ ∩ α′. Clearly W ′ ∈ Pκλ and ω1 ⊆ W ′ ∩ κ ∈ κ. Moreover
¯supW ′ < ¯supW ∗. Hence if we show that S ∩ [W ′]ω is semistationary then this

contradicts property (2) of W ∗.
First note that if y ∈ S′ then xy ∈ [W ′]ω and xy v y ∩W ′. Thus

{y ∩W ′ | y ∈ S′} ⊆ {z ∈ [W ′]ω | (∃x ∈ S ∩ [W ′]ω) x v z} .

Now the left side is stationary in [W ′]ω because S′ is stationary in [W ∗]ω.
Therefore the right side is stationary, that is, S ∩ [W ′]ω is semistationary.

This completes the proof.
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Proof of Theorem 4.1. Assume that SSR([λ]ω, < κ) holds. Take an arbitrary
stationary B ⊆ Eλ

ω. We show that B reflects.
Take a pairwise disjoint sequence 〈Bα | α ∈ ω1〉 of stationary subsets of B.

Let S be the set of all x ∈ [λ]ω such that x∩ ω1 ∈ ω1 and ¯sup x ∈ Bx∩ω1 . Then
S is stationary by Lemma 3.1. By Lemma 4.2, there exists W ∈ Pκλ such that
ω1 ⊆ W ∩ κ ∈ κ and S0 := {y ∈ [W ]ω | (∃x ∈ S ∩ [W ]ω) x v y ∧ ¯supx = ¯sup y}
is stationary in [W ]ω. Here note that S0 ⊆ S. Hence S ∩ [W ]ω is stationary.
We claim that cf( ¯supW ) > ω.

Clearly ¯supW is a limit ordinal. Assume that cf( ¯supW ) = ω. Then C :=
{y ∈ [W ]ω | ¯sup y = ¯supW} is club in [W ]ω. But if y1, y2 ∈ S ∩ C then
¯sup(y1 ∩ ω1) = ¯sup(y2 ∩ ω1) by the construction of S. Hence |{y ∩ ω1 | y ∈

S0 ∩ C}| ≤ 1. This contradicts ω1 ⊆ W and S ∩ [W ]ω is stationary.
Now cf( ¯supW ) > ω and S∩[W ]ω is stationary. Hence { ¯sup y | y ∈ S∩[W ]ω}

is stationary in ¯supW . Recall that ¯sup y ∈ B for every y ∈ S. Therefore
B ∩ ¯supW is stationary. This completes the proof.

5 SSR([λ]ω) and SR([λ]ω)

As we mentioned in Section 1, first we prove that SSR([ω2]ω) implies SR([ω2]ω)
and thus that they are equivalent. This is essentially proved in Todorčević [13].
After that, we prove Theorem 1.6.

Theorem 5.1. SSR([ω2]ω) implies SR([ω2]ω).

Proof. Assume that SSR([ω2]ω) holds. To show that SR([ω2]ω) holds, take an
arbitrary stationary S ⊆ [ω2]ω. Fix a bijection πα : ω1 → α for each α ∈ [ω1, ω2).
We may assume that if x ∈ S then ω1 < ¯supx and x is closed under πα, π−1

α for
each α ∈ x \ ω1.

By Lemma 2.5 let α∗ be the least α ∈ ω2 such that S∩[α]ω is semistationary.
Then let S0 be the set of all y ∈ [α∗]ω such that

(1) for some x ∈ S ∩ [α∗]ω, x v y and ¯supx = ¯sup y,

(2) y is closed under πα, π−1
α for each α ∈ y \ ω1.

By Lemma 4.2, S0 is stationary in [α∗]ω. For each y ∈ S0, choose an xy ∈
S ∩ [α∗]ω witnessing (1).

