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Evolution inclusions governed by subdifferentials
in reflexive Banach spaces

Goro Akagi∗ and Mitsuharu Ôtani†

Abstract

The existence, uniqueness and regularity of strong solutions for Cauchy prob-
lem and periodic problem are studied for the evolution equation: du(t)/dt +
∂ϕ(u(t)) 3 f(t), t ∈ [0, T ], where ∂ϕ is the so-called subdifferential operator
from a real Banach space V into its dual V ∗. The study in the Hilbert space
setting (V = V ∗ = H: Hilbert space) is already developed in detail so far. How-
ever, the study here is done in the V -V ∗ setting which is not yet fully pursued.
Our method of proof relies on approximation arguments in a Hilbert space H.
To assure this procedure, it is assumed that the embeddings V ⊂ H ⊂ V ∗ are
both dense and continuous.

1 Introduction

Let V and V ∗ be a real reflexive Banach space and its dual space respectively
and let ϕ be a lower semicontinuous convex function from V into ]−∞,+∞] with
ϕ 6≡ +∞. Then it is well known that the subdifferential ∂ϕ (a generalization of
Fréchet derivative) of ϕ becomes a maximal monotone operator from V into V ∗

(see Barbu [4]). The main purpose of this paper is to investigate the existence,
uniqueness and regularity of the solution of the following evolution equation in
V ∗.

(E)
du

dt
(t) + ∂ϕ(u(t)) 3 f(t), t ∈ [0, T ].

As for the case where V is a real Hilbert space H whose dual space is iden-
tified with H, H. Brézis [6] showed that Kōmura’s theory [14] can be applied to
(E) and moreover the subdifferential operator generates the nonlinear semigroup
with the smoothing effect. Thereafter the generalizations of Kōmura-Brézis The-
ory have been developed by many people in various directions. Some of them
are very successful in the application of semigroup theory to nonlinear partial
differential equations such as the theory of time-dependent subdifferential op-
erators (∂ϕ is replaced by ∂ϕt) [cf. Attouch-Bénilan-Damlamian-Picard [2],
Kenmochi [11], Yamada [19] and Ôtani [18]] or the theory of non-monotone
perturbations (∂ϕ is replaced by ∂ϕ + B(·)) [cf. Attouch-Damlamian [3], Koi-
Watanabe [13] and Ôtani [16], [17]].
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However, they are all done in the Hilbert space setting. As is well known,
the theory of elliptic equations bears close relations with the theory of evolution
equations, and in the theory of elliptic equations, the Fréchet derivative dφ of
a C1-functional φ defined on V is usually regarded as the operator from V into
V ∗. For example, the statement of “Palais-Smale” condition and Mountain Pass
lemma are formulated in the V -V ∗ setting, and this setting plays an essential role
to show the well-known fact that the equation −∆u(x) = |u(x)|q−2u(x), x ∈
Ω, u|∂Ω = 0 admits a nontrivial positive solution if and only if 1 < q < 2∗ =
2N/(N − 2), provided that Ω is a bounded star-shaped domain.

From this point of view, it would be very important to investigate the solv-
ability of (E) in the V -V ∗ setting. On the other hand, this kind of attempt
was already fully developed in the book of J. L. Lions [15] for various types of
evolution equations by using Faedo-Galerkin’s method. Our main tool here is
the theory of nonlinear semigroup and our final goal is to present an abstract
framework dealing with the evolution equation governed by subdifferential op-
erator in the V -V ∗ setting. The treatment of (E) in this framework is not yet
fully pursued. Brézis [7] discussed the existence of weak solutions of (E), and
Kenmochi [11] studied the existence of strong solutions of (E) by employing the
semi-discretisation. Our framework can assure the existence of strong solutions
of (E) under weaker assumptions on f than those of [6], [7] and [11], which is
very important when we aim at the perturbation problem for (E).

As will be exemplified in the applications, the advantage of this approach over
Faedo-Galerkin’s method is that one can derive better regularity of solutions in
a natural way.

This paper is composed of five sections. Section 2 contains some preliminar-
ies which will be used later. In Section 3 we shall be concerned with Cauchy
problem of (E). Section 4 deals with the periodic problem of (E). The last section
is devoted to some applications of our abstract results to nonlinear heat equa-
tions governed by the so-called p-laplace operators in bounded and unbounded
domains.

2 Preliminaries

Let V be a real reflexive Banach space and V ∗ be its dual space. We assume
that there exists a real Hilbert space H identified with its dual such that

V ⊂ H ≡ H∗ ⊂ V ∗,(2. 1)

where V ⊂ H and H∗ ⊂ V ∗ are both densely and continuously embedded.
Hence V ∗〈u, v〉V = (u, v)H holds for every u ∈ H and v ∈ V . For the sake of
simplicity, we often denote V ∗〈·, ·〉V by 〈·, ·〉.

Let Φ(V ) be the set of all proper lower semicontinuous convex functions
ϕ from V into ] − ∞,+∞], where “proper” means that the effective domain
D(ϕ) of ϕ defined by D(ϕ) = {u ∈ V ;ϕ(u) < +∞} is not empty. Define the
subdifferential ∂ϕ of ϕ by

∂ϕ(u) = {f ∈ V ∗;ϕ(v)− ϕ(u) ≥ 〈f, v − u〉 for all v ∈ D(ϕ)}

2



G. Akagi and M. Ôtani Evolution inclusions governed by subdifferentials 3

with domain D(∂ϕ) = {u ∈ V ; ∂ϕ(u) 6= ∅}.
Then it is well known that ∂ϕ becomes maximal monotone in V × V ∗ and

has various nice properties (see [4], [6]). We recall two results of those which
will be used later.

Proposition 2.1 Let ϕ ∈ Φ(H) , and let u ∈ W 1,2(0, T ;H) be such that u(t) ∈
D(∂ϕ) for a.e. t ∈]0, T [. Suppose that there exists g ∈ L2(0, T ;H) such that
g(t) ∈ ∂ϕ(u(t)) for a.e. t ∈]0, T [. Then, the function t 7→ ϕ(u(t)) is absolutely
continuous on [0, T ] and the following equality holds:

d

dt
ϕ(u(t)) =

(
h(t),

du

dt
(t)

)

H

for a.e. t ∈]0, T [ and for all h(·) ∈ ∂ϕ(u(·)).

The following proposition plays an important role in the proof of Theorem
3.2.

Proposition 2.2 Let ϕ ∈ Φ(H). Then, for every u0 ∈ D(ϕ) and f ∈ L2(0, T ;H),
there exists a unique strong solution u of Cauchy problem of (E) with the initial
data u0 satisfying :

u(t) ∈ D(∂ϕ) for a.e. t ∈]0, T [,
u ∈ W 1,2(0, T ;H), u(+0) = u0,

t 7→ ϕ(u(t)) is absolutely continuous on [0, T ].

Throughout the present paper, for every i ∈ IN, we denote by Ci positive
constants which do not depend on the elements of the corresponding space or
set.

Let p′ be the Hölder conjugate of p ∈]1,+∞[, i.e., 1/p + 1/p′ = 1. For all
k > 0, by Young’s inequality, we have

ab ≤ kap +Mp(k)bp′ ∀a ≥ 0,∀b ≥ 0,(2. 2)

Mp(k) = {p′(pk)p′/p}−1.(2. 3)

Furthermore, we always assume that ϕ ≥ 0 and 0 ∈ D(ϕ) without any loss
of generality. Actually from the fact that there exist v∗ ∈ V ∗ and µ ∈ IR such
that

ϕ(u) ≥ 〈v∗, u〉+ µ ∀u ∈ V,

(see [4, Chap.II, Proposition 2.2]), we can choose the non-negative function
ϕ̃(u) := ϕ(u)− 〈v∗, u〉 − µ ≥ 0. Then ϕ̃ belongs to Φ(V ) and

D(ϕ̃) = D(ϕ), ∂ϕ(u) = ∂ϕ̃(u)− v∗.

