

PDF issue: 2025-12-05

ウォームギヤと平歯車を用いた回転軸駆動機構の数 学モデル

佐藤,隆太谷山,裕紀堤,正臣

(Citation)

精密工学会誌,78(8):683-688

(Issue Date)

2012

(Resource Type) journal article

(Version)

Version of Record

(URL)

https://hdl.handle.net/20.500.14094/90001944

ウォームギヤと平歯車を用いた 回転軸駆動機構の数学モデル*

臣† 佐 藤 太** 山裕 紀* 正

Mathematical Model of Driving Mechanism for Rotary Axis Driven by Worm and Spur Gears

Ryuta SATO, Yuki TANIYAMA and Masaomi TSUTSUMI

This paper proposes a mathematical model of CNC rotary table driven by worm and spur gears. Proposed mathematical model has 4 degrees of freedom; rotational angle of motor, rotational angle of worm shaft, axial displacement of worm shaft, and rotational angle of table. Backlashes of spur and worm gear are also introduced into the model. Mass and inertias are calculated from designed drawings, and Coulomb's and viscous frictions are identified by matching motor torque curves under sine wave motions. Frequency response of the driving mechanism is also measured to identify axial and rotational stiffness. In order to confirm the effectiveness of proposed model, an experimental set-up consists of the rotary table and personal computer with a DSP board is modeled. Step response, rotational fluctuation, and influence of unbalanced mass are measured and simulated. As the results, it is confirmed that the proposed model can well simulate actual behaviors.

Key words: rotary axis, mathematical model, worm gear, spur gear, backlash, simulation

1. 緒 貢

5 軸制御マシニングセンタに代表される多軸制御工作機械は, 直進軸に加えて回転軸を備えることで、工具と工作物間の相対 位置および角度の制御を可能にしている. 多軸制御工作機械に より加工される製品の形状は、直進軸および回転軸の静的な幾 何精度と動的な運動特性とにより左右されるため、それらの改 善は製品の品質と生産性の向上に直結する. よって, 幾何精度 や運動特性の評価および向上に関する研究が行われてきた.

JIS B6190-7¹⁾ には、回転軸の幾何精度とその評価方法について 示されている. 回転軸の幾何精度評価方法についてはこれまで に多くの研究例があり²⁾⁻¹⁰⁾,回転中心線の位置や傾きといった誤 差の同定については、ボールバーを使った方法が様々な形態の 機械に対して開発されているほか 2/-5), 1 つまたは複数の変位計 と基準球とを使った方法が開発されている⁶⁾⁻⁸⁾. さらに、R-test⁶⁾ と呼ばれる測定装置により回転角度依存の誤差を評価するため の研究や9, 傾斜回転軸の位置決め精度測定方法に関する研究も ある10)11).

一方で動的な運動特性は,各部の質量や剛性,摩擦といった 機械的な要素に加え、フィードバック用センサの特性や制御系 の応答性といった様々な要因により変化するため、その解析と 改善のために、数学モデルによるシミュレーションが有効な手 段として用いられてきた ¹²⁾⁻¹⁴⁾. しかし、それらの研究は全て直 進軸の運動特性に関するものである. 回転軸の動的な数学モデ ルは検討されているが 15), 等速回転時の変動やアンバランス質 量による影響については検討されていない.

本研究では、ウォームギヤと平歯車を用いた回転軸駆動機構 の数学モデルを提案する. 回転軸の駆動機構としてはダイレク トドライブを含むいくつかの機構が存在しているが、その不可 逆回転特性やコスト, 設計上の自由度といった面から, ウォー

ムギヤと平歯車を用いた回転軸は広く使われている. 多軸制御 工作機械で直進軸と回転軸の同期運動が行われる場合、回転軸 の運動特性が同期精度に強く影響することが知られており $^{16)-18}$, 回転軸の運動特性を解析できる数学モデルは同期精度向上のた めの有効なツールになり得る.

2. 実験装置

本研究で用いた実験装置を図1に示す. 実験装置はウォーム ギヤと平歯車を用いた回転テーブル, AC サーボモータとサーボ ドライバ, および DSP ボードを組み込んだパソコンとからなる. 回転テーブルは回転軸中心線を垂直方向または水平方向のどち らかに向けて固定する.

