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Abstract

The existence of strong solutions of Cauchy problem for the following evolution equation
du(t)/dt + ∂ϕ1(u(t)) − ∂ϕ2(u(t)) 3 f(t) is considered in a real reflexive Banach space V ,
where ∂ϕ1 and ∂ϕ2 are subdifferential operators from V into its dual V ∗. The study for
this type of problems has been done by several authors in the Hilbert space setting.

The scope of our study is extended to the V -V ∗ setting. The main tool employed here
is a certain approximation argument in a Hilbert space and for this purpose we need to
assume that there exists a Hilbert space H such that V ⊂ H ≡ H∗ ⊂ V ∗ with densely
defined continuous injections.

The applicability of our abstract framework will be exemplified in discussing the ex-
istence of solutions for the nonlinear heat equation: ut(x, t) − ∆pu(x, t) − |u|q−2u(x, t) =
f(x, t), x ∈ Ω, t > 0, u|∂Ω = 0, where Ω is a bounded domain in RN . In particular, the
existence of local (in time) weak solution is shown under the subcritical growth condition
q < p∗ (Sobolev’s critical exponent) for all initial data u0 ∈ W 1,p

0 (Ω). This fact has been
conjectured but left as an open problem through many years.

Keywords. Evolution equation, subdifferential, reflexive Banach space, p-Laplacian,
subcritical, local existence, degenerate parabolic equation.
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1 Introduction

Let V be a real reflexive Banach space and let V ∗ be its dual. The main purpose of this
paper is to investigate the solvability of the following Cauchy problem in the V -V ∗ setting,
i.e., to find a solution u(t) in V satisfying the equation in V ∗:

(CP)





du

dt
(t) + ∂ϕ1(u(t)) − ∂ϕ2(u(t)) 3 f(t) in V ∗, 0 < t < T,

u(0) = u0,

where ∂ϕ1, ∂ϕ2 : V → V ∗ are the subdifferential operators of proper lower semicontinuous
convex functions ϕ1, ϕ2 : V → (−∞, +∞].

The existence and the asymptotic behavior of strong solutions are already studied by
Koi-Watanabe [1], Ishii [2] and Ôtani [3, 4, 5] in the Hilbert space framework. In particular,
the following initial-boundary value problem falls within the scope of the nonmonotone
perturbation theory developed in [3, 4]:

(NHE)





∂u

∂t
(x, t) − ∆pu(x, t) − |u|q−2u(x, t) = f(x, t), (x, t) ∈ Ω × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

where ∆pu(x) := div(|∇u(x)|p−2∇u(x)) and Ω is a bounded domain in RN with smooth
boundary ∂Ω.

On the other hand, Faedo-Galerkin’s method gives another useful tool to study (NHE)
such as in J. L. Lions [6] and M. Tsutsumi [7].

The theory of perturbation for subdifferential operators in the Hilbert space setting
has an advantage over Faedo-Galerkin’s method in that it can assure a better regularity of
solutions such as ut,∆pu ∈ L2(0, T ;L2(Ω)).

For the quasilinear case where p 6= 2, however, it requires a strong restriction on the
growth order q of the perturbed term |u|q−2u, which is caused by the loss of the elliptic
estimate for ∆p.

As is well known, the theory of elliptic equations bears close relations with the theory
of evolution equations, and in the theory of elliptic equations, the Fréchet derivative dφ
of a C1-function φ from V into R is usually regarded as the operator from V into V ∗.
We also recall that the statement of “Palais-Smale” condition or Mountain Pass lemmas
is formulated in the V -V ∗ setting; this setting plays a natural and essential role to derive
the well-known fact that the equation −∆pu(x) = |u|q−2u(x), x ∈ Ω, u|∂Ω = 0 admits a
nontrivial positive solution if and only if q is subcritical, i.e., 1 < q < p∗, where p∗ denotes
the so-called Sobolev’s critical exponent, provided that Ω is a bounded star-shaped domain.
From this point of view, it would be very natural and important to investigate the solvability
of (CP) in the V -V ∗ setting. However the study in this direction is not fully pursued yet
even for the non-perturbed case where ∂ϕ2 ≡ 0, except in [8] and [9].
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Moreover it is readily suggested from the study of nonlinear elliptic equations that the
perturbation theory for subdifferentials in the V -V ∗ setting should remedy the deficiency
in the Hilbert space setting mentioned above. In fact, as an application of our abstract
results, it is shown that (NHE) admits a local (in time) weak solution under the subcritical
growth condition q < p∗ for all u0 ∈ W 1,p

0 (Ω). This fact is already known for the semilinear
case p = 2. For the general case, however, this fact has been conjectured but left as an open
problem through many years.

The content of this paper is as follows. In the next section, our main results on the
existence of local or global (in time) solutions are formulated and some related materials
to be used later are prepared. The proofs for main results are given in Section 3, and the
applicability of our abstract results are exemplified in Section 4.

2 Main Results

Let V be a real reflexive Banach space and let V ∗ be its dual. Throughout this paper, we
assume that there exists a real Hilbert space H whose dual space H∗ is identified with H
such that

V ⊂ H ≡ H∗ ⊂ V ∗,(1)

where the natural injection from V into H as well as that from H∗ into V ∗ are densely
defined and continuous.

To formulate our results, we need the notion of subdifferential operators from a Ba-
nach space X into its dual X∗ defined below. Let Φ(X) be the set of all proper lower
semicontinuous convex functions from X into (−∞, +∞], where “proper” means that the
effective domain D(ϕ) of ϕ defined by D(ϕ) := {u ∈ X; ϕ(u) < +∞} is not empty. The
subdifferential ∂Xϕ of ϕ at u in X is defined by

∂Xϕ(u) := {f ∈ X∗; ϕ(v) − ϕ(u) ≥ X∗〈f, v − u〉X for all v ∈ D(ϕ)}

with domain D(∂Xϕ) := {u ∈ D(ϕ); ∂Xϕ(u) 6= ∅}, where X∗〈·, ·〉X denotes the duality
pairing between X and X∗. For simplicity of notation, we write ∂ϕ and 〈·, ·〉 instead of
∂Xϕ and 〈·, ·〉X respectively if no confusion arises.