For an arbitrary element v0 in D(ϕ), put ϕ̂(u) := ϕ̃(u + v0), then ϕ̂(u) belongs
to Φ(V ) and it follows that

D(ϕ̂) = D(ϕ̃)− v0 3 0, ∂ϕ̃(u) = ∂ϕ̂(u− v0).

Hence put û = u − v0 and f̂ = f + v∗, then (E) is equivalent to the following
evolution equation:

dû

dt
(t) + ∂ϕ̂(û(t)) 3 f̂(t), t ∈ [0, T ].

3
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3 Cauchy Problem

In this section, we study the existence of strong solutions of the following Cauchy
problem (CP) when the initial data u0 belongs to D(ϕ)

H
.

(CP)





du

dt
(t) + ∂ϕ(u(t)) 3 f(t) in V ∗, 0 < t < T,

u(0) = u0.

Here and henceforth, we are concerned with strong solutions of (CP) in the
following sense.

Definition 3.1 A function u ∈ C([0, T ];V ∗) is said to be a strong solution of
(CP) on [0, T ], if the following conditions are satisfied:

(i) u(t) is a V ∗-valued absolutely continuous function on [0, T ],
(ii) u(+0) = u0,

(iii) u(t) ∈ D(∂ϕ) for a.e. t ∈]0, T [
and there exists a function g(t) ∈ ∂ϕ(u(t)) satisfying:

du

dt
(t) + g(t) = f(t) in V ∗, for a.e. t ∈]0, T [.(3. 1)

To assure the existence of strong solutions of (CP), we introduce the following
coerciveness condition (A1) and boundedness condition (A2).

(A1) |u|pV − C1|u|2H − C2 ≤ C3ϕ(u) ∀u ∈ D(ϕ), 1 < p < +∞,

(A2) |g|p′V ∗ ≤ `(|u|H) {ϕ(u) + 1} ∀[u, g] ∈ ∂ϕ,

where `(·) is a non-decreasing function on IR.

Theorem 3.2 Let (A1) and (A2) be satisfied. Then, for every u0 ∈ D(ϕ)
H

and
f ∈ Lp′(0, T ;V ∗), there exists a unique strong solution u of (CP) satisfying :

u ∈ Lp(0, T ;V ) ∩ C([0, T ];H) ∩W 1,p′(0, T ;V ∗),

the section g(t) of ∂ϕ(u(t)) given in (3. 1) belongs to Lp′(0, T ;V ∗),
ϕ(u(·)) ∈ L1(0, T ).

To prove this, we employ the following lemma (see e.g. Proposition 23.23 of
[20]).

Lemma 3.3 Let u ∈ Lp(0, T ;V ) be such that du/dt ∈ Lp′(0, T ;V ∗). Then
u ∈ C([0, T ];H) and the following holds true.

1
2
|u(t)|2H − 1

2
|u(s)|2H =

∫ t

s

〈
du

dτ
(τ), u(τ)

〉
dτ(3. 2)

for all s, t ∈ [0, T ] with s < t.

4
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We now proceed to the proof of Theorem 3.2.
Proof of Theorem 3.2

Uniqueness: Let u, v be strong solutions of (CP). Then w(t) := u(t)− v(t)
satisfies

dw

dt
(t) + ∂ϕ(u(t))− ∂ϕ(v(t)) 3 0 for a.e. t ∈]0, T [.(3. 3)

Multiplying (3. 3) by w(t) and using the monotonicity of ∂ϕ and Lemma 3.3,
we have

1
2
|w(t)|2H − 1

2
|w(0)|2H =

∫ t

0

〈
dw

dτ
(τ), w(τ)

〉
dτ ≤ 0 for all t ∈ [0, T ].(3. 4)

Now, the uniqueness follows from (3. 4) at once.

Existence: The verification consists of three steps.
Step 1 (Approximation): First we consider the approximation problem in H

for (CP). To this end, we introduce ϕH :H → [0,+∞] by

ϕH(u) =

{
ϕ(u) if u ∈ V,

+∞ if u ∈ H \ V.

Then, it is clear that ϕH is proper and convex in H. We are going to show that
ϕH is lower semicontinuous in H. Let un ∈ H be such that un → u strongly in
H as n → +∞. For the case where α := lim infn→+∞ ϕH(un) ≥ 0 is finite, there
exists a subsequence un′ of un such that ϕH(un′) → α as n′ → +∞. Then (A1)
implies that |un′ |V is bounded. Since V is reflexive, there exists a subsequence
un′′ of un′ such that un′′ → u weakly in V as n′′ → +∞. Hence, by the lower
semicontinuity and convexity of ϕ on V , we get

ϕH(u) ≤ lim inf
n′′→+∞

ϕH(un′′) = α.(3. 5)

For the case where α = +∞, it is obvious that ϕH(u) ≤ α holds. Thus we find
that ϕH ∈ Φ(H).

From the definition of ϕH , it follows immediately that

D(ϕH) = D(ϕ), ∂ϕH ⊂ ∂ϕ.

Let u0n ∈ D(ϕ) and fn ∈ C∞([0, T ];H) be such that

u0n → u0 strongly in H,

fn → f strongly in Lp′(0, T ;V ∗)

as n → +∞ and consider the following Cauchy problem:

(CP)n





dun

dt
(t) + ∂ϕH(un(t)) 3 fn(t) in H, 0 < t < T,

un(0) = u0n.

5
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The existence of the unique strong solution of (CP)n is assured by Proposi-
tion 2.2. In order to investigate the convergence of un, we need some a priori
estimates.

Step 2 (A priori estimates): Multiplying (CP)n by un(t), we have

1
2

d

dt
|un(t)|2H + 〈gn(t), un(t)〉 ≤ |fn(t)|V ∗ |un(t)|V(3. 6)

for a.e. t ∈]0, T [,

where gn(t) = fn(t) − dun(t)/dt belongs to ∂ϕH(un(t)). By virtue of the fact
that 0 ∈ D(ϕ), we get ϕ(un(t)) ≤ 〈gn(t), un(t)〉 + ϕ(0). Hence, by (A1), we
obtain

1
2

d

dt
|un(t)|2H +

1
2
ϕ(un(t)) + C4|un(t)|pV

≤ C5|un(t)|2H + C6 + |fn(t)|V ∗ |un(t)|V
≤ C5|un(t)|2H + C6 +

C4

2
|un(t)|pV +Mp

(
C4

2

)
|fn(t)|p′V ∗ for a.e. t ∈]0, T [,

where C4 = 1/(2C3), C5 = C1/(2C3), C6 = C2/2C3 +ϕ(0) and Mp(·) is the
function defined by (2. 3). Then, using Gronwall’s inequality, we deduce that

un is bounded in C([0, T ];H),(3. 7)
un is bounded in Lp(0, T ;V ),(3. 8)
ϕ(un(·)) is bounded in L1(0, T ).(3. 9)

Furthermore, it follows from (A2), (3. 7) and (3. 9) that

gn is bounded in Lp′(0, T ;V ∗),(3. 10)

and hence by virtue of the fact dun/dt = fn − gn, we get

un is bounded in W 1,p′(0, T ;V ∗).(3. 11)

Step 3 (Convergence of un): Multiplying (CP)n − (CP)m by un − um and
using the monotonicity of ∂ϕH , we have

1
2

d

dt
|un(t)− um(t)|2H ≤ 〈fn(t)− fm(t), un(t)− um(t)〉 for a.e. t ∈]0, T [

and therefore

|un(t)− um(t)|2H ≤ |u0n − u0m|2H(3. 12)

+2
∫ t

0

|fn(τ)− fm(τ)|V ∗ |un(τ)− um(τ)|V dτ.