回転軸駆動機構の模式図を図2に示す、サーボモータの回転

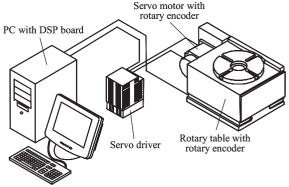


Fig.1 Experimental set-up

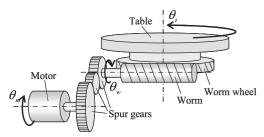


Fig.2 Driving mechanism

^{*} 原稿受付 平成 23 年 10 月 30 日

^{**} 正 会 員 神戸大学大学院(兵庫県神戸市灘区六甲台町 1-1)

^{***} 東京農工大学大学院博士前期課程(現,株式会社東京精密; 東京都八王子市石川町 2968-2)

[†]正 会 員 東京農工大学大学院(東京都小金井市中町 2-24-16)

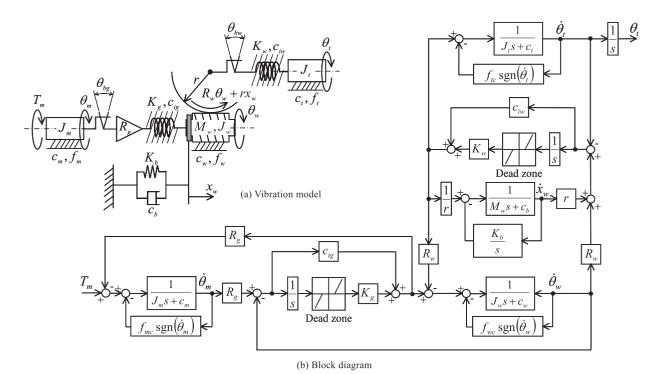


Fig.3 Proposed model of driving mechanism for rotary axis driven by worm and spur gears

は減速比 4/5 の平歯車列を介してウォーム軸に伝達され、減速比 1/72 のウォームギヤを介してテーブルが駆動される。モータからテーブルまでの総減速比は 1/90 である。テーブルには分解能 0.0001 度のロータリエンコーダが取付けられており、DSP ボードを介してモータの回転角度と同期して記録する。モータの回転角度は分解能 65536 pulse/rev(0.00549 度)のロータリエンコーダで検出される。これをテーブルの回転角度に換算すると、0.000056 度となる。

サーボドライバはトルク制御モードで使用し、DSP ボードからアナログトルク指令を与えることで運動を制御する. 速度制御系と位置制御系はパソコン上に構成し、サーボモータの回転角度をフィードバックして、制御周期 1 ms でセミクローズドループ制御を行う. 速度制御系は比例-積分制御、位置制御系は比例制御とし、サーボ系の応答性の指標である位置ループゲインと速度ループゲインは、それぞれ 42 1/s と 150 rad/s とした.

3. 回転軸駆動機構の数学モデル

3.1 駆動機構のモデル化

本研究で提案する回転軸駆動機構のモデルを図3に示す。図(a) が振動モデルであり、モータ回転角度 θ_m rad、ウォーム軸の回転角度 θ_w rad、ウォーム軸の軸方向変位 x_w m、およびテーブル回転角度 θ rad を考慮した 4 自由度系となっている。図中左下がりの斜線は粘性を表現している。図(a)のモデルから式(1)の運動方程式を得る。各パラメータの説明を $\mathbf{表}$ 1 に示す。

$$J_{m}\ddot{\theta}_{m} + c_{m}\dot{\theta}_{m} + R_{g}T_{g} + R_{g}c_{ig}(R_{g}\dot{\theta}_{m} - \dot{\theta}_{w}) + f_{m} = T_{m}$$

$$J_{w}\ddot{\theta}_{w} + c_{w}\dot{\theta}_{w} + R_{w}T_{w} + R_{w}c_{iw}(R_{w}\dot{\theta}_{w} + r\dot{x}_{w} - \dot{\theta}_{t}) + f_{w}$$

$$= T_{g} + c_{ig}(R_{g}\dot{\theta}_{m} - \dot{\theta}_{w})$$

$$M_{w}\ddot{x}_{w} + c_{b}\dot{x}_{w} + K_{b}x_{w} + \frac{T_{w}}{r} + \frac{c_{iw}}{r}(\dot{\theta}_{t} - R_{w}\dot{\theta}_{w} - r\dot{x}_{w}) = 0$$