In particular, when X is a Hilbert space H and ϕ ∈ Φ(H), then

∂Hϕ(u) := {f ∈ H;ϕ(v) − ϕ(u) ≥ (f, v − u)H for all v ∈ D(ϕ)} ,

where (·, ·)H denotes the inner product of H. It is well known that the subdifferential
operator ∂Xϕ becomes a (possibly multi-valued) maximal monotone operator from X into
X∗ (see [10, 11, 12]). Especially, in the Hilbert space setting, various nice properties are
known. We summarize some of them without their proofs for later use.

Let ϕ ∈ Φ(H). Then the Yosida approximation (∂Hϕ)λ of ∂Hϕ coincides with the
subdifferential of the Moreau-Yosida regularization ϕλ of ϕ given by

ϕλ(u) := inf
v∈H

{
1
2λ

|u − v|2H + ϕ(v)
}

.

More precisely, the following lemma holds.
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Proposition 1 Let ϕ ∈ Φ(H). Then ϕλ becomes a Fréchet differentiable convex function
from H into R and is characterized by

ϕλ(u) =
1
2λ

|u − Jλu|2H + ϕ(Jλu) =
λ

2
|(∂Hϕ)λ(u)|2H + ϕ(Jλu),

where (∂Hϕ)λ and Jλ are the Yosida approximation and the resolvent of ∂Hϕ respectively,
i.e., Jλ = (I + λ∂ϕH)−1 and (∂Hϕ)λ = (I − Jλ)/λ. Moreover ∂H(ϕλ) = (∂Hϕ)λ, where
∂H(ϕλ) denotes the subdifferential (Fréchet derivative) of ϕλ, ϕ(Jλu) ≤ ϕλ(u) ≤ ϕ(u) for
all u ∈ H, λ > 0 and ϕλ(u) → ϕ(u) as λ → 0 for all u ∈ H.

The following proposition yields an information on the chain rule for ϕ.

Proposition 2 Let ϕ ∈ Φ(H) and suppose that u ∈ W 1,2(0, T ; H), u(t) ∈ D(∂Hϕ) for a.e.
t ∈ (0, T ) and that there exists g ∈ L2(0, T ; H) such that g(t) ∈ ∂Hϕ(u(t)) for a.e. t ∈ (0, T ).
Then the function t 7→ ϕ(u(t)) is absolutely continuous on [0, T ] and the following holds:

d

dt
ϕ(u(t)) =

(
h(t),

du

dt
(t)

)

H

∀ h(t) ∈ ∂Hϕ(u(t)) for a.e. t ∈ (0, T ).

In the present paper, we are concerned with strong solutions of (CP) in the following
sense.

Definition 1 A function u ∈ C([0, T ];V ∗) is said to be a strong solution of (CP) on [0, T ],
if the following conditions are satisfied :

(i) u(t) is a V ∗-valued absolutely continuous function on [0, T ].
(ii) u(t) → u0 strongly in H as t → +0.

(iii) u(t) ∈ D(∂ϕ1) ∩ D(∂ϕ2) for a.e. t ∈ (0, T )
and there exist sections gi(t) ∈ ∂ϕi(u(t)) (i = 1, 2) satisfying:

du

dt
(t) + g1(t) − g2(t) = f(t) in V ∗ for a.e. t ∈ (0, T ).(2)

Throughout the present paper, we denote by C or Ci (i = 1, 2, . . .) positive constants
which do not depend on the elements of the corresponding space or set. Moreover let us
denote by L the set of all monotone non-decreasing functions from [0, +∞) into itself. For
p ∈ (1, +∞), p′ designates the Hölder conjugate of p, i.e., p′ = p/(p − 1).

Our basic assumptions are the following.

(A1) |u|pV − C1|u|2H − C2 ≤ C3ϕ
1(u) ∀u ∈ D(ϕ1), 1 < p < +∞.

(A2) D(ϕ1) ⊂ D(∂ϕ2). Furthermore if {un} is a sequence such that
supt∈[0,T ]{ϕ1(un(t)) + |un(t)|H} +

∫ T
0 |dun(t)/dt|2Hdt is bounded,

then for every gn(·) ∈ ∂ϕ2(un(·)), {gn} forms a precompact subset in
C([0, T ];V ∗).

(A3) There exists an extension ϕ̃2 ∈ Φ(H) of ϕ2, i.e., ϕ̃2(u) = ϕ2(u) ∀u ∈ V,
such that ϕ1 (Jλu) ≤ l1

(
ϕ1(u) + l2(|u|H)

)
∀λ ∈ (0, 1], ∀u ∈ D(ϕ1),

where li ∈ L (i = 1, 2) and Jλ denotes the resolvent of ∂H ϕ̃2, that is,
Jλ = (I + λ∂H ϕ̃2)−1.

(A4) ϕ2(u) ≤ kϕ1(u) + C4|u|2H + C5 ∀u ∈ D(ϕ1), 0 ≤ k < 1.
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Remark 1 The condition (A3) is weaker than the well-known sufficient condition for the
maximality of ∂Hϕ1

H + ∂H ϕ̃2:

ϕ1
H(Jλu) ≤ ϕ1

H(u) + Cλ ∀λ ∈ (0, 1], ∀u ∈ D(ϕ1
H),

where ϕ1
H denotes the extension of ϕ1 onto H which will be given in the proof of Theorem

1.

We note that (A2) assures the continuity of ϕ2 in the following sense.

Proposition 3 Assume that (A2) is satisfied. Let {un} be a sequence in D(ϕ1) such that
un → u weakly in V and ϕ1(un) is bounded. Then it follows that ϕ2(un) → ϕ2(u).

Proof of Proposition 3. Let {un} be a sequence in D(ϕ1) such that un → u weakly in
V as n → +∞ and ϕ1(un) is bounded. Then from the fact that ϕ2 ∈ Φ(V ), it follows that

ϕ2(u) ≤ lim inf
n→+∞

ϕ2(un).(3)

On the other hand, for each n ∈ N, let gn ∈ ∂ϕ2(un) and set vn(t) = un and hn(t) = gn

for all t ∈ [0, T ]. Then we see that supt∈[0,T ]{ϕ1(vn(t)) + |vn(t)|H} = ϕ1(un) + |un|H is
bounded, dvn/dt ≡ 0 and hn(·) ∈ ∂ϕ2(vn(·)). By (A2), we can extract a subsequence {n′}
of {n} such that hn′ → h strongly in C([0, T ];V ∗), which implies {gn′} becomes a strongly
convergent sequence in V ∗.