Since un is bounded in Lp(0, T ;V ) and, u0n and fn are convergent sequences in
H and Lp′(0, T ;V ∗) respectively, we find that un forms a Cauchy sequence in
C([0, T ];H).

6
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Therefore, there exists u ∈ C([0, T ];H) such that

un → u strongly in C([0, T ];H).(3. 13)

By virtue of (3. 8), (3. 10) and (3. 11), we can extract a subsequence n′ of n
such that

un′ → u weakly in Lp(0, T ;V ),(3. 14)

un′ → u weakly in W 1,p′(0, T ;V ∗),(3. 15)

gn′ → g weakly in Lp′(0, T ;V ∗).(3. 16)

To complete the proof, it suffices to show that g(t) ∈ ∂ϕ(u(t)) for a.e. t ∈
]0, T [. Let v ∈ D(∂ϕ) and h ∈ ∂ϕ(v) be fixed arbitrarily. Multiplying (CP)n by
un(t)− v, we have

1
2

d

dt
|un(t)− v|2H + 〈gn(t), un(t)− v〉 = 〈fn(t), un(t)− v〉 for a.e. t ∈]0, T [.

Integrating this equality over ]s, t[ and using the monotonicity of ∂ϕ, we obtain

1
2

(un(t)− un(s), un(t) + un(s)− 2v)H ≤
∫ t

s

〈−h + fn(τ), un(τ)− v〉dτ

for all s, t ∈ [0, T ] with s < t.

Hence, since (u− w, w)H ≤ (u− w, u + w)H/2, we derive
(

un(t)− un(s)
t− s

, un(s)− v

)

H

≤ 1
t− s

∫ t

s

〈−h + fn(τ), un(τ)− v〉dτ

for all s, t ∈ [0, T ] with s < t.

Let n → +∞, then (3. 13) and (3. 14) give
(

u(t)− u(s)
t− s

, u(s)− v

)

H

≤ 1
t− s

∫ t

s

〈−h + f(τ), u(τ)− v〉dτ

for all s, t ∈ [0, T ] with s < t.

Now, by letting s → t, we deduce
〈

du

dt
(t)− f(t) + h, u(t)− v

〉
≤ 0 for a.e. t ∈]0, T [.

Thus the arbitrariness of [v, h] ∈ ∂ϕ as well as the maximal monotonicity of ∂ϕ
in V × V ∗ implies

g(t) = f(t)− du

dt
(t) ∈ ∂ϕ(u(t)) for a.e. t ∈]0, T [.

This completes the proof.

7
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Our another result is concerned with the regularity of solutions. More pre-
cisely, if we assume the higher regularity on f , e.g., f ∈ W 1,p′(0, T ;V ∗), then
the corresponding solutions enjoy the regularity higher than that of Theorem
3.2 in the following sense.

Theorem 3.4 Let (A1) and (A2) be satisfied. Then, for every u0 ∈ D(ϕ)
H

and
f ∈ Lp′(0, T ;V ∗) with t(df/dt) ∈ Lp′(0, T ;V ∗), the solution of (CP) satisfies:

u ∈ C(]0, T ];Vw) ∩ C([0, T ];H) ∩W 1,p′(0, T ;V ∗),
u(t) ∈ D(ϕ) ∀t > 0, sup

t∈[0,T ]

tϕ(u(t)) < +∞,

t1/p′ du

dt
∈ L∞(0, T ;V ∗), t1/2 du

dt
∈ L2(0, T ;H).

Moreover, if u0 ∈ D(ϕ) and f ∈ W 1,p′(0, T ;V ∗), then

u ∈ C([0, T ];Vw) ∩ C([0, T ];H) ∩W 1,p′(0, T ;V ∗),
u(t) ∈ D(ϕ) ∀t ≥ 0, sup

t∈[0,T ]

ϕ(u(t)) < +∞,

du

dt
∈ L2(0, T ;H) ∩ L∞(0, T ;V ∗).

Here C(]0, T ];Vw) (resp. C([0, T ];Vw)) denotes the set of all V -valued weakly
continuous functions on ]0, T ] (resp. [0, T ]).

Proof of Theorem 3.4 Let u0n be the same sequence as in the proof of
Theorem 3.2, and let fn ∈ L∞(0, T ;H) ∩ C∞(]0, T ];H) be such that tfn ∈
C∞([0, T ];H), limt→+0 tfn(t) = 0, fn → f and t(dfn/dt) → t(df/dt) strongly in
Lp′(0, T ;V ∗). We here note that the fact that f, t(df/dt) ∈ Lp′(0, T ;V ∗) enables
us to take such a sequence fn (see Remark 3.5). We again consider the appro-
priate equation (CP)n. Multiply (CP)n by t(dun(t)/dt), then by Proposition
2.1, we get

t

∣∣∣∣
dun

dt
(t)

∣∣∣∣
2

H

+
d

dt

{
tϕ(un(t))

}
(3. 17)

= ϕ(un(t)) +
d

dt

{
t 〈fn(t), un(t)〉

}

−〈fn(t), un(t)〉 − t

〈
dfn

dt
(t), un(t)

〉
for a.e. t ∈]0, T [.

Integrating both sides of (3. 17) on ]0, t[ and noting that limt→+0 tfn(t) = 0,
we have

∫ t

0

τ

∣∣∣∣
dun

dτ
(τ)

∣∣∣∣
2

H

dτ + tϕ(un(t))(3. 18)

≤
∫ T

0

ϕ(un(τ))dτ + t|fn(t)|V ∗ |un(t)|V

8
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+

(∫ T

0

|fn(τ)|p′V ∗dτ

)1/p′ (∫ T

0

|un(τ)|pV dτ

)1/p

+

(∫ T

0

∣∣∣∣τ
dfn

dτ
(τ)

∣∣∣∣
p′

V ∗
dτ

)1/p′ (∫ T

0

|un(τ)|pV dτ

)1/p

for all t ∈ [0, T ]. By virtue of (A1), we obtain

t|fn(t)|V ∗ |un(t)|V ≤ tMp

(
1

2C3

)
|fn(t)|p′V ∗(3. 19)

+T

{
C1

2C3
|un(t)|2H +

C2

2C3

}

+
t

2
ϕ(un(t)).