$$J_{t}\ddot{\theta}_{t} + c_{t}\dot{\theta}_{t} + f_{t} = T_{w} + c_{iw}(R_{w}\dot{\theta}_{w} + r\dot{x}_{w} - \dot{\theta}_{t})$$

$$(1)$$

 Table 1
 Parameter list of proposed model

Table 1 Parameter list of proposed model			
Symbol	Unit	Parameter	Value
J_m	kgm ²	Inertia of motor rotor and drive spur gear	13.9×10 ⁻⁴
J_w	kgm ²	Inertia of driven spur gears and worm	4.3×10 ⁻⁴
J_t	kgm ²	Inertial of worm wheel and table	0.108
M_w	kg	Mass of worm shaft	1.2
K_g	Nm/rad	Torsion stiffness between motor and worm shaft	850
K_w	Nm/rad	Torsion stiffness of worm gear	3.1×10 ⁵
K_b	N/m	Axial stiffness of support bearing of worm shaft	5.8×10 ⁷
C_m	Nms/rad	Viscous coefficient of motor shaft	8.0×10 ⁻³
C_W	Nms/rad	Viscous coefficient of driving mechanism	1.0×10 ⁻²
c_b	Ns/m	Axial viscous coefficient of worm shaft bearing	1.2×10 ⁻³
c_t	Nms/rad	Viscous coefficient of table bearing	1.1×10 ⁻²
C_{ig}	Nms/rad	Viscous coefficient between motor and worm shaft	5.0×10 ⁻²
Civ	Nms/rad	Viscous coefficient between worm and worm wheel	0.1
f_{mc}	Nm	Coulomb's friction torque of motor	0.14
f_{wc}	Nm	Coulomb's friction torque of driving mechanism	0.24
f_{tc}	Nm	Coulomb's friction torque of table	6.0
θ_{bg}	rad	Backlash of spur gears	3.0×10 ⁻³
θ_{bw}	rad	Backlash of worm gear	8.7×10 ⁻⁵
R_g	-	Reduction ratio of spur gears	4/5
R_w	-	Reduction ration of worm gear	1/72
r	m	Pitch circle radius of worm wheel	0.08

式(1)において、 T_m はモータトルク[Nm]であり、 T_g と T_w はそれぞれ平歯車とウォームギャの伝達トルク[Nm]である。本研究では、伝達トルク T_g と T_w を式(2)および式(3)として表現する。

$$if \left| R_{g} \theta_{m} - \theta_{w} \right| \ge 0$$

$$then \quad T_{g} = K_{g} (R_{g} \theta_{m} - \theta_{bg} - \theta_{w})$$

$$else \quad T_{g} = 0$$
(2)

$$if \left| R_{w} \theta_{w} + r x_{w} - \theta_{t} \right| \ge 0$$

$$then \quad T_{w} = K_{w} (R_{w} \theta_{w} + r x_{w} - \theta_{bw} - \theta_{t})$$

$$else \quad T_{w} = 0$$
(3)

式(1)の運動方程式から図3(b)のブロック線図を得る.式(2)およ び式(3)はブロック線図上では不感帯として表現できる. また、モ ータ軸回りの摩擦トルク f_m Nm, 駆動機構の摩擦トルク f_w Nm, お よびテーブル軸回りの摩擦トルク f, Nm はクーロン摩擦としてモ デル化した. 図3(b)中のsgn は符号関数である.

ウォームギヤによる角度伝達精度は歯面の形状精度や組立て誤 差の影響を受けることが知られているが¹⁹, 本研究では, 主にウ オーム軸の振れ回りに起因する, ウォーム軸の回転と同期した変 動成分のみを考慮し、ウォームギヤの減速比Rwをウォーム軸の回 転角度 θ_w の関数(式(4)) として与えることでモデル化した.ここ で、Wは回転むらの振幅 rad であり、ウォームギヤの伝達トルク T_w の符号により異なる値となる. これは、伝達トルクの符号によ り接触する歯面が異なるためである.

$$R_{w} = R_{wn} + W \sin(T_{w}) \tag{4}$$

歯車列の剛性に関しても、歯面の接触状態の変化に応じて周期 的に変動することが知られているが 20 , 本研究では、剛性 K_g およ び K 、は一定の値としてモデル化した.