Hence since ϕ2(un′) ≤ ϕ2(u) + 〈gn′ , un′ − u〉, we get

lim sup
n′→+∞

ϕ2(un′) ≤ ϕ2(u) + lim
n′→+∞

〈gn′ , un′ − u〉 = ϕ2(u).(4)

Therefore it follows from (3) and (4) that ϕ2(un′) → ϕ2(u). Since the limit is unique, we
find that ϕ2(un) → ϕ2(u).

Now our main results are stated as follows.

Theorem 1 Assume that (A1), (A2), (A3) and (A4) hold. Then for all u0 ∈ D(ϕ1) and
f ∈ W 1,p′(0, T ; V ∗), (CP) has a strong solution u on [0, T ] satisfying :





u ∈ Cw([0, T ];V ) ∩ W 1,2(0, T ; H),
u(t) ∈ D(∂ϕ1) ∩ D(∂ϕ2) for a.e. t ∈ (0, T ),
g1 ∈ L2(0, T ; V ∗), g2 ∈ C([0, T ];V ∗),
sup

t∈[0,T ]
ϕ1(u(t)) < +∞, ϕ2(u(·)) ∈ C([0, T ]),

(5)

where gi (i = 1, 2) are the sections of ∂ϕi satisfying (2) and Cw([0, T ];V ) denotes the set
of all V -valued weakly continuous functions on [0, T ].

Moreover the following energy estimate holds true.
∫ t

0

∣∣∣∣
du

dτ
(τ)

∣∣∣∣
2

H

dτ + ϕ1(u(t)) + ϕ2(u0)(6)

≤ ϕ1(u0) + ϕ2(u(t)) + 〈f(t), u(t)〉 − 〈f(0), u0〉 −
∫ t

0

〈
df

dτ
(τ), u(τ)

〉
dτ

for all t ∈ [0, T ].
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As for the existence of local (in time) strong solutions, we do not need to assume (A4),
which might be somewhat restrictive from the view point of applications to P.D.E.

Theorem 2 Assume that (A1), (A2) and (A3) hold. Then for all u0 ∈ D(ϕ1) and f ∈
W 1,p′(0, T ; V ∗), there exists a number T0 ∈ (0, T ] such that (CP) has a strong solution u on
[0, T0] satisfying (5) with T replaced by T0.

As for the global (in time) existence, we introduce the following assumption:

(A5) αϕ1(u) ≤ 〈ξ − η, u〉 + l3(ϕ2(u)) · ϕ1(u) ∀[u, ξ] ∈ ∂ϕ1, ∀[u, η] ∈ ∂ϕ2,

where α > 0 and l3 denotes a non-decreasing continuous function from [0, +∞) to R satis-
fying l3(0) = 0.

The following theorem ensures the existence of small global solutions.

Theorem 3 In addition to all the assumptions in Theorem 2, assume that C1 = C2 = 0
in (A1), ϕ2 ≥ 0 and (A5) is satisfied. Let δ0 be a positive number such that l3(δ0) < α.
Then, for all R > 0, there exists a positive number δR such that for all T > 0 and (u0, f)
belonging to

XT
δR,R :=

{
(u0, f) ∈ D(ϕ1) × W 1,p′(0, T ; V ∗);

ϕ1(u0) +
∫ T

0
|f(τ)|p

′

V ∗dτ +
∫ T

0

∣∣∣∣
df

dτ
(τ)

∣∣∣∣
p′

V ∗
dτ ≤ R,

ϕ2(u0) < δ0,

|u0|H +
{

max
(

1,
1
T

) ∥∥∥|f(·)|p
′

V ∗

∥∥∥
1,T

}1/p

< δR

}
,

where

∥∥∥|f(·)|p
′

V ∗

∥∥∥
1,T

:=





∫ T

0
|f(τ)|p

′

V ∗dτ if T < 1,

sup
t∈[1,T ]

∫ t

t−1
|f(τ)|p

′

V ∗dτ if T ≥ 1,

(CP) has a strong solution u on [0, T ] satisfying (5).

Remark 2 All results described above hold true even if supt∈[0,T ]{ϕ1(un(t)) +|un(t)|H} in
(A2) and ϕ1(Jλu) in (A3) are replaced by supt∈[0,T ] |un(t)|V and |Jλu|V respectively.
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3 Proof of Main Results

3.1 Proof of Theorem 1

The first step of our proof is to introduce suitable approximation problems for (CP) in the
Hilbert space H. To this end, we first define the extension ϕ1

H to ϕ1 on H by

ϕ1
H(u) =

{
ϕ1(u) if u ∈ V,

+∞ if u ∈ H/V.

Then, by virtue of (A1), we can easily verify that ϕ1
H ∈ Φ(H) (see [8]).

Now our approximation problems for (CP) are given by

(CP)λ





duλ

dt
(t) + ∂Hϕ1

H(uλ(t)) − ∂H ϕ̃2
λ(uλ(t)) 3 fλ(t) in H, 0 < t < T,

uλ(0) = u0,

where fλ belongs to C1([0, T ];H) such that fλ → f strongly in W 1,p′(0, T ;V ∗) as λ → +0,
ϕ̃2 is the extension of ϕ2 on H given in (A3) and ∂H ϕ̃2

λ denotes the Yosida approximation
of ∂H ϕ̃2. We note by Proposition 1 that ∂H ϕ̃2

λ = ∂H(ϕ̃2
λ).

Since ∂H ϕ̃2
λ is Lipschitz continuous in H, it is well known (see e.g. Proposition 3.12

and Theorem 3.6 of [11]) that there exits a unique strong solution uλ of (CP)λ on [0, T ]
satisfying:

uλ ∈ W 1,2(0, T ; H), uλ(t) ∈ D(∂Hϕ1
H) for a.e. t ∈ (0, T ),

t 7→ ϕ1
H(uλ(t)), ϕ̃2

λ(uλ(t)) are absolutely continuous on [0, T ].