Therefore, it follows from (3. 18) and (3. 19) that

∫ t

0

τ

∣∣∣∣
dun

dτ
(τ)

∣∣∣∣
2

H

dτ +
1
2
tϕ(un(t))(3. 20)

≤
∫ T

0

ϕ(un(τ))dτ +Mp

(
1

2C3

)
sup

t∈[0,T ]

t|fn(t)|p′V ∗

+
C1T

2C3
sup

t∈[0,T ]

|un(t)|2H +
C2T

2C3

+

(∫ T

0

|fn(τ)|p′V ∗dτ

)1/p′ (∫ T

0

|un(τ)|pV dτ

)1/p

+

(∫ T

0

∣∣∣∣τ
dfn

dτ
(τ)

∣∣∣∣
p′

V ∗
dτ

)1/p′ (∫ T

0

|un(τ)|pV dτ

)1/p

for all t ∈ [0, T ]. Here, by taking a sequence {tm} such that |fn(tm)|V ∗ ≤
‖fn‖L∞(0,T ;V ∗) and tm → 0, we obtain

t|fn(t)|p′V ∗ =
∫ t

tm

d

dτ

(
τ |fn(τ)|p′V ∗

)
dτ + tm|fn(tm)|p′V ∗

=
∫ t

tm

|fn(τ)|p′V ∗dτ

+
∫ t

tm

τ
p′

2
{|fn(τ)|2V ∗

}(p′−2)/2 d

dτ
|fn(τ)|2V ∗dτ + tm|fn(tm)|p′V ∗

≤
∫ t

tm

|fn(τ)|p′V ∗dτ + p′
∫ t

tm

|fn(τ)|p′−1
V ∗

∣∣∣∣τ
dfn

dτ
(τ)

∣∣∣∣
V ∗

dτ

+tm|fn(tm)|p′V ∗

9
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≤
∫ t

tm

|fn(τ)|p′V ∗dτ

+p′
(∫ t

tm

|fn(τ)|p′V ∗dτ

)(p′−1)/p′ (∫ t

tm

∣∣∣∣τ
dfn

dτ
(τ)

∣∣∣∣
p′

V ∗
dτ

)1/p′

+tm|fn(tm)|p′V ∗ ,

since for all hn(τ) ∈ F−1
V (fn(τ)),

d

dτ
|fn(τ)|2V ∗ = 2

〈
dfn

dτ
(τ), hn(τ)

〉

≤ 2
∣∣∣∣
dfn

dτ
(τ)

∣∣∣∣
V ∗
|hn(τ)|V = 2

∣∣∣∣
dfn

dτ
(τ)

∣∣∣∣
V ∗
|fn(τ)|V ∗ ,

where FV is the duality mapping from V into V ∗ (see [4, Chap.III, Lemma 1.2]).
Then letting tm → 0, we find

t|fn(t)|p′V ∗ ≤
∫ t

0

|fn(τ)|p′V ∗dτ(3. 21)

+p′
(∫ t

0

|fn(τ)|p′V ∗dτ

)(p′−1)/p′ (∫ t

0

∣∣∣∣τ
dfn

dτ
(τ)

∣∣∣∣
p′

V ∗
dτ

)1/p′

.

Moreover since fn → f strongly in Lp′(0, T ;V ∗), we can take a subsequence n′

of n such that fn′(t) → f(t) strongly in V ∗ for a.e. t ∈]0, T [. Hence noting that
f ∈ W 1,p′

loc (]0, T ];V ∗) ⊂ C(]0, T ];V ∗) and letting n′ → +∞ in (3. 21) with n
replaced by n′, we have

t|f(t)|p′V ∗ ≤
∫ t

0

|f(τ)|p′V ∗dτ

+p′
(∫ t

0

|f(τ)|p′V ∗dτ

)(p′−1)/p′ (∫ t

0

∣∣∣∣τ
df

dτ
(τ)

∣∣∣∣
p′

V ∗
dτ

)1/p′

,

which implies t|f(t)|p′V ∗ ∈ L∞(0, T ) and limt→+0 t|f(t)|p′V ∗ = 0. Furthermore by
(3. 20) and (3. 21), it follows from (3. 7), (3. 8) and (3. 9) that

t1/2 du

dt
∈ L2(0, T ;H), sup

t∈[0,T ]

tϕ(u(t)) < +∞.(3. 22)

Moreover (A1), (A2) and (3. 22) yield:

t1/pu ∈ L∞(0, T ;V ) ∩ C([0, T ];Vw),

t1/p′g ∈ L∞(0, T ;V ∗),

t1/p′ du

dt
∈ L∞(0, T ;V ∗),

10
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where g(t) = f(t)− du(t)/dt belongs to ∂ϕ(u(t)).
When u0 belongs to D(ϕ), we can take u0n = u0 for all n ∈ IN and fn → f

strongly in W 1,p′(0, T ;V ∗). In order to obtain a priori estimates, it suffices to
multiply (CP)n by dun(t)/dt. Then we have

∣∣∣∣
dun

dt
(t)

∣∣∣∣
2

H

+
d

dt
ϕ(un(t)) =

d

dt
〈fn(t), un(t)〉 −

〈
dfn

dt
(t), un(t)

〉

for a.e. t ∈]0, T [. Integrating this over ]0, t[, we get

∫ t

0

∣∣∣∣
dun

dτ
(τ)

∣∣∣∣
2

H

dτ + ϕ(un(t))− ϕ(u0)

≤ |fn(t)|V ∗ |un(t)|V + |fn(0)|V ∗ |u0|V

+

(∫ T

0

∣∣∣∣
dfn

dτ
(τ)

∣∣∣∣
p′

V ∗
dτ

)1/p′ (∫ T

0

|un(τ)|pV dτ

)1/p

for all t ∈ [0, T ]. Repeating the same arguments as for (3. 19) with the weight
t replaced by 1 and noting that W 1,p′(0, T ;V ∗) is embedded in C([0, T ];V ∗)
continuously, we deduce

u ∈ C([0, T ];Vw) ∩W 1,2(0, T ;H) ∩W 1,∞(0, T ;V ∗),
g ∈ L∞(0, T ;V ∗),
sup

t∈[0,T ]

ϕ(u(t)) < +∞,

where g(t) = f(t)− du(t)/dt belongs to ∂ϕ(u(t)).

Remark 3.5 Since f, t(df/dt) ∈ Lp′(0, T ;V ∗), there exists a sequence fn ∈
L∞(0, T ;H)∩C∞((0, T ];H) such that tfn ∈ C∞([0, T ];H), limt→+0 tfn(t) = 0,
fn → f and t(dfn/dt) → t(df/dt) strongly in Lp′(0, T ;V ∗). Indeed, from the
fact that f, t(df/dt) ∈ Lp′(0, T ;V ∗), it follows that d(tf)/dt = f + t(df/dt) ∈
Lp′(0, T ;V ∗), which implies that tf ∈ W 1,p′(0, T ;V ∗). Since W 1,p′(0, T ;V ∗) ⊂
C([0, T ];V ∗), tf can be regarded as a continuous function on [0, T ] with value in
V ∗. Then limt→+0 |tf(t)|V ∗ = α exists. If α 6= 0, there exists a positive number
δ such that |f(t)|V ∗ ≥ |α|/(2t) for all t ∈ (0, δ), which contradicts the fact that
f ∈ L1(0, T ;V ∗). Thus we find that tf(t)|t=+0 = 0. Hence, in particular,

f(t) =
1
t

∫ t

0

d

dτ
(τf(τ)) dτ.

Moreover, since H is densely and continuously embedded in V ∗, we can choose
a sequence ρn ∈ C∞([0, T ];H) such that ρn(0) = 0 and ρn → tf strongly in
W 1,p′(0, T ;V ∗). Put fn(t) := (1/t)ρn(t), then

fn ∈ C∞(]0, T ];H) and fn(t) = (1/t)
∫ t

0

dρn

dτ
(τ)dτ.

11
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Hence, from the fact that ρn ∈ C∞([0, T ];H), it follows that

sup
t∈[0,T ]

|fn(t)|V ∗ ≤ 1
t
· t sup

t∈[0,T ]

∣∣∣∣
dρn

dt
(t)

∣∣∣∣
V ∗

,

which implies fn ∈ L∞(0, T ;V ∗). Furthermore, recalling

fn(t)− f(t) =
1
t

∫ t

0

d

dτ
(ρn(τ)− τf(τ)) dτ,

by Hardy’s inequality, we find that

‖fn − f‖Lp′ (0,T ;V ∗) ≤ p

∥∥∥∥
d

dt
(ρn − tf)

∥∥∥∥
Lp′ (0,T ;V ∗)

.