Note that if y ∈ S0 then

y ∩ α = πα“ (y ∩ ω1) = πα“ (xy ∩ ω1) = xy ∩ α

for each α ∈ xy \ ω1. Then, because ¯sup y = ¯supxy, y = xy for every y ∈ S0.
Hence S0 ⊆ S ∩ [α∗]ω. Therefore S ∩ [α∗]ω is stationary. This completes the
proof.

Now we turn our attention to Theorem 1.6. It is well-known that if a λ-
supercompact cardinal is Lévy collapsed to ω2 then SR([λ]ω) holds. It was
shown by Shelah [10] that collapsing a λ-strongly compact cardinal suffices to
obtain a model of SSR([λ]ω). First we review this:
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Lemma 5.2 (Shelah [10] Ch.XIII, §1, 1.6.Claim, 1.10.Claim). Suppose that κ is
a λ-strongly compact cardinal, where λ is a cardinal ≥ κ. Then SSR([λ]ω, <κ)
holds. Moreover if γ is a regular uncountable cardinal < κ then °Col(γ,<κ)

“SR([λ]ω, <κ) ”.

Proof. Both statements can be proved by similar arguments, but the latter is
slightly harder than the former. We will prove only the latter.

We discuss some preliminaries in V . Take a fine ultrafilter U over Pκλ.
Let M be the transitive collapse of Ult(V,U), and let j : V → M be the
ultrapower map. Moreover, let f : Pκλ → Pκλ be a function such that f(W ) =
W ∪ ¯sup(W ∩ κ) for each W ∈ Pκλ and let W ∗ := [f ]U ∈ M . Then j“ λ ⊆ W ∗,
and in M , W ∗ ∈ Pj(κ)j(λ) and ω1 ⊆ W ∗ ∩ j(κ) ∈ j(κ).

Suppose that γ is a regular uncountable cardinal < κ and that G is a Col(γ, <
κ)-generic filter over V . In V [G], take an arbitrary stationary S ⊆ [λ]ω. We
must show that, in V [G], there exists W ∈ Pκλ such that ω1 ⊆ W ∩ κ ∈ κ and
S ∩ [W ]ω is semistationary.

Let Ḡ be a Col(γ,< j(κ))-generic filter over V with Ḡ ∩ Col(γ, < κ) = G.
We work in V [Ḡ]. Define a map j̄ : V [G] → M [Ḡ] by j̄(ȧG) = j(ȧ)Ḡ for each
Col(γ, < κ)-name ȧ ∈ V . Then j̄ is well-defined, and j̄ : V [G] → M [Ḡ] is an
elementary embedding which extends j. For simplicity of notation, we let j
denote j̄.

Note that S remains stationary because V [Ḡ] is a γ-closed forcing extension
of V [G]. Hence {j“ x | x ∈ S} is stationary in [j“ λ]ω. Moreover, for each
x ∈ S, j“ x = j(x) because x is countable in V [G]. Thus {j“ x | x ∈ S} ⊆ j(S),
and therefore j(S) ∩ [j“ λ]ω is stationary. Then j(S) ∩ [W ∗]ω is semistationary
by Lemma 2.3 (2). This is also true in M [Ḡ]. Hence W ∗ witnesses that the
following holds in M [Ḡ]:

There exists W ∈ Pj(κ)j(λ) such that ω1 ⊆ W ∩ j(κ) ∈ j(κ) and
j(S) ∩ [W ]ω is semistationary.

Therefore, by the elementarity of j, it holds in V [G] that there exists W ∈ Pκλ
such that ω1 ⊆ W ∩ κ ∈ κ and S ∩ [W ]ω is semistationary. This completes the
proof.

We will prove that collapsing a λ-strongly compact cardinal does not suffice
to obtain a model of SR([λ]ω). The core of Theorem 1.6 is the following theorem.
As we see later, Theorem 1.6 will be obtained by further Lévy collapsing κ to
ω2.

Theorem 5.3. If κ is a supercompact cardinal, then there exists a generic
extension in which κ is a strongly compact cardinal and SR([κ+]ω, <κ) does not
hold.