Here we can assume that ϕ1 ≥ 0 without any loss of generality. Indeed, since ϕ1
H ∈

Φ(H), there exist v0 ∈ H and µ0 ∈ R such that

ϕ1
H(u) ≥ (v0, u)H + µ0 ∀u ∈ H

(see [10]). Now set ϕ̂1(u) := ϕ1(u) − (v0, u)H − µ0. Then since ϕ1
H(u) − (v0, u) − µ0 ≥ 0

for all u ∈ H and ϕ1(u) = ϕ1
H(u) for all u ∈ V , it follows that ϕ̂1(u) ≥ 0 for all u ∈ V .

Moreover we can easily get

D(ϕ̂1) = D(ϕ1), D(∂ϕ̂1) = D(∂ϕ1), ∂ϕ̂1(u) = ∂ϕ1(u) − v0 ∀u ∈ D(∂ϕ1).

Hence (CP) is equivalent to Cauchy problem for the following evolution equation with an
initial condition u(0) = u0.

du

dt
(t) + ∂ϕ̂1(u(t)) − ∂ϕ2(u(t)) 3 f(t) − v0 in V ∗, 0 < t < T.

Moreover it is easy to see that if (A1), (A2), (A3) and (A4) hold, then (A1), (A2), (A3)
and (A4) with ϕ1 replaced by ϕ̂1 also hold.

We are going to establish a priori estimates in the following Lemmas 1-3.
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Lemma 1 There exists a constant M1 such that

sup
t∈[0,T ]

|uλ(t)|H ≤ M1,(7)

sup
t∈[0,T ]

ϕ1(uλ(t)) ≤ M1,(8)

∫ T

0

∣∣∣∣
duλ

dt
(t)

∣∣∣∣
2

H

dt ≤ M1,(9)

sup
t∈[0,T ]

|uλ(t)|V ≤ M1.(10)

Proof of Lemma 1. Multiply (CP)λ by duλ(t)/dt. Then, by Lemma 2, we obtain
∣∣∣∣
duλ

dt
(t)

∣∣∣∣
2

H

+
d

dt
ϕ1

H(uλ(t)) − d

dt
ϕ̃2

λ(uλ(t)) =
(

fλ(t),
duλ

dt
(t)

)

H

.(11)

Hence, integrating (11) over (0, t), we have
∫ t

0

∣∣∣∣
duλ

dτ
(τ)

∣∣∣∣
2

H

dτ + ϕ1(uλ(t)) + ϕ̃2
λ(u0)(12)

= ϕ1(u0) + ϕ̃2(uλ(t)) + 〈fλ(t), uλ(t)〉 − 〈fλ(0), u0〉

−
∫ t

0

〈
dfλ

dτ
(τ), uλ(τ)

〉
dτ.

By (A1) and (A4), it follows that
∫ t

0

∣∣∣∣
duλ

dτ
(τ)

∣∣∣∣
2

H

dτ + (1 − k)ϕ1(uλ(t))

≤ ϕ1(u0) − ϕ̃2
λ(u0) + C4|uλ(t)|2H + C5

+|fλ(t)|V ∗{C3ϕ
1(uλ(t)) + C1|uλ(t)|2H + C2}1/p + |fλ(0)|V ∗ |u0|V

+
∫ t

0

∣∣∣∣
dfλ

dτ
(τ)

∣∣∣∣
V ∗

{
C3ϕ

1(uλ(τ)) + C1|uλ(τ)|2H + C2

}1/p
dτ.

Then, by Young’s inequality, there exists a constant C depending only on k, p, C1 and C3

such that
∫ t

0

∣∣∣∣
duλ

dτ
(τ)

∣∣∣∣
2

H

dτ +
1 − k

2
ϕ1(uλ(t))(13)

≤ C

{
|u0|pV + ϕ1(u0) + |ϕ̃2

λ(u0)| + C2 + C5 + sup
τ∈[0,t]

|fλ(τ)|p
′

V ∗

+
∫ t

0

∣∣∣∣
dfλ

dτ
(τ)

∣∣∣∣
p′

V ∗
dτ

}
+ (C4 + 1)|uλ(t)|2H

+
∫ t

0

{
ϕ1

H,λ(uλ(τ)) + |uλ(τ)|2H
}

dτ.
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Here using the fact that d
dt |uλ(t)|H ≤ |duλ

dt (t)|H , we get

µ
d

dt
|uλ(t)|2H = 2µ|uλ(t)|H

d

dt
|uλ(t)|H(14)

≤ 2µ|uλ(t)|H
∣∣∣∣
duλ

dt
(t)

∣∣∣∣
H

≤ µ2|uλ(t)|2H +
∣∣∣∣
duλ

dt
(t)

∣∣∣∣
2

H

∀µ > 0.

Hence, putting µ = C4+2 and combining (13) with (14), we obtain by Gronwall’s inequality,

|uλ(t)|2H + ϕ1(uλ(t))

≤ C

{
|u0|2H + ϕ1(u0) + |ϕ̃2

λ(u0)| + |u0|pV + C2 + C5

+ sup
τ∈[0,T ]

|fλ(τ)|p
′

V ∗ +
∫ T

0

∣∣∣∣
dfλ

dτ
(τ)

∣∣∣∣
p′

V ∗
dτ

}
,

where C depends on k, p, C1, C3, C4 and T . Therefore since fλ is bounded in W 1,p′(0, T ; V ∗)
and ϕ̃2

λ(u0) is bounded, it follows that (7) and (8) hold. Moreover, (7) and (13) imply (9).
Furthermore, by (A1), we get

|uλ(t)|pV ≤ C1|uλ(t)|2H + C2 + C3ϕ
1(uλ(t)).

Hence, (7) and (8) imply (10).