Thus fn → f strongly in Lp′(0, T ;V ∗). Therefore, in view of dρn/dt = d(tfn)/dt =
fn + t(dfn/dt) → d(tf)/dt = f + t(df/dt) strongly in Lp′(0, T ;V ∗), we also see
that t(dfn/dt) → t(df/dt) strongly in Lp′(0, T ;V ∗).

Remark 3.6

(1) In Theorem 3.4, it is not necessary to assume that (A2) is satisfied. Indeed,
(3. 20) already assures the a priori bound for t1/2(dun/dt) in L2(0, T ;H).
Hence the a priori bound for t1/2gn := t1/2(fn − dun/dt) in L2(0, T ;V ∗)
follows, since

‖t1/2fn‖L2(0,T ;V ∗) ≤ ‖tfn‖1/2
L∞(0,T ;V ∗)‖fn‖1/2

L1(0,T ;V ∗).

In this case, however, we can not conclude that t1/p′(du/dt) ∈ L∞(0, T ;V ∗).

(2) Lemma 3.3 assures that the solution u in Theorem 3.2 enjoys the following
property:

t 7→ |u(t)|2H is absolutely continuous on [0, T ].

(3) Let ui (i = 1, 2) be the solutions of (CP) with f and u0 replaced by f i and
ui

0. As in the proof of Theorem 3.2, we can define ui
n(t) as the solutions

of approximate equations (CP)n with fn and u0n replaced by appropriate
f i

n and ui
0n. Then, by the same verification for (3. 12), we get

|u1
n(t)− u2

n(t)|2H ≤ |u1
0n − u2

0n|2H
+2

∫ t

0

|f1
n(τ)− f2

n(τ)|V ∗ |u1
n(τ)− u2

n(τ)|V dτ.

Since ui
n → ui strongly in C([0, T ];H) and |ui

n(t)|V is bounded in Lp(0, T ),
by letting n → +∞, we deduce

|u1(t)− u2(t)|2H ≤ |u1
0 − u2

0|2H(3. 23)

+C7

(∫ t

0

|f1(τ)− f2(τ)|p′V ∗dτ

)1/p′

,

12
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where C7 depends on
∑2

i=1

(
|ui

0|2H +
∫ T

0
|f i(t)|p′V ∗dt

)
and T , i.e., the con-

tinuous dependence of solutions on the initial data and external forces.

(4) For any u0 ∈ D(ϕ)
H

and f ∈ Lp′(0, T ;V ∗) with t(df/dt) ∈ Lp′(0, T ;V ∗),
the strong solution u of (CP) satisfies that ϕ(u(·)) ∈ C(]0, T ]). To see this,
putting ϕt(v) := ϕ(v) − 〈f(t), v〉 for all v ∈ V , we find that ϕt ∈ Φ(V )
and D(ϕt) = D(ϕ) for all t ∈ [0, T ]. Moreover we define ϕt

H as in the
proof of Theorem 3.2. Then ϕt

H ∈ Φ(H) for all t ∈ [0, T ] and ϕt
H satisfies

the smoothness condition (Aϕt) with α1 = α2 = 0 introduced in [18] for
all t ∈ [δ, T ] with an arbitrary positive number δ. Furthermore it is clear
that ∂ϕt(v) = ∂ϕ(v)− f(t). Theorem 3.4 implies

∂ϕt(u(t)) = ∂ϕ(u(t))− f(t) 3 −du

dt
(t), t1/2 du

dt
∈ L2(0, T ;H),

hence −du(t)/dt ∈ ∂ϕt
H(u(t)) for a.e. t ∈]0, T [. Then, Proposition 2.6

of [18] assures that t 7→ ϕt(u(t)) = ϕ(u(t)) − 〈f(t), u(t)〉 is absolutely
continuous on ]0, T ]. Here we note that t 7→ 〈f(t), u(t)〉 is continuous on
]0, T ]. Actually from the fact that f ∈ C(]0, T ];V ∗) and u ∈ C(]0, T ];Vw),
it follows that for all s, t ∈]0, T ],

〈f(t), u(t)〉 − 〈f(s), u(s)〉 = 〈f(t)− f(s), u(t)〉+ 〈f(s), u(t)− u(s)〉
→ 0

as s → t. Therefore we deduce that ϕ(u(·)) ∈ C(]0, T ]). Moreover, when
u0 ∈ D(ϕ) and f ∈ W 1,p′(0, T ;V ∗), we conclude that ϕ(u(·)) ∈ C([0, T ]).

(5) Assume the following (A3):

(A3) There exists a continuous mapping N (·, ·) : [0,+∞[×[0,+∞[→
[0,+∞[ such that | · |ϕ := N (ϕ(·), | · |H) gives a norm of V

which is equivalent to | · |V and (V, | · |ϕ) is uniformly convex.

Then for any u0 ∈ D(ϕ)
H

and f ∈ Lp′(0, T ;V ∗) with t(df/dt) ∈ Lp′(0, T ;V ∗),
the strong solution u of (CP) belongs to C(]0, T ];V ). In fact, from remarks
(2) and (4) above, we know that t 7→ ϕ(u(t)) and t 7→ |u(t)|H are contin-
uous on ]0, T ]. Hence t 7→ |u(t)|ϕ = N (ϕ(u(t)), |u(t)|H) is continuous on
]0, T ]. Moreover since u ∈ C(]0, T ], Vw), we find that u(s) → u(t) weakly
in (V, | · |ϕ) as s → t. To see this, let tn, t ∈]0, T ] be such that tn → t as
n → +∞ and u(tn) → u(t) weakly in (V, | · |V ) as n → +∞. Since |u(tn)|V
is bounded, by (A3), |u(tn)|ϕ is bounded. Then we can extract a subse-
quence n′ of n such that u(tn′) → χ weakly in (V, | · |ϕ) as n′ → +∞. Now,
since (V, | · |V ) is embedded in H continuously, (A3) implies that (V, | · |ϕ)
is embedded in H continuously. Hence we can extract a subsequence n′′

of n′ such that u(tn′′) → χ weakly in H as n′′ → +∞ and χ = u(t). Since
this argument does not depend on the choice of subsequences, we finally
deduce that u(tn) → u(t) weakly in (V, | · |ϕ) as n → +∞. Therefore it

13
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follows from the uniformly convexity of (V, | · |ϕ) that u(s) → u(t) strongly
in (V, | · |ϕ) as s → t. Since | · |ϕ is equivalent to | · |V , we conclude that
u ∈ C(]0, T ];V ). Especially when u0 ∈ D(ϕ) and f ∈ W 1,p′(0, T ;V ∗), it
holds that u ∈ C([0, T ];V ).

Remark 3.7 We can weaken the sufficient condition (A1) in Theorem 3.2.
More precisely, assume that (A2) and the following (A1)q with q ∈ [0, 2p] hold.

(A1)q |u|pV − C1|u|qH − C2 ≤ C3ϕ(u) ∀u ∈ D(ϕ).

Then for any f ∈ Lr(0, T ;V ∗) with r = max(p′, 2p/(2p−q)) (especially if q = 2p,

then r := +∞) and u0 ∈ D(ϕ)
H

, we can assure the existence and the uniqueness
of the strong solution of (CP). For this proof, as in the proof of Theorem 3.2, we
can consider the approximation problem (CP)n, since the lower semicontinuity
of ϕH in H is also assured by (A1)q. Moreover we need a slight modification of
a priori estimates for the solution of (CP)n. Recalling (3. 6), we get

1
2

d

dt
|un(t)|2H + ϕ(un(t)) ≤ ϕ(0) + |fn(t)|V ∗ |un(t)|V for a.e. t ∈]0, T [.