3.2 パラメータの決定

慣性モーメント J_m , J_w , J_t および質量 M_w は, 回転テーブルの 設計値から比較的正確な値を計算できる. また, ウォーム軸サ ポートベアリングの剛性 K_b についても仕様値を入手すること ができる. しかし、ギヤの伝達剛性である K_g 、 K_w やクーロン摩 擦トルク f_{mc} , f_{wc} , f_{tc} , および各部の粘性係数については、それ らの値を計算により求めることが困難または不可能である. そ こで本研究では、実験結果とシミュレーション結果とができる 限り一致するように各パラメータの値を決定した.

まず、モータを機構から取り外してモータ単体で正弦波往復 運動を行うことで、モータ軸回りのクーロン摩擦トルクfcmと粘 性係数 c_m とを同定できる $^{14)}$. そのうえで、モータを機構に取付 けて正弦波往復運動を行い、そのときのモータトルク波形が実 験とシミュレーションとで一致するように、クーロン摩擦トル ク f_{cw} , f_{ct} と粘性係数 c_w , c_t とを同定する. テーブルの角度振幅 を30度、周期を6秒としたときのモータトルク波形の実験結果 とシミュレーション結果を図4に示す.

なお、図4のデータにはテーブル軸回りの摩擦トルクと駆動 機構の摩擦トルクの両方の影響が含まれており、その 2 つを分 離できない.しかし、後に述べるアンバランス質量付加時のデ ータを用いることで、テーブル軸回りの摩擦トルクを推定でき、 結果的に駆動機構の摩擦トルクも決定できる.

平歯車列の剛性 K_g とウォームギヤの剛性 K_w は、駆動機構の 共振周波数が実験とシミュレーションで一致するように決定す る. 周波数特性は、速度および位置制御系を外してオープンル ープとし,振幅5Nmの正弦波トルク指令をサーボドライバに入 力することで行った.

正弦波の周波数を 10, 200, 350 Hz としたときのモータ回転 角度とテーブル回転角度とを図5に示す。モータ回転角度はテ ーブル回転角度に換算して表示している. 図によると, 10 Hz で はテーブルとモータの回転角度に差異はみられないのに対し, 200 Hz では駆動機構の共振によりテーブルの振幅のほうが大き くなっている. さらに 350 Hz ではテーブルの運動は検出できな くなった.

同様の測定を1Hzごとに行い,各周波数におけるモータとテ ーブルの振動振幅を計算し、周波数とモータとテーブルの振動 振幅比との関係を整理した. その結果を図6に示す. 縦軸はゲ インとして表示している. シミュレーションでは, バックラッ

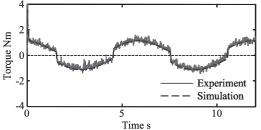


Fig.4 Comparison of motor torque curve under sine wave motion (Amplitude: 30 deg, Period: 6 s)

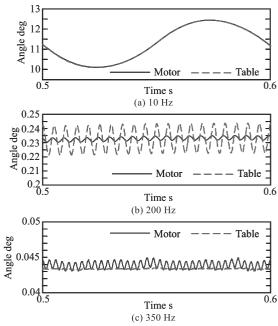


Fig.5 Comparison of motor and table angles under sine wave motions

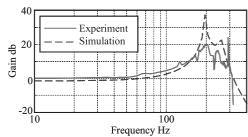
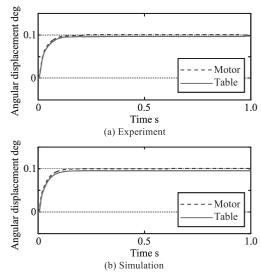



Fig.6 Frequency response of drive mechanism

シ等の非線形要素を除いたうえで、モータからテーブルまでの 伝達関数を求めた. 図によると, 実験では 200Hz, 250 Hz, およ び 300 Hz 付近に共振がみられる. そこで, ウォームギヤの剛性 Kwは 200 Hz 付近, 平歯車列の剛性は 250 Hz 付近の共振に関係 していると仮定して2つのパラメータを試行錯誤的に決定した. さらに、粘性係数 c_{ig} および c_{iw} についても、共振点付近のゲイン のシミュレーション結果が実験結果とできる限り一致するよう に試行錯誤的に決定した.

しかし、図6からわかるように、実験結果とシミュレーショ ン結果とを完全に一致させることはできなかった. このことの 原因として、バックラッシおよび非線形な摩擦特性や剛性によ る影響が考えられる.