Lemma 2 There exists a constant M2 such that

sup
t∈[0,T ]

|Jλuλ(t)|H ≤ M2,(15)

sup
t∈[0,T ]

ϕ1(Jλuλ(t)) ≤ M2,(16)

sup
t∈[0,T ]

|Jλuλ(t)|V ≤ M2,(17)

∫ T

0

∣∣∣∣
d

dt
Jλuλ(t)

∣∣∣∣
2

H

dt ≤ M2.(18)

Proof of Lemma 2. Since Jλ is non-expansive in H (see [12, p102]), we can derive (15)
from (7). By (A3), (7) and (8) yield (16), which together with (A1) and (15) imply (17).
Moreover since |Jλuλ(t + h) − Jλuλ(t)|H/h ≤ |uλ(t + h) − uλ(t)|H/h for all h ∈ R with
t + h ∈ [0, T ], we have

∫ T

0

∣∣∣∣
d

dt
Jλuλ(t)

∣∣∣∣
2

H

dt ≤
∫ T

0

∣∣∣∣
duλ

dt
(t)

∣∣∣∣
2

H

dt,

which together with (9) implies (18).

9



Lemma 3 There exists a constant M3 such that

sup
t∈[0,T ]

∣∣∂H ϕ̃2
λ(uλ(t))

∣∣
V ∗ ≤ M3,(19)

∫ T

0

∣∣g1
λ(t)

∣∣2
V ∗ dt ≤ M3,(20)

where g1
λ(t) = fλ(t) − duλ(t)/dt + ∂H ϕ̃2

λ(uλ(t)) ∈ ∂Hϕ1
H(uλ(t)).

Proof of Lemma 3. Since Jλuλ(t) ∈ D(∂H ϕ̃2)∩V for all t ∈ [0, T ], we get ∂H ϕ̃2(Jλuλ(t)) ⊂
∂ϕ2(Jλuλ(t)) for all t ∈ [0, T ]. Furthermore, since ∂H ϕ̃2

λ(uλ(·)) ∈ ∂H ϕ̃2(Jλuλ(·)) (see [12,
p104]), it follows from (A2), (15), (16) and (18) that

{∂H ϕ̃2
λ(uλ(·))} forms a precompact subset of C([0, T ];V ∗),(21)

which yields (19).
Since fλ is bounded in W 1,p′(0, T ; V ∗) and g1

λ(t) = fλ(t) − duλ(t)/dt + ∂H ϕ̃2
λ(uλ(t)) for

a.e. t ∈ (0, T ), (9) and (19) imply (20).
From Lemmas 1–3, we can extract a sequence {λn} such that λn → 0 and the following

Lemmas 4-6 hold.

Lemma 4 There exists u ∈ Cw([0, T ];V ) ∩ W 1,2(0, T ; H) such that

uλn → u weakly in W 1,2(0, T ; H),(22)
uλn(t) → u(t) weakly in H for all t ∈ [0, T ],(23)

Jλnuλn → u weakly in L2(0, T ; V ) ∩ W 1,2(0, T ; H).(24)

Moreover u(t) → u0 strongly in H as t → +0.

Proof of Lemma 4. Since H and V are reflexive, (7) and (9) imply (22), which also
yields u ∈ C([0, T ];H). Moreover, let q ∈ [1, +∞) be fixed. Then by (7), we can extract a
subsequence {λq

n} of {λn} depending on q such that uλq
n
−u0 → u−u0 weakly in Lq(0, T ; H).

Hence it is obvious that uλq
n
−u0 → u−u0 weakly in Lq(0, t; H) for any t ∈ [0, T ]. Therefore

since uλq
n
(0) = u0, it follows from (9) that

‖u − u0‖Lq(0,t;H) ≤ lim inf
λq

n→0
‖uλq

n
− u0‖Lq(0,t;H)

≤ lim inf
λq

n→0





∫ t

0

(∫ τ

0

∣∣∣∣
duλq

n

ds
(s)

∣∣∣∣
2

H

ds

)q/2

τ q/2dτ





1/q

≤ M
1/2
1

(
2

q + 2

)1/q

t(1/2+1/q).

Thus we have

|u(t) − u0|H ≤ sup
τ∈[0,t]

|u(τ) − u0|H

= lim
q→+∞

‖u − u0‖Lq(0,t;H) ≤ M
1/2
1 t1/2 for all t ∈ [0, T ],
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which implies u(t) → u0 strongly in H as t → +0.
Now let t ∈ [0, T ] be fixed. Since uλn(0) = u(0) = u0, (22) shows that

(uλn(t) − u(t), φ)H =
∫ t

0

(
duλn

dτ
(τ) − du

dτ
(τ), φ

)

H

dτ

→ 0 ∀φ ∈ H, ∀t ∈ [0, T ],

which yields (23).
By (10) and (23), for any t ∈ [0, T ], we can take a subsequence {λt

n} of {λn} depending
on t such that

uλt
n
(t) → u(t) weakly in V.(25)

It then follows from (10) that |u(t)|V ≤ lim infλt
n→0 |uλt

n
(t)|V ≤ M1, where M1 is indepen-

dent of t. Therefore we conclude that u(t) ∈ V for all t ∈ [0, T ] and supt∈[0,T ] |u(t)|V ≤
M1 < +∞. Hence, for all t ∈ [0, T ] and {tn} with tn → t as n → +∞, there exist a
subsequence {tnk

} of {tn} and w ∈ V such that u(tnk
) → w weakly in V as nk → +∞. On

the other hand, u(tnk
) → u(t) strongly in H as nk → +∞, since u ∈ C([0, T ];H). Then, by

virtue of (1), we find w = u(t), whence follows u ∈ Cw([0, T ];V ).
By (17) and (18), there exists v ∈ L2(0, T ; V ) ∩ W 1,2(0, T ; H) such that Jλnuλn →

v weakly in L2(0, T ; V ) ∩ W 1,2(0, T ; H). Here, by (19), we notice that

|uλn(t) − Jλnuλn(t)|V ∗ = λn|∂H ϕ̃2
λn

(uλn(t))|V ∗ ≤ λnM3

for all t ∈ [0, T ], which implies uλn −Jλnuλn → 0 strongly in C([0, T ];V ∗) as λn → 0. Hence
it follows from (22) that v = u.