First we prove Theorem 5.3. Krueger [7] constructed a model in which κ
is strongly compact but S(κ, κ+) := {x ∈ Pκκ+ | o.t.(x) = (x ∩ κ)+} is not
stationary. (Note that S(κ, κ+) is stationary if κ is κ+-supercompact.) We
show that SR([κ+]ω, <κ) does not hold in this model.
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We start with a review of Krueger’s model. Krueger’s model was obtained
from a model with κ supercompact by two step forcing extension. The first
step forces a partial square principle at κ with preserving supercompactness of
κ. This type of partial square principle was first introduced by Baumgertner
in his unpublished note, and Apter-Cummings [1] showed that it can hold at a
supercompact cardinal. In fact, the first step of Krueger’s construction is due
to Apter-Cummings [1]. The second step is the iteration of Prikry forcing below
κ which was developed by Magidor [8]. We summarize basic properties of these
forcings below.

Definition 5.4. For an uncountable cardinal κ and an E ⊆ Lim(κ+), let ¤E
κ

be the following principle:

¤E
κ ≡ There exists a sequence 〈cβ | β ∈ E〉 such that

(1) cβ is a club in β.
(2) if cf(β) < κ then o.t.(cβ) < κ,
(3) if β′ ∈ Lim(cβ) then cβ′ = cβ ∩ β′,

for each β, β′ ∈ E.

We call a sequence 〈cβ | β ∈ E〉 satisfying (1)-(3) above a ¤E
κ -sequence.

The proof of the following fact can be also found in Krueger [7]:

Fact 5.5 (Apter-Cummings [1]). Assume that κ is a supercompact cardinal.
Then there exists a poset P with the following properties:

(1) P preserves supercompactness of κ.

(2) °P “ ¤E
κ holds for

E = Lim(κ+) \⋃{Eκ+

α+ | α is a measurable cardinal < κ} ”.

Fact 5.6 (Magidor [8]). Assume that κ is a supercompact cardinal. Then there
exists a poset Q with the following properties:

(1) Q has the κ+-c.c.

(2) °Q “κ is strongly compact ”.

(3) For every measurable cardinal α < κ, °Q “ cf(α) = ω ”.

(4) For every measurable cardinal α < κ, Q can be factored as Q≤α ∗ Q̇>α so
that Q≤α has the α+-c.c. and °Q≤α

“ Q̇>α does not add subsets of α+ ”.

Before starting the proof of Theorem 5.3, we give a technical lemma:

Lemma 5.7. Suppose that κ and θ are regular cardinals with ω2 ≤ κ < θ. Let
M be an elementary submodel of 〈Hθ,∈〉 such that M ∩ κ ∈ κ and such that
both cf(M ∩κ) and cf( ¯sup(M ∩κ+)) are uncountable. Then M ∩κ+ is ω-closed,
that is, ¯sup b ∈ M for every countable b ⊆ M ∩ κ+.
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Proof. We prove this by contradiction. Assume that b ⊆ M∩κ+ is countable and
that ¯sup b /∈ M∩κ+. Then b does not have a greatest element. Also, b is bounded
in M ∩κ+ because cf( ¯sup(M ∩κ+)) is uncountable. Let β∗ be the least element
of (M∩κ+)\ ¯sup b. Note that β∗ is a limit ordinal and ¯sup(M∩β∗) = ¯sup b < β∗.
Take an increasing continuous cofinal map σ : cf(β∗) → β∗.

First assume that cf(β∗) < κ. Then cf(β∗) ⊆ M because cf(β∗) ∈ M ∩ κ ∈
κ. Hence ran σ ⊆ M and thus M ∩ β∗ is cofinal in β∗. This contradicts
¯sup(M ∩ β∗) < β∗.

Next assume that cf(β∗) = κ. Then it is easy to see that ¯sup(M ∩ β∗) =
¯sup(σ“ (M ∩ κ)). Hence cf( ¯sup(M ∩ β∗)) is uncountable because cf(M ∩ κ) is

uncountable. But this contradicts ¯sup(M ∩ β∗) = ¯sup b and b is countable.
This completes the proof.