By (A1)q with q ∈ [0, 2p], it follows from Young’s inequality that for the case
where q ∈ [0, 2p[:

|fn(t)|V ∗ |un(t)|V ≤ |fn(t)|V ∗ {C1|un(t)|qH + C2 + C3ϕ(un(t))}1/p

≤ |fn(t)|V ∗
{

C
1/p
1 |un(t)|q/p

H + C
1/p
2 + C

1/p
3 (ϕ(un(t)))1/p

}

≤ C8

{
|fn(t)|2p/(2p−q)

V ∗ + |fn(t)|p′V ∗ + 1
}

+ |un(t)|2H
+

1
2
ϕ(un(t)),

for the case where q = 2p:

|fn(t)|V ∗ |un(t)|V ≤ C
1/p
1

(
sup

τ∈[0,T ]

|fn(τ)|V ∗
)
|un(t)|2H + C8

{
|fn(t)|p′V ∗ + 1

}

+
1
2
ϕ(un(t)).

Hence we can obtain a priori estimates (3. 7) and (3. 9), which together with
(A1)q imply (3. 8). Furthermore the convergence of un can be verified by the
same arguments as in the proof of Theorem 3.2. Thus we have

Theorem 3.8 Let (A1)q with q ∈ [0, 2p] and (A2) be satisfied. Then, for every

u0 ∈ D(ϕ)
H

and f ∈ Lr(0, T ;V ∗) with r = max(p′, 2p/(2p − q)) (especially
if q = 2p, then r := +∞), there exists a unique strong solution u of (CP)
satisfying :

u ∈ Lp(0, T ;V ) ∩ C([0, T ];H) ∩W 1,p′(0, T ;V ∗),

the section g(t) of ∂ϕ(u(t)) given in (3. 1) belongs to Lp′(0, T ;V ∗),
ϕ(u(·)) ∈ L1(0, T ).

14



G. Akagi and M. Ôtani Evolution inclusions governed by subdifferentials 15

In Theorem 3.4, we can replace (A1) by (A1)q with q ∈ [0, 2p] when f satisfies
the all conditions required in Theorem 3.4 and that f ∈ Lr(0, T ;V ∗). Further-
more since the arguments in Remark 3.6 are independent of the assumption
(A1), the same conclusion can be derived for the case where f ∈ Lr(0, T ;V ∗),
and (A1)q with q ∈ [0, 2p] holds instead of (A1).

Remark 3.9 Just as in Theorem 3.2, we can assure the existence and unique-
ness of the strong solution of the following Cauchy problem with Lipschitz per-
turbation:

(CP)′





du

dt
(t) + ∂ϕ(u(t)) 3 f(t)−Bu(t) in V ∗, 0 < t < T,

u(0) = u0,

where B is a Lipschitz continuous operator from H into H, that is, there exists
L ≥ 0 such that |Bu−Bv|H ≤ L|u− v|H for all u, v ∈ H. The strong solution
of (CP)′ is defined by Definition 3.1 with (CP) and f(t) replaced by (CP)′

and f(t) − Bu(t) respectively. To verify the existence part, let us consider the
following approximation problem:





dun

dt
(t) + ∂ϕH(un(t)) + Bun(t) 3 fn(t) in H, 0 < t < T,

u(0) = u0n

and the existence of its strong solution un is assured by [6, Proposition 3.12].
Then, using the fact that |Bu|H ≤ C9 + L|u|H for all u ∈ H, we can obtain a
priori estimates for un by the same arguments as in the proof of Theorem 3.2
with obvious modifications. Moreover, when un → u strongly in C([0, T ];H)
as n → +∞, it follows from the Lipschitz continuity of B that Bun → Bu
strongly in C([0, T ];H) as n → +∞. From these facts, we can handle with the
convergence as in the proof of Theorem 3.2. Thus the following result holds.

Theorem 3.10 Let (A1) and (A2) be satisfied. Then, for every u0 ∈ D(ϕ)
H

and f ∈ Lp′(0, T ;V ∗), there exists a unique strong solution u of (CP)′ satisfying :

u ∈ Lp(0, T ;V ) ∩ C([0, T ];H) ∩W 1,p′(0, T ;V ∗),

the section g(t) of ∂ϕ(u(t)) given in (3. 1) belongs to Lp′(0, T ;V ∗),
ϕ(u(·)) ∈ L1(0, T ), Bu ∈ C([0, T ];H).

Moreover when f ∈ Lp′(0, T ;V ∗) satisfies t(df/dt) ∈ Lp′(0, T ;V ∗), just as in
the proof of Lemma 3.4, we obtain the following theorem.

Theorem 3.11 Let (A1) and (A2) be satisfied. Then, for every u0 ∈ D(ϕ)
H

and f ∈ Lp′(0, T ;V ∗) with t(df/dt) ∈ Lp′(0, T ;V ∗), the solution u of (CP)′

satisfies:

u ∈ C(]0, T ];Vw) ∩ C([0, T ];H) ∩W 1,p′(0, T ;V ∗),

15
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u(t) ∈ D(ϕ) ∀t > 0, sup
t∈[0,T ]

tϕ(u(t)) < +∞,

t1/p′ du

dt
∈ L∞(0, T ;V ∗), t1/2 du

dt
∈ L2(0, T ;H), t1/2 d

dt
Bu ∈ L2(0, T ;H).

Moreover, if u0 ∈ D(ϕ) and f ∈ W 1,p′(0, T ;V ∗), then

u ∈ C([0, T ];Vw) ∩ C([0, T ];H) ∩W 1,p′(0, T ;V ∗),
u(t) ∈ D(ϕ) ∀t ≥ 0, sup

t∈[0,T ]

ϕ(u(t)) < +∞,

du

dt
∈ L2(0, T ;H) ∩ L∞(0, T ;V ∗),

d

dt
Bu ∈ L2(0, T ;H).

4 Periodic Problem

In this section, we study the following periodic problem (PP).

(PP)





du

dt
(t) + ∂ϕ(u(t)) 3 f(t) in V ∗, 0 < t < T,

u(0) = u(T ).

We begin with the definition of strong solutions of (PP).

Definition 4.1 A function u ∈ C([0, T ];V ∗) is said to be a strong solution of
(PP) on [0, T ], if the following conditions are satisfied:

(i) u(t) is a V ∗-valued absolutely continuous function on [0, T ],
(ii) u(0) = u(T ),
(iii) u(t) ∈ D(∂ϕ) for a.e. t ∈]0, T [

and there exists a function g(t) ∈ ∂ϕ(u(t)) satisfying (3. 1).

Then our result is stated as follows:

Theorem 4.2 Let (A1) with C1 = 0 and (A2) be fulfilled. Then, for every
f ∈ Lp′(0, T ;V ∗), (PP) has at least one strong solution u satisfying :

u ∈ Lp(0, T ;V ) ∩ C([0, T ];H) ∩W 1,p′(0, T ;V ∗),

g in (3. 1) belongs to Lp′(0, T ;V ∗),
ϕ(u(·)) ∈ L1(0, T ).

Remark 4.3 By using the fact that there exists a constant C such that |u|H ≤
C|u|V and applying Young’s inequality, we can easily see that (A1)q with q ∈
[0, p[ implies (A1) with C1 = 0, i.e.,

|u|pV − C2 ≤ C3ϕ(u) ∀u ∈ D(ϕ).

First, we prepare the following lemma for later use.