Lemma 5 There exists g2 ∈ C([0, T ];V ∗) such that

∂H ϕ̃2
λn

(uλn(·)) → g2 strongly in C([0, T ];V ∗)(26)
and g2(t) ∈ ∂ϕ2(u(t)) for a.e. t ∈ (0, T ).

Proof of Lemma 5. By (21), there exists g2 ∈ C([0, T ];V ∗) such that ∂H ϕ̃2
λn

(uλn(·)) →
g2 strongly in C([0, T ];V ∗). Hence since ∂H ϕ̃2

λn
(uλn(t)) ∈ ∂H ϕ̃2(Jλnuλn(t)) ⊂ ∂ϕ2(Jλnuλn(t)),

by the demiclosedness of maximal monotone operators (see e.g. [10, Chap.II]) and Propo-
sition 1.1 of [9], it follows from (24) that g2(t) ∈ ∂ϕ2(u(t)) for a.e. t ∈ (0, T ).

Lemma 6 There exists g1 ∈ L2(0, T ; V ∗) such that

g1
λn

→ g1 weakly in L2(0, T ;V ∗)(27)

and g1(t) = f(t) + g2(t) − du

dt
(t) ∈ ∂ϕ1(u(t)) for a.e. t ∈ (0, T ).

Proof of Lemma 6. By (20), it is obvious that there exists g1 ∈ L2(0, T ; V ∗) such that

g1
λn

→ g1 weakly in L2(0, T ; V ∗).(28)
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Moreover, by (CP)λn
, it follows from (22) and (26) that g1 = f + g2 − du/dt.

Hence it remains to prove that f(t) + g2(t) − du(t)/dt ∈ ∂ϕ1(u(t)) for a.e. t ∈ (0, T ).
To do this, integrating the product of g1

λn
(t) and uλn(t) over (0, T ), we get by (CP)λn

,
∫ T

0
〈g1

λn
(t), uλn(t)〉dt =

∫ T

0
〈fλn(t), uλn(t)〉dt +

∫ T

0
〈∂H ϕ̃2

λn
(uλn(t)), uλn(t)〉dt

−1
2
|uλn(T )|2H +

1
2
|u0|2H .

Since fλn → f strongly in W 1,p′(0, T ; V ∗), it follows from (22), (23) and (26) that

lim sup
λn→0

∫ T

0
〈g1

λn
(t), uλn(t)〉dt(29)

= lim
λn→0

∫ T

0
〈fλn(t), uλn(t)〉dt + lim

λn→0

∫ T

0
〈∂H ϕ̃2

λn
(uλn(t)), uλn(t)〉dt

−1
2

lim inf
λn→0

|uλn(T )|2H +
1
2
|u0|2H

≤
∫ T

0
〈f(t), u(t)〉dt +

∫ T

0
〈g2(t), u(t)〉dt − 1

2
|u(T )|2H +

1
2
|u0|2H

=
∫ T

0

〈
f(t) + g2(t) − du

dt
(t), u(t)

〉
dt.

By Lemma 1.3 of [10, Chap.II] and Proposition 1.1 of [9], it follows from (22) and (28) that
g1(t) = f(t) + g2(t) − du(t)/dt ∈ ∂ϕ1(u(t)) for a.e. t ∈ (0, T ).

Now, let t ∈ [0, T ] be arbitrarily fixed. Then since ϕ1 ∈ Φ(V ), (8) and (25) imply
ϕ1(u(t)) ≤ lim infλt

n→0 ϕ1(uλt
n
(t)) ≤ M1, where M1 is independent of t. Hence we conclude

that u(t) ∈ D(ϕ1) for all t ∈ [0, T ] and supt∈[0,T ] ϕ
1(u(t)) ≤ M1 < +∞. Moreover let

{tn} be a sequence in [0, T ] such that tn → t. From the fact that u ∈ Cw([0, T ];V ), it
follows that u(tn) → u(t) weakly in V . Since ϕ1(u(tn)) ≤ supt∈[0,T ] ϕ1(u(t)) ≤ M1, where
M1 is independent of n, Proposition 3 assures that ϕ2(u(tn)) → ϕ2(u(t)), whence follows
ϕ2(u(·)) ∈ C([0, T ]).

Finally we provide an energy estimate for the strong solution u. To this end, we claim
that

ϕ2(uλt
n
(t)) → ϕ2(u(t)) ∀t ∈ [0, T ].

Indeed, let t ∈ [0, T ] be fixed. Then, by (8), (25) and the fact that uλt
n
(t) ∈ D(ϕ1),

Proposition 3 assures the assertion above. Hence putting λ = λt
n in (12) and noting that

ϕ̃2
λt

n
(u0) → ϕ2(u0) as λt

n → 0, we obtain
∫ t

0

∣∣∣∣
du

dτ
(τ)

∣∣∣∣
2

H

dτ + ϕ1(u(t)) + ϕ2(u0)

≤ ϕ1(u0) + ϕ2(u(t)) + 〈f(t), u(t)〉 − 〈f(0), u0〉 −
∫ t

0

〈
df

dτ
(τ), u(τ)

〉
dτ.

This completes the proof.
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3.2 Proof of Theorem 2

To prove Theorem 2, we need another type of auxiliary problem:

(CP)r





du

dt
(t) + ∂ϕ1,r(u(t)) − ∂ϕ2(u(t)) 3 f(t) in V ∗, 0 < t < T,

u(0) = u0.

Here r ∈ R is chosen so that r > ϕ2(u0) and ϕ1,r denotes the cut-off function of ϕ1 given
by

ϕ1,r(u) =

{
ϕ1(u) if ϕ2(u) ≤ r,

+∞ otherwise.