なお、 $ウォーム軸サポートベアリングの剛性 <math>K_b$ に起因する共 振が、シミュレーションでは 1 kHz 付近にみられた. しかし、 図6の実験結果では300 Hz付近にそれとみられる共振が観察さ

Fig.7 Comparison of step responses (0.1 deg)

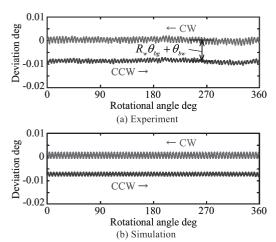
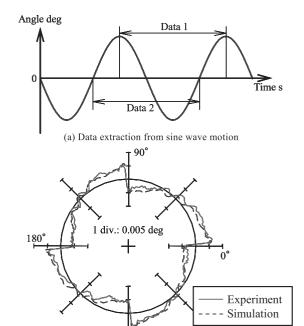


Fig.8 Comparison of rotational fluctuations (360 deg/min)

れ、このことの原因についても明らかにするには至っていない. 以上のことから、提案した方法によりモデルの全てのパラメータを決定できるが、周波数特性のシミュレーション結果については今後検討する必要があるといえる.

4. 実験結果とシミュレーション結果の比較


4.1 ステップ応答

ステップ高さを 0.1 度としたときのステップ応答の実験結果 とシミュレーション結果とを**図7** に示す. 図(a)が実験結果,図 (b)がシミュレーション結果であり,モータ回転角度はテーブル回転角度に換算して表示している.

図によると、実験結果とシミュレーション結果の両方においてテーブル回転角度は目標値に達しておらず、これは平歯車とウォームギヤに存在するバックラッシによる影響である.以上のことから、提案したモデルによりバックラッシがステップ応答に及ぼす影響を表現できるといえる.

4.2 等速回転時の変動

回転速度360 deg/min の等速回転運動を時計回りと反時計回りとで行い、そのときのテーブル回転角度とモータ回転角度との差を求めた。このとき、モータ回転角度はテーブル回転角度に換算している。その結果を図8に示す。図8の結果は、モータとテーブルの間に存在する駆動機構に起因する誤差のみを抽出

(b) Comparison of motion errors under sine wave motion (Amplitude: 60 deg, Period: 15 s)

270°

Fig.9 Motion error representing method for a rotary axis and measured and simulated results

した結果とみなせる.図(a)が実験結果,図(b)がシミュレーション結果であり、実験とシミュレーションとは同じ方法でデータを処理している.

図によると、実験結果とシミュレーション結果の両方において、回転方向の違いにより誤差の大きさが変化している。これは平歯車とウォームギヤのバックラッシによるものであり、その大きさはテーブル回転角度に換算した2つのバックラッシ量の合計に相当する。

また、実験結果とシミュレーション結果の両方に細かい変動が生じており、回転方向によってその変動の振幅が異なっている。この変動の周期はウォーム軸の回転周期と一致しており、主にウォームの振れ回りによるものであると考えられる。なお、実験ではより長い周期の変動も認められ、これはウォームホイールの加工精度や組立て精度、および回転角度を測定するために取付けたロータリエンコーダの取付け精度に起因すると考えられるが、それらの誤差をモデルに考慮していないため、シミュレーション結果には現れていない。

以上の結果から、提案したモデルにより、バックラッシが等 速回転時の回転誤差に及ぼす影響とウォーム軸の回転周期に同 期した回転誤差の変動とを表現できるといえる.

4.3 運動方向反転時の挙動

工作機械の直進軸の運動性能を評価するための方法として円運動精度試験がある²¹⁾.この方法の利点の1つは,運動誤差を拡大表示することが容易である点にあり,例えば軸の運動方向が反転する象限切替え部では,摩擦力の影響による突起状の軌跡誤差(象限突起)や,バックラッシ等の影響による段差状の軌跡誤差が生じることが知られている²²⁾.

回転軸の運動方向が反転するときの運動誤差を直進軸との同期運動を行わせることで評価した事例はあるが²³,本研究では、回転軸単体での運動誤差を調査するため、円運動精度試験に相当する運動を行って運動誤差を拡大表示した.