16
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Lemma 4.4 Let f(·) ∈ L1(0, T ) and let j(·) be a nonnegative absolutely contin-
uous function on [0, T ] such that

d

dt
j(t) + αjp−1(t) ≤ K|f(t)| for a.e. t ∈]0, T [,(4. 1)

where α > 0, K > 0 and p > 1. Suppose that j(0) ≤ r and ‖f‖1,T ≤ rp−1

(r > 0), where

‖f‖1,T :=





sup
t∈[1,T ]

∫ t

t−1

|f(τ)|dτ if 1 ≤ T,

∫ T

0

|f(τ)|dτ if 0 < T < 1.

Then there exists a monotone non-decreasing function Mα,K,p(·) depending on
α, K, p such that

j(t) ≤ Mα,K,p(r)r for all t ∈ [0, T ].

Proof of Lemma 4.4 The verification for the case where 2 ≤ p can be done
as in the proof of Lemma 4.3 of [16] with obvious modifications. As for the case
where 1 < p < 2, we can modify the arguments in the proofs of Lemma 4.3
of [16], Lemma 4.6 of [17] and Lemma 3.4 of [10]. We put

φa(t) :=
(∣∣j2−p(a)− α(2− p)(t− a)

∣∣+
)1/(2−p)

+ K

∫ t

a

|f(s)|ds, a ∈ [0, T [,

where |m|+ := max{m, 0}. Then φa(t) satisfies




dφa

dt
(t) + αφp−1

a (t) ≥ K|f(t)| for a.e. t ∈]a, T [,

φa(a) = j(a).
(4. 2)

Consequently, we find

j(t) ≤ φa(t) for all t ∈ [a, T ].

Now, we claim that Mα,K,p can be taken as follows:

Mα,K,p(r) := 2(1 + Krp−2) +
(

2K

α(2− p)

)1/(p−1)

.(4. 3)

Suppose that there exists t2 ∈ [0, T ] such that j(t2) > Mα,K,p(r)r. Since j(0) ≤
r ≤ Mα,K,p(r)r and t 7→ j(t) is continuous, there exists t1 ∈ [0, t2[ such that
j(t1) = Mα,K,p(r)r and j(t) < Mα,K,p(r)r for all t ∈ [0, t1[.

Then, by putting τ0 := (Mα,K,p(r)r)2−p/α(2− p), we deduce

Mα,K,p(r)r = j(t1) ≤ φ0(t1) ≤ j(0) + K

∫ t1

0

|f(t)|dt(4. 4)

≤ r + K(1 + τ0)rp−1 if t1 ∈ [0, τ0],

17
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and

Mα,K,p(r)r = j(t1) ≤ φt1−τ0(t1)(4. 5)
≤ K(1 + τ0)rp−1 if t1 ∈]τ0, T ],

since |j2−p(t1−τ0)−α(2−p){t1−(t1−τ0)}|+ ≤ | (Mα,K,p(r)r)
2−p−α(2−p)τ0|+ =

0. However, simple calculations show that (4. 4) or (4. 5) contradicts (4. 3),
the definition of Mα,K,p. Indeed, it follows from (4. 4) or (4. 5) that

Mα,K,p(r) ≤ 1 + Krp−2 + Kτ0r
p−2

≤ 1
2
Mα,K,p(r)− 1

2

(
2K

α(2− p)

)1/(p−1)

+ K
(Mα,K,p(r)r)

2−p

α(2− p)
rp−2

≤ 1
2
Mα,K,p(r) + K

(Mα,K,p(r))
2−p

α(2− p)
.

Hence we can verify

Mα,K,p(r) ≤
(

2K

α(2− p)

)1/(p−1)

,

which contradicts (4. 3). Therefore we deduce

sup
t∈[0,T ]

j(t) ≤ Mα,K,p(r)r.

Proof of Theorem 4.2 By Theorem 3.2, for every u0 ∈ D(ϕ)
H

, there exists
a unique strong solution u of (CP). For a fixed f ∈ Lp′(0, T ;V ∗), we consider

the mapping Sf from D(ϕ)
H

into D(ϕ)
H

such that

Sf (u0) = u(T ).

In order to show the existence of the periodic solution, it suffices to show
that Sf has a fixed point. To this end, we use the following fixed point theorem.

Lemma 4.5 (Browder-Petryshyn [9]) Let X be a uniformly convex Banach space,
let C be a closed convex subset of X and let S be a non-expansive map from C
into C. Then S has a fixed point if and only if there exists x ∈ C such that Snx
is bounded for all n ∈ IN.

We are going to apply this lemma with S = Sf . So, for all n ∈ IN, we
consider the following Cauchy problem:





dun

dt
(t) + ∂ϕ(un(t)) 3 f(t) in V ∗, 0 < t < T,

un(0) = (Sf )n−1
u0,

(4. 6)

18
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where (Sf )0 u0 := u0 ∈ D(ϕ)
H

. Then, we see that (Sf )n
u0 = un(T ).

For every n ∈ IN, let F (t) := f(t − nT ) and U(t) := un(t − nT ) for all
t ∈ [nT, (n + 1)T [, then (4. 6) implies





dU

dt
(t) + ∂ϕ(U(t)) 3 F (t) in V ∗, 0 < t < +∞,

U(0) = u0.

(4. 7)

Since un(T ) = U((n+1)T ), we have only to show that U(nT ) is bounded in H.
By much the same verification as for (3. 6), it follows from (A1) with C1 = 0
and (4. 7) that there exist positive constants C10, C11 such that

d

dt
|U(t)|2H + C10|U(t)|pH ≤ C11

(
|F (t)|p′V ∗ + 1

)
for a.e. t ∈]0,+∞[.(4. 8)

In view of
∥∥∥|F (·)|p′V ∗ + 1

∥∥∥
1,nT

≤
(

1 +
1
T

)
‖f‖p′

Lp′ (0,T ;V ∗)
+ 1 for all n ∈ IN,

applying Lemma 4.4 to (4. 8), we deduce

sup
n∈IN

|U(nT )|H < +∞.

In order to see that Sf is non-expansive, we have only to recall estimate (3. 23)
with f1 = f2. Thus Lemma 4.5 completes the proof.

We have the following uniqueness theorem.

Theorem 4.6 Let all assumptions in Theorem 4.2 and the following (A4) be
satisfied.

(A4) ϕ is strictly convex.

Then, for every f ∈ Lp′(0, T ;V ∗), the strong solution of (PP) is unique.

Proof of Theorem 4.6 Let u and v be any periodic solutions of (E), then
by virtue of (3. 4), we obtain

1
2
|u(T )− v(T )|2H − 1

2
|u(0)− v(0)|2H +

∫ T

0

〈g(τ)− h(τ), u(τ)− v(τ)〉dτ = 0,

where g(t) ∈ ∂ϕ(u(t)) and h(t) ∈ ∂ϕ(v(t)) for a.e. t ∈]0, T [. From the periodic-
ity of the solutions, it follows that

∫ T

0

〈g(τ)− h(τ), u(τ)− v(τ)〉dτ = 0.(4. 9)

Since the strict convexity of ϕ implies the strict monotonicity of ∂ϕ, whence
follows u = v.

Remark 4.7 We can obtain regularity results for (PP) similar to those in
Theorem 3.4 and Remark 3.6 for (CP).
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G. Akagi and M. Ôtani Evolution inclusions governed by subdifferentials 20

5 Application

In this section, we give a typical example to which the preceding theory can be
applied.

Let Ω be a domain in IRN with smooth boundary ∂Ω and p ∈]1,+∞[.

(NHE)





∂u

∂t
(x, t)−∆pu(x, t) = f(x, t), (x, t) ∈ Ω×]0, T [,

u(x, t) = 0, (x, t) ∈ ∂Ω×]0, T [,

where ∆p denotes the so-called p-Laplacian given by

∆pu := ∇ · (|∇u|p−2∇u), 1 < p < +∞.