Then it is easy to see that ϕ1,r ∈ Φ(V ) and D(ϕ1,r) = D(ϕ1) ∩ {u ∈ V ; ϕ2(u) ≤ r}
and that (A1) and (A2) are satisfied with ϕ1 replaced by ϕ1,r. Since (A3) assures that
JλD(ϕ1) ⊂ D(ϕ1), we find by Proposition 1 that ϕ2(Jλu) = ϕ̃2(Jλu) ≤ ϕ̃2(u) = ϕ2(u) ≤ r
for all u ∈ D(ϕ1,r), which implies Jλu ∈ D(ϕ1,r) and ϕ1,r(Jλu) = ϕ1(Jλu). Hence (A3)
is satisfied with ϕ1 replaced by ϕ1,r. Furthermore, since ϕ2(u) ≤ r for all u ∈ D(ϕ1,r),
(A4) is satisfied with k = 0, C4 = 0, C5 = r and ϕ1 = ϕ1,r. Noting that ϕ2(u0) < r and
u0 ∈ D(ϕ1) yield u0 ∈ D(ϕ1,r), we observe that Theorem 1 assures the existence of strong
solution of (CP)r on [0, T ] as follows:

Lemma 7 Assume that (A1), (A2) and (A3) are satisfied. Then for all u0 ∈ D(ϕ1),
f ∈ W 1,p′(0, T ; V ∗) and r ∈ R with r > ϕ2(u0), (CP)r has a strong solution u on [0, T ]
satisfying (5) with ϕ1 replaced by ϕ1,r and the following inequality :

∫ t

0

∣∣∣∣
du

dt
(τ)

∣∣∣∣
2

H

dτ + ϕ1,r(u(t)) + ϕ2(u0)(30)

≤ ϕ1(u0) + ϕ2(u(t)) + 〈f(t), u(t)〉 − 〈f(0), u0〉 −
∫ t

0

〈
df

dτ
(τ), u(τ)

〉
dτ

for all t ∈ [0, T ].

Now we are going to show that u(t) becomes a strong solution of (CP) on [0, T0] for
some T0 > 0. To do this, it is sufficient to prove that there exists a number T0 ∈ (0, T ]
such that ∂ϕ1,r(u(t)) = ∂ϕ1(u(t)) for a.e. t ∈ (0, T0). To this end, we prepare a couple of
lemmas.

Lemma 8 If u ∈ D(∂ϕ1,r) and ϕ2(u) < r, then u ∈ D(∂ϕ1) and ∂ϕ1,r(u) = ∂ϕ1(u).

Proof of Lemma 8. Let [u, ξ] ∈ ∂ϕ1,r be such that ϕ2(u) < r and take an arbitrary
element v ∈ D(ϕ1). Then since us := (1−s)u+sv ∈ D(ϕ1), ϕ1(us) ≤ (1−s)ϕ1(u)+sϕ1(v) ≤
|ϕ1(u)| + |ϕ1(v)| for all s ∈ [0, 1] and us → u strongly in V as s → 0, Proposition 3 assures
that ϕ2(us) → ϕ2(u) as s → 0. Hence from the fact that ϕ2(u) < r, there exists a
number s0 ∈ (0, 1) such that ϕ2(us0) ≤ r. Since us0 ∈ D(ϕ1,r), we get ϕ1(us0) − ϕ1(u) =
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ϕ1,r(us0)−ϕ1,r(u) ≥ 〈ξ, us0−u〉. Hence, by the convexity of ϕ1, we have s0(ϕ1(v)−ϕ1(u)) ≥
〈ξ, s0(v − u)〉. By dividing both sides by s0 > 0, we deduce ϕ1(v) − ϕ1(u) ≥ 〈ξ, v − u〉 for
all v ∈ D(ϕ1), whence follows u ∈ D(∂ϕ1) and ξ ∈ ∂ϕ1(u).

On the other hand, it is obvious that ∂ϕ1(u) ⊂ ∂ϕ1,r(u) for all u ∈ D(∂ϕ1,r) with
ϕ2(u) < r, which completes the proof.

Lemma 9 There exists a number T0 ∈ (0, T ] such that ϕ2(u(t)) < r for all t ∈ [0, T0).

Proof of Lemma 9. For the case where maxt∈[0,T ] ϕ
2(u(t)) < r, we can take T0 = T .

For the case where maxt∈[0,T ] ϕ
2(u(t)) ≥ r, since ϕ2(u(·)) ∈ C([0, T ]) and ϕ2(u0) < r, there

exists a number T0 ∈ (0, T ] such that ϕ2(u(t)) attains r at t = T0 for the first time.
By Lemmas 8 and 9, there exists a number T0 ∈ (0, T ] such that u(t) ∈ D(∂ϕ1) and

∂ϕ1,r(u(t)) = ∂ϕ1(u(t)) for a.e. t ∈ (0, T0). Consequently we deduce that u becomes a
strong solution of (CP) on [0, T0]. Thus the proof of Theorem 2 is completed.

3.3 Proof of Theorem 3

We first note that ϕi ≥ 0 (i = 1, 2) by assumptions of Theorem 3. Moreover from the
assumption on l3 in (A5), we can take a number δ1 > δ0 such that maxx∈[0,δ1] l3(x) ≤
(α + α0)/2 ∈ (α0, α), where α0 := maxx∈[0,δ0] l3(x) < α. Hence, by (A5), it follows that

α − α0

2
ϕ1(u) ≤ 〈ξ − η, u〉(31)

for all [u, ξ] ∈ ∂ϕ1 and [u, η] ∈ ∂ϕ2 satisfying u ∈ D2
δ1

:= {u ∈ D(ϕ2);ϕ2(u) ≤ δ1}.
Put r = δ1 and recall the auxiliary problem (CP)r. Moreover define

XT
δ,R :=

{
(u0, f) ∈ D(ϕ1) × W 1,p′(0, T ; V ∗);

ϕ1(u0) +
∫ T

0
|f(τ)|p

′

V ∗dτ +
∫ T

0

∣∣∣∣
df

dτ
(τ)

∣∣∣∣
p′

V ∗
dτ ≤ R,

ϕ2(u0) < δ0, |u0|H +
{

max
(

1,
1
T

) ∥∥∥|f(·)|p
′

V ∗

∥∥∥
1,T

}1/p

< δ

}

for all δ, R, T > 0, where

∥∥∥|f(·)|p
′

V ∗

∥∥∥
1,T

:=





∫ T

0
|f(τ)|p

′

V ∗dτ if T < 1,

sup
t∈[1,T ]

∫ t

t−1
|f(τ)|p

′

V ∗dτ if T ≥ 1

and ST
δ,R := {u ∈ Cw([0, T ];V ) ∩ W 1,2(0, T ;H);u is a strong solution of (CP)r on [0, T ]

satisfying (30) and ϕ2(u(·)) ∈ C([0, T ]) with (u0, f) ∈ XT
δ,R}. Here, by Lemma 7, we note
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that ST
δ,R 6= ∅ when XT

δ,R 6= ∅. We then define Tr(u) := sup{T0 ∈ (0, T ];ϕ2(u(t)) <

r for all t ∈ [0, T0]} for all u ∈ ST
δ,R.