Now we prove Theorem 5.3:

Proof of Theorem 5.3. Assume that κ is supercompact in V . Let V0 be a forcing
extension of V by the poset P of Fact 5.5, and let V1 be a forcing extension of
V0 by the poset Q of Fact 5.6. It suffices to show that SR([κ+]ω, <κ) does not
hold in V1. Before starting, we summarize properties of V0 and V1.

In V0, let E := Lim(κ+) \⋃{Eκ+

α+ | α is a measurable cardinal < κ}. Then
¤E

κ holds in V0. Let 〈cγ | γ ∈ E〉 be a ¤E
κ -sequence. Note that, in V0, there are

unboundedly many measurable cardinals below κ.
V1 is a κ+-c.c. forcing extension of V0. Moreover, in V1, the following hold:

(*1) If α < κ is a measurable cardinal in V0 the cf(α) = ω.

(*2) Suppose that α < κ is measurable in V0. Let γ := (α+)V0 . Then
(Eγ

α)V0 is a stationary subset of Eγ
ω.

(*3) Eκ+

ω ⊆ E.

(*2) and (*3) hold by Fact 5.6 (4).
Now we show that SR([κ+]ω, <κ) does not hold in V1. We work in V1. We

show that there exists a stationary S ⊆ [κ+]ω such that {W ∈ Pκκ+ | S ∩ [W ]ω

is stationary } is nonstationary in Pκκ+. By Lemma 2.8 this suffices. S will be
constructed using Lemma 3.1.

First take a pairwise disjoint partition 〈Aξ | ξ < ω1〉 of Eκ
ω into stationary

sets. Next take an injection σ : Eκ
ω → κ such that, for every α ∈ κ, σ(α) > α

and σ(α) is measurable in V0. Then let Bα := (Eκ+

σ(α))
V0 for each α ∈ Eκ

ω. Note
the following:

• 〈Bα | α ∈ Eκ
ω〉 is a pairwise disjoint sequence of stationary subsets of Eκ+

ω .

• For each α ∈ Eκ
ω and each β ∈ Bα, cfV0(β) > α.

Now let S be the set of all x ∈ [κ+]ω such that

(1) ¯sup(x ∩ κ) ∈ A ¯sup(x∩ω1),

(2) ¯sup(x) ∈ B ¯sup(x∩κ).
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Then S is stationary by Lemma 3.1. We show that {W ∈ Pκκ+ | S ∩ [W ]ω is
stationary} is nonstationary. Take a sufficiently large regular cardinal θ and let
Ω be the set of all M ∈ PκHθ such that M ∩κ ∈ κ and M ≺ 〈Hθ,∈,HV0

θ , κ, 〈cγ |
γ ∈ E〉〉. It suffices to show that if M ∈ Ω then S ∩ [M ∩ κ+]ω is nonstationary.
The proof of this splits into two cases:

Case 1: cf(M ∩ κ) = ω or cf( ¯sup(M ∩ κ+)) = ω.

First suppose that cf(M ∩κ) = ω. Then C := {x ∈ [M ∩κ+]ω | ¯sup(x∩κ) =
M ∩ κ} is club in [M ∩ κ+]ω. Note that if x, y ∈ S ∩ C then ¯sup(x ∩ ω1) =
¯sup(y∩ω1) by (1) of the construction of S. Thus |{ ¯sup(x∩ω1) | x ∈ S∩C}| ≤ 1.

But ω1 ⊆ M ∩ κ+. Hence S ∩ C is nonstationary in [M ∩ κ+]ω. Therefore
S ∩ [M ∩ κ+]ω is nonstationary.