(a) Experimental method

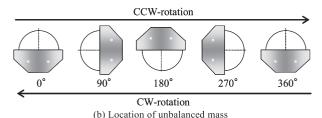
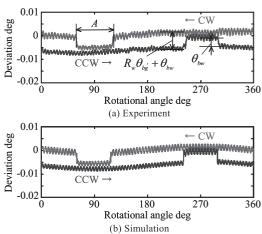


Fig.10 Experimental method for influence of unbalanced mass

すなわち,回転軸単体で正弦波往復運動を行わせ,そのとき のデータから, 図 9(a)に示すように位相が 1/4 周期ずれた 2 つの データ (Data 1, Data 2) を抽出する. さらに抽出された2つの データをそれぞれ X 軸および Y 軸とみなして円弧軌跡を描き, その半径方向の誤差を拡大表示する.

振幅 60 度, 周期 15 秒の正弦波往復運動の実験とシミュレー ションとを行い、そのときのテーブル回転角度を模擬的に円弧 表示した結果を図 9(b)に示す. 図において, 円周方向の回転角 度は1周期を360度としたときの位相角を表し、半径方向の拡 大表示された誤差がテーブルの運動誤差を表している.

図によると、実験とシミュレーションの両方において、運動 方向が反転する90度ごとにバックラッシの影響による段差状の 運動誤差がみられるほか、軌跡上には周期的な変動がみられる. 以上のことから、提案したモデルで運動方向反転時の挙動を含 む正弦波往復運動時の運動誤差を表現できるといえる.


4.4 アンバランス質量による影響

例えば傾斜回転軸では回転軸の構造物自体または搭載される 工作物がアンバランス質量となり,運動精度に影響を及ぼす²⁴⁾. 本研究では、アンバランス質量による影響を調査するため、図 10(a)に示すように回転中心線が水平方向を向くように回転テー ブルを固定し、1つ11.67kgのアンバランス質量を1つまたは2 つテーブルに取付けた.

テーブル回転角度とアンバランス質量の位置との関係を図 10(b)に示す. 図に示すように、アンバランス質量と重力加速度 によるモーメントはテーブル回転角度が90度と270度のときに 最大となり、アンバランス質量を 1 つ取付けたときの最大モー メントは 6.74 Nm である.

回転速度 360 deg/min で時計回りと反時計回りの等速回転運動 を行い、そのときのテーブル回転角度とモータ回転角度(テー ブル角度に換算)との差を表示した結果を図11 および図12 に 示す. 図 11 がアンバランス質量を 11.67 kg (6.74 Nm) とした場 合,図12がアンバランス質量を23.34kg (13.48 Nm)とした場 合の結果であり、それぞれ図(a)が実験結果、図(b)がシミュレー ション結果である.

アンバランス質量を付加しない場合の結果である図 8 と比べ ると、図11 および図12では90度および270度付近でステップ 状の変化が観察でき、この変化の幅(図中 A)はアンバランス 質量が大きい図12のほうが大きくなっている。また、ステップ

Rotational deviation with unbalances mass (11.67 kg) Fig.11

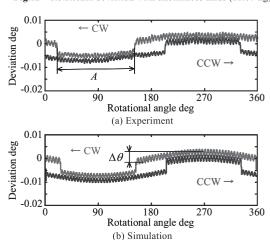


Fig.12 Rotational deviation with unbalances mass (23.34 kg)

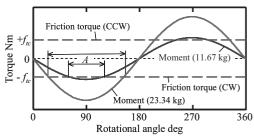


Fig.13 Relationships between friction torque and moment

状の変化が生じている部分の細かい変動の振幅をみると、ステ ップ状の変化が生じる前後で変動の振幅が変化しており、すな わちウォームギヤの歯面が変化していることがわかる.

これらの現象はシミュレーション結果にも実験結果と同様に 現れており、90度と270度付近に現れるステップ状の変化の高 さが,ウォームギヤのバックラッシ量 $heta_{\!\scriptscriptstyle bw}$ に相当する.よって, アンバランス質量を付加して等速回転運動を行ったときの誤差 波形から、ウォームギヤのバックラッシ量のwと平歯車列のバッ クラッシ量 θ_{bg} とを一意に同定できる.

図 12 によると、誤差波形には 90 度および 270 度付近を極値 とする変動がみられ(図中の $\Delta heta$), これは駆動機構の弾性変形 によるものである. 図11でもわずかに観察されるが、アンバラ ンス質量の大きい図12のほうがより顕著に現れている.