In [15], by using Faedo-Galerkin’s method, J. L. Lions studied the existence
of weak solutions of the initial-boundary value problem and periodic problem for
(NHE) when Ω is a bounded domain. Our abstract framework can be applied
not only for the bounded domain case but also for the unbounded domain case.
Moreover our abstract treatment provides us more minute informations on the
regularity of solutions in a natural way.

Let Xp :=
{

u ∈ L2(Ω);∇u ∈ (Lp(Ω))N
}

be with the norm

|u|Xp
:= {|u|pL2(Ω) + |∇u|pLp(Ω)}1/p for all u ∈ Xp,

where |u|L2(Ω) =
{∫

Ω
|u(x)|2dx

}1/2 and |∇u|Lp(Ω) =
{∫

Ω
|∇u(x)|pdx

}1/p. More-

over let Vp := C∞0 (Ω)
Xp with | · |Vp

:= | · |Xp
. Then we find that Vp is a uniformly

convex Banach space, since Vp is a closed subspace of Xp which is a uniformly
convex Banach space (see [1, 1.21, 1.22]). Moreover from the definition of Vp,
it is easily obtained that Vp is embedded in L2(Ω) with continuous injection.
Furthermore we can verify that Vp is dense in L2(Ω). Indeed, from the density

of C∞0 (Ω) in L2(Ω), it is obvious that L2(Ω) ⊃ Vp
L2(Ω) ⊃ C∞0 (Ω)

L2(Ω)
= L2(Ω).

Hence we deduce that Vp
L2(Ω)

= L2(Ω).
Now putting V = Vp and H = L2(Ω) with | · |V := | · |Vp and | · |H := | · |L2(Ω),

we find that (2. 1) holds. We now define a function φp on V by setting

φp(u) :=
1
p

∫

Ω

|∇u(x)|pdx for all u ∈ V.

Then, it follows that D(φp) = V and ∂φp(u) = −∆pu (see [4, p53, Example 1]).
Hence, (NHE) can be reduced to (E) with ∂ϕ replaced by ∂φp.

5.1 Bounded Domain Case

First we consider the case where Ω is a bounded domain.
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For the case where 2N/(N +2) ≤ p < +∞, by Sobolev’s embedding theorem
and Poincare’s inequality together with the boundedness of Ω, Xp and Vp coin-
cide with W 1,p(Ω) and W 1,p

0 (Ω) respectively and we can reset |u|V := |∇u|Lp(Ω)

for all u ∈ V .
Hence we find that φp(u) = (1/p)|u|pV , which implies (A1) with C1 = C2 =

0, (A3) and (A4). Moreover, since sup{∫
Ω
|∇u(x)|p−2∇u(x) · ∇w(x)dx; w ∈

V with |∇w|Lp(Ω) = 1} ≤ |∇u|p−1
Lp(Ω), we easily get

|∂φp(u)|p′V ∗ ≤ pφp(u),

which implies (A2). Therefore we can apply Theorems 3.2, 3.4, Remark 3.6 and
Theorem 4.2 to the initial-boundary value problem and periodic problem for
(NHE).

As for the case where 1 < p < 2N/(N + 2), Xp coincides with W 1,p(Ω) ∩
L2(Ω), since by Sobolev’s embedding theorem and the boundedness of Ω, | · |Xp

is equivalent to | · |W 1,p(Ω) + | · |L2(Ω). Moreover we can verify that the closure
of C∞0 (Ω) in Xp coincides with W 1,p

0 (Ω) ∩ L2(Ω). Indeed, it is clear that the
closure of C∞0 (Ω) in Xp is a subset of W 1,p

0 (Ω) ∩ L2(Ω). Moreover, by the
slight modification of the proof of Proposition IX.18 in [5], we can show that all
elements in W 1,p

0 (Ω) ∩ L2(Ω) belong to the closure of C∞0 (Ω) in Xp. Therefore
Vp = W 1,p

0 (Ω)∩L2(Ω). Furthermore V ∗ is homeomorphic to W−1,p′(Ω)+L2(Ω).
By the definition of | · |V , | · |H and φp, we have

|u|pV = |∇u|pLp(Ω) + |u|pH
≤ pφp(u) + |u|2H +M2/p(1),

which implies (A1). Moreover (A2) and (A3) hold. Therefore we can apply
Theorem 3.2, 3.4 and Remark 3.6 to the initial-boundary value problem for
(NHE).

5.2 Unbounded Domain Case

As for the case where Ω is an unbounded domain, from the definition of φp,

φp(u) =
1
p
|∇u|pLp(Ω) =

1
p
{|u|pV − |u|pH} ,

which implies (A1)p. Moreover (A2) and (A3) hold. Hence Theorem 3.8 can be
applicable to the initial-boundary value problem for (NHE).

5.3 Results

Here note the following coincidence:

Vp =





W 1,p
0 (Ω) ∩ L2(Ω) if 1 < p < 2N

N+2 , Ω is bounded,

W 1,p
0 (Ω) if 2N

N+2 ≤ p < +∞, Ω is bounded.

21
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Summarizing observations above, we obtain the following results for Cauchy
problem.

Theorem 5.1 (Initial-boundary value problem: bounded domain case) When
1 < p < +∞ and Ω is a bounded domain, for every u0 ∈ L2(Ω) and f ∈
Lp′(0, T ;V ∗

p ), there exists a unique solution u of the initial-boundary value prob-
lem for (NHE) with the initial data u0 such that

u ∈ Lp(0, T ;Vp) ∩ C([0, T ];L2(Ω)) ∩W 1,p′(0, T ;V ∗
p ).(5. 1)

Moreover if f, t(df/dt) ∈ Lp′(0, T ;V ∗
p ), then the following (5. 2) holds for any

δ > 0.

u ∈ C([δ, T ];Vp) ∩W 1,2(δ, T ;L2(Ω)) ∩W 1,∞(δ, T ;V ∗
p ).(5. 2)

Furthermore if u0 ∈ Vp and f ∈ W 1,p′(0, T ;V ∗
p ), then (5. 2) with δ = 0 is

satisfied.

Theorem 5.2 (Initial-boundary value problem: unbounded domain case) When
1 < p < +∞ and Ω is an unbounded domain, for every u0 ∈ L2(Ω) and f ∈
Lq(0, T ;V ∗

p ) with q = max(p′, 2), there exists a unique solution u of the initial-
boundary value problem for (NHE) with the initial data u0 such that (5. 1)
holds. Furthermore if f, t(df/dt) ∈ Lp′(0, T ;V ∗

p ), (resp. u0 ∈ Vp and f ∈
W 1,p′(0, T ;V ∗

p )), then (5. 2) for any δ > 0, ( resp. (5. 2) with δ = 0 ), holds.

As for the periodic problem, our result is stated as follows.

Theorem 5.3 (Periodic problem: bounded domain case) When 2N/(N + 2) ≤
p < +∞ and Ω is a bounded domain, for every f ∈ Lp′(0, T ;W−1,p′

0 (Ω)), there
exists a unique solution u of the periodic problem for (NHE) such that (5. 1)
holds. Furthermore if f ∈ W 1,p′(0, T ;W−1,p′(Ω)), then (5. 2) with δ = 0 holds.
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[17] Ôtani, M., Nonmonotone perturbations for nonlinear parabolic equations
associated with subdifferential operators, Periodic problems, J. Differential
Equations 54 (1984), 248-273.
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Goro Akagi and Mitsuharu Ôtani: Department of Applied Physics, School of
Science and Engineering, Waseda University, 4-1, Okubo 3-chome, Shinjuku-ku,
Tokyo, 169-8555, Japan

E-mail address: goro@toki.waseda.jp, otani@waseda.jp

24