The case when cf( ¯sup(M ∩ κ+)) = ω is similar. Suppose that cf( ¯sup(M ∩
κ+)) = ω. Then C := {x ∈ [M ∩ κ+]ω | ¯sup(x) = ¯sup(M ∩ κ+)} is club in
[M∩κ+]ω. If x, y ∈ S∩C then ¯sup(x∩κ) = ¯sup(y∩κ) by (2) of the construction
of S and thus ¯sup(x∩ω1) = ¯sup(y∩ω1) by (1). Hence |{x∩ω1 | x ∈ S∩C}| ≤ 1.
Therefore S ∩ [M ∩ κ+]ω is nonstationary. ¥(Case 1)

Case 2: Both cf(M ∩ κ) and cf( ¯sup(M ∩ κ+)) are uncountable.

First we claim the following:

Claim . cfV0( ¯sup(M ∩ κ+)) ≤ M ∩ κ.

` Let δ := ¯sup(M ∩ κ+).
First suppose that δ ∈ E. Note that M ∩ κ+ is ω-closed by Lemma 5.7.

Hence, by (*3), Lim(cδ)∩M ∩E is unbounded in δ. Moreover if β ∈ Lim(cδ)∩
M ∩ E then o.t.(cδ ∩ β) = o.t.(cβ) ∈ M ∩ κ. Thus o.t.(cδ) ≤ M ∩ κ. But
cfV0(δ) ≤ o.t.(cδ) because cδ ∈ V0. Therefore cfV0(δ) ≤ M ∩ κ.

Next suppose that δ /∈ E. Then there exists α < κ such that, in V0, α is
a measurable cardinal and cf(δ) = α+. Then, by (*2), (Eδ

α)V0 is a stationary
subset of Eδ

ω. On the other hand, M ∩ κ+ is ω-closed unbounded in δ. Thus
there exists β ∈ M ∩ κ+ such that cfV0(β) = α. Then, by the elementarity of
M , (α+)V0 ∈ M ∩ κ. Therefore cfV0(δ) = (α+)V0 < M ∩ κ.

This completes the proof of the claim. a
Take an increasing continuous sequence 〈βγ | γ < cfV0( ¯sup(M ∩ κ+))〉 ∈ V0

which is cofinal in ¯sup(M ∩κ+). Let C be the set of all x ∈ [M ∩κ+]ω such that,
for some limit γ < cfV0( ¯sup(M ∩ κ+)), ¯supx = βγ and γ ≤ ¯sup(x ∩ κ). Then
C is club in [M ∩ κ+]ω by the claim above. Moreover if x ∈ C and ¯supx = βγ

then

cfV0( ¯supx) = cfV0(βγ) ≤ γ ≤ ¯sup(x ∩ κ)

That is, cfV0( ¯supx) ≤ ¯sup(x ∩ κ) for every x ∈ C. On the other hand, if x ∈ S
then cfV0( ¯supx) > ¯sup(x ∩ κ) by (2) of the construction of S. Thus S ∩C = ∅.
Therefore S ∩ [M ∩ κ+]ω is nonstationary. ¥(Case 2)

This completes the proof of Theorem 5.3.
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Now we turn our attention to Theorem 1.6. As we mentioned before, the
forcing of Theorem 1.6 followed by Lévy collapsing κ to ω2 gives Theorem 1.6.

Let V0, V1 and E be as in the proof of Theorem 1.6. Let V2 be an extension of
V1 by Col(ω1, <κ). Then, by Lemma 5.2, SSR([λ]ω) holds in V2 for every λ ≥ ω2.
So, by Lemma 2.5 (1) and 2.7 (1), it suffices to show that SR([ω3]ω, < ω2) does
not hold in V2.

Here note that V2 is a κ+-c.c. forcing extension of V0 and that (*1), (*2) and
(*3) all hold in V2. (*2) holds because Col(ω1, <κ) preserves stationary subsets
of Eγ

ω. (*3) holds because Col(ω1, < κ) preserves ordinals having uncountable
cofinalities. Hence the same argument shows that SR([κ+]ω, <κ) does not hold
in V2. But κ = ω2 in V2. Therefore SR([ω3]ω, < ω2) does not hold in V2.
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