アンバランス質量によるモーメントとテーブル軸回りの摩擦 トルク f_t との関係を図 13 に示す. アンバランス質量によるモー

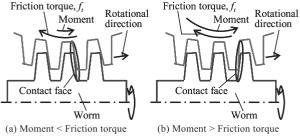


Fig.14 Schematic diagram for contact face of worm gear

メントは回転角度に依存し、質量が大きいほど大きくなる。図 10 と図 13 によると、例えば反時計回りでは、アンバランス質量によるモーメントは90度付近ではテーブルの回転と反対方向に作用し、逆に 270 度付近ではテーブルの回転と同じ方向に作用する。また、回転中の摩擦トルクは常にテーブルの回転を止める方向に作用するため、その状態ではウォームホイールの回転方向後ろ側の歯面がウォームと接触している(図 14(a)).

すなわち、アンバランス質量によるモーメントがテーブル回転方向と同じ方向に作用し、さらにその大きさがテーブル軸回りの摩擦トルクよりも大きくなると(図14(b))、アンバランス質量によるモーメントの影響によりウォームギヤのバックラッシ分だけテーブルが動き、図11および図12のような波形が生じる。さらに、アンバランス質量が大きいほうが、アンバランス質量によるモーメントが摩擦トルクよりも大きくなる範囲が増えるため、ステップ状の変化の幅も大きくなる.

なお,このステップ状の変化の幅 A はテーブル軸回りの摩擦トルクによっても影響を受けるため,幅 A が実験とシミュレーションとで一致するようにテーブル軸回りのクーロン摩擦トルク f_a を同定することで,負荷質量がない場合の結果からは分離不可能であったモデル中の 2 箇所の摩擦トルクを一意に同定することが可能となる.

以上のことから、傾斜回転軸でアンバランス質量が存在する場合には、アンバランス質量によるモーメントが摩擦トルクよりも大きくなる場合に、運動誤差にステップ状の変化が生じるといえる。また、本研究で提案したモデルによりアンバランス質量による影響をシミュレーションで表現できるといえる。

5 結 言

本研究では、ウォームギヤと平歯車により駆動される回転軸 駆動機構を対象として、各部の回転角度とウォーム軸の変位を 考慮した数学モデルとそのパラメータ決定方法を提案した.本 研究により得られた結果を以下に示す.

- (1) 提案したパラメータ決定方法により、モデルの全てのパラメータを決定できるが、周波数特性のシミュレーション結果については今後検討する必要がある.
- (2) 提案したモデルによりバックラッシがステップ応答および等速回転時の回転誤差に及ぼす影響と、ウォーム軸の回転周期に同期した回転誤差の変動とを表現できる.
- (3) 提案したモデルで運動方向反転時の挙動を含む正弦波往 復運動時の運動誤差を表現できる.
- (4) 傾斜回転軸でアンバランス質量が存在する場合には、アンバランス質量によるモーメントが摩擦トルクよりも大きくなる場合に、運動誤差にステップ状の変化が生じる.
- (5) 提案したモデルによりアンバランス質量による影響をシミュレーションで表現できる.

本研究で提案したモデルは、回転軸の高性能化のために有用なツールになると考えられる。今後、ローラギヤカム駆動やダイレクトドライブ方式の回転軸についてもモデル化とシミュレーションを行う予定である。

謝 辞

本研究は、科学研究費補助金(若手(B)18760164 および 27360110) と、メカトロニクス技術高度化財団研究開発助成により行われた研究の一部であり、関係各位に深く感謝の意を表する.また、実験に使用した回転テーブルをご提供いただいた、前ハイデンハインの越智玉樹氏に深く感謝の意を表する.

参考文献

- JIS B6190-7, 工作機械試験方法通則-第7部:回転軸の幾何精度試験, 日本規格協会、(2008).
- 2) 齋藤明徳, 堤正臣, 牛久健太郎: 5 軸制御マシニングセンタのキャリブレーション方法に関する研究(第2報), 精密工学会誌, 69, 2 (2003) 268
- 3) 堤正臣, 山元健, 齋藤明徳, K.M. Muditha Dassanayake, 三上滋崇: 同時 5 軸制御による主軸頭旋回形 5 軸制御マシニングセンタの幾何偏差 同定方法, 日本機械学会論文集(C編), 72, 723 (2006) 3679.
- 4) 崔成日, 東山憲司, 堤正臣, K.M. Muditha Dassanayake: 旋盤形複合加工機に存在する幾何偏差同定方法, 75, 750 (2009) 476.
- 5) 深山直記, 佐伯智之, 崔成日, 堤正臣: テーブル旋回形 5 軸制御マシニングセンタの幾何偏差同定方法の一般化, 日本機械学会論文集(C編), 75, 756 (2009) 2335.
- S. Weikert: R-test, a New Device for Accuracy Measurements on Five Axis Machine Tools, Annals of the CIRP, 53, 1 (2004) 429.
- B. Bringmann and W. Knapp: Model-based 'Chase-the-ball' Calibration of a 5-axes Machining Center, Annals of the CIRP, 55, 1 (2006) 531.
- 8) 内海敬三,小杉達寛,齋藤明徳,堤正臣:5 軸制御マシニングセンタの 静的精度測定方法(基準球と変位計を用いた方法),日本機械学会論文 集(C編),72,719 (2006) 2293.
- S. Ibaraki, C. Oyama and H. Otsubo: Construction of an Error Map of Rotary Axes on a Five-axis Machining Center by Static R-test, International Journal of Machine Tools & Manufacture, 51 (2011) 190.
- 10) 崔成日, 高橋和也, 堤正臣, 佐藤隆太:5 軸制御マシニングセンタの傾 斜回転軸位置決め精度測定方法の開発, 精密工学会誌, **73**, 9 (2007) 1040.
- 11) 崔成日, 高橋和也, 堤正臣, 佐藤隆太: ロータリエンコーダと電子水 準器を用いたサーボ傾斜角度計の開発, 精密工学会誌, 75, 3 (2009) 412
- 12) 垣野義昭, 松原厚, 黎子椰, 上田大介, 中川秀夫, 竹下虎男, 丸山寿一: NC 工作機械における送り駅動系のトータルチューニングに関する研究(第1報), 精密工学会誌, 60,8 (1994) 1097.
- K. Erkorkmaz and Y. Altintas: High Speed CNC System Design. Part II, International Journal of Machine Tools & Manufacture, 41 (2001) 1487.
- 14) 佐藤隆太, 堤正臣: AC サーボモータと直動転がり案内を用いた送り 駆動系の数学モデル, 精密工学会誌, 71, 5 (2005) 633.
- O. Zirn: Machine Tool Analysis -Modelling, Simulation and Control of Machine Tool Manipulators, A Habilitation Thesis, ETH Zurich, (2008).
- 16) 佐藤隆太, 横堀祐也, 堤正臣: 5 軸制御マシニングセンタにおける直 進軸と旋回軸の動的同期精度, 精密工学会誌, 72, 1 (2006) 73.
- 17) 弓座大輔, 内海敬三, 堤正臣, 佐藤隆太: 5 軸制御マシニングセンタの 同期運動精度測定方法, 日本機械学会論文集(C編), 72, 723 (2006) 3672.
- 18) 茨木創一,澤田昌広,松原厚,森雅彦,樫原圭蔵,垣野義昭:ボールバー法を用いた複合加工機のミリング主軸旋回軸の動的運動精度測定法,精密工学会誌,73,5 (2007) 583.
- 19) 下河辺明,豊山晃,我妻雄策:ウォームギヤの歯当たりと角度伝達精度の研究(第1報),精密機械,46,3 (1980) 367.
- 20) 横山嘉昭, 鈴木義友: 歯車の剛性解析, 精密工学会誌, **64**, 11 (1998) 1585.
- 21) JIS B6190-4, 工作機械試験方法通則-第4部: 数値制御による円運動 精度試験, 日本規格協会, (2008).
- 22) 垣野義昭, 井原之敏, 篠原章翁: DBB 法による NC 工作機械の精度評価法, リアライズ社, (1990).
- 23) 太田祐輔, 茨木創一:5 軸制御工作機械の旋回軸が反転する際の動的 誤差の評価, 日本機械学会 2011 年度年次大会 DVD-ROM 論文集, (2011) \$131023.
- 24) 長尾和昌, 柴原豪紀, 熊谷幹人, 山下宏, 宮島義嗣: 5 軸制御マシニン グセンタの傾斜テーブルにおける角度偏差の改善, 2008 年度精密工 学会秋季大会学術講演会講演論文集, (2008) 10.