Now by Lemma 8, to complete the proof, it suffices to show that

∀R > 0, ∃δR > 0; ∀T > 0, ∀u ∈ ST
δR,R, Tr(u) = T,(32)

where we note that δR is independent of T . Suppose that the above claim were false, i.e.,

∃R0 > 0; ∀δ > 0 ∃Tδ > 0, ∃uδ ∈ STδ
δ,R0

; Tr(uδ) < Tδ,

which implies ϕ2(uδ(Tr(uδ))) = r and ϕ2(uδ(t)) < r for all t < Tr(uδ).
In particular, by taking δ = 1/n for each n ∈ N, we put vn := u1/n ∈ S

T1/n

1/n,R0
and

Tr,n := Tr(u1/n). We then find that vn becomes a strong solution of the following Cauchy
problem (CP)n on [0, Tr,n] :

(CP)n





dvn

dt
(t) + ∂ϕ1(vn(t)) − ∂ϕ2(vn(t)) 3 fn(t) in V ∗, 0 < t < Tr,n,

vn(0) = u0,n,

where (u0,n, fn) ∈ X
T1/n

1/n,R0
.

Multiplying (CP)n by vn(t) and using (31), we obtain

1
2

d

dt
|vn(t)|2H +

α − α0

2
ϕ1(vn(t)) ≤ 〈fn(t), vn(t)〉 for a.e. t ∈ (0, Tr,n),(33)

since vn(t) ∈ D2
δ1

for all t ∈ [0, Tr,n). Hence, by (A1) and (1), it follows that

1
2

d

dt
|vn(t)|2H + α̃|vn(t)|pH ≤ C|fn(t)|p

′

V ∗ for a.e. t ∈ (0, Tr,n),

where α̃ and C denote positive constants independent of n. Then, by Lemma 4.3 of [8], we
have

|vn(Tr,n)|H ≤ sup
t∈[0,Tr,n]

|vn(t)|H ≤ l

(
|u0,n|H +

∥∥∥|fn(·)|p
′

V ∗

∥∥∥
1/p

1,Tr,n

)
≤ l

(
1
n

)
,

where l(·) is a monotone increasing function independent of n satisfying limx→0 l(x) = 0.
Therefore we find

vn(Tr,n) → 0 strongly in H as n → +∞.(34)

On the other hand, integrating (33) over (0, Tr,n) and using (A1), we get

1
2
|vn(Tr,n)|2H +

α − α0

4

∫ Tr,n

0
ϕ1(vn(τ))dτ(35)

≤ 1
2
|u0,n|2H + C

∫ Tr,n

0
|fn(τ)|p

′

V ∗dτ

≤ 1
2n2

+ CR0,
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whence follows
∫ Tr,n

0
ϕ1(vn(τ))dτ ≤ M4,(36)

where M4 denotes a constant independent of n.
Since (u0,n, fn) ∈ X

T1/n

1/n,R0
, we can show

sup
t∈[0,T1/n]

|fn(t)|p
′

V ∗ ≤ M5,(37)

where M5 denotes a constant independent of n. Indeed, we first note that the Sobolev-type
embedding theorem assures that fn ∈ W 1,p′(0, T1/n; V ∗) ⊂ C([0, T1/n];V ∗). Hence there
exists tn ∈ [0, T1/n] such that

|fn(tn)|V ∗ = min
t∈[0,T1/n]

|fn(t)|V ∗ ,

so

T1/n|fn(tn)|p
′

V ∗ ≤
∫ T1/n

0
|fn(τ)|p

′

V ∗dτ.

For the case where T1/n ≥ 1, it then follows that

|fn(t)|p
′

V ∗ = |fn(tn)|p
′

V ∗ +
∫ t

tn

d

dt
|fn(τ)|p

′

V ∗dτ

≤ 1
T1/n

∫ T1/n

0
|fn(τ)|p

′

V ∗dτ + p′
∫ T1/n

0
|fn(τ)|p

′−1
V ∗

∣∣∣∣
dfn

dτ
(τ)

∣∣∣∣
V ∗

dτ

≤
∫ T1/n

0
|fn(τ)|p

′

V ∗dτ

+p′
(∫ T1/n

0
|fn(τ)|p

′

V ∗dτ

)1/p
(∫ T1/n

0

∣∣∣∣
dfn

dτ
(τ)

∣∣∣∣
p′

V ∗
dτ

)1/p′

≤ CR0 ∀t ∈ [0, T1/n],

where C denotes a constant independent of n. For the case where T1/n < 1, noticing

(1/T1/n)
∫ T1/n

0 |fn(τ)|p
′

V ∗dτ < (1/n)p, we can verify the same assertion above.
Therefore, by (A1), it follows from (30), (36) and (37) that

ϕ1(vn(Tr,n)) ≤ C

{
ϕ1(u0,n) + r +

∫ Tr,n

0
ϕ1(vn(τ))dτ

+|fn(0)|p
′

V ∗ + |fn(Tr,n)|p
′

V ∗ +
∫ Tr,n

0

∣∣∣∣
dfn

dτ
(τ)

∣∣∣∣
p′

V ∗
dτ

}

≤ C{R0 + r + M4 + M5}.
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Hence, by (A1), we find

{vn(Tr,n)} is bounded in V.(38)

Therefore, by (34) and (38), we can extract a subsequence {n′} of {n} such that vn′(Tr,n′) →
0 weakly in V . Moreover, by (A2), it follows from (38) that there exists a subsequence {n′′}
of {n′} and g2

n′′ ∈ ∂ϕ2(vn′′(Tr,n′′)) such that g2
n′′ → g2 strongly in V ∗ as n′′ → +∞.

Since u0,n′′ → 0 weakly in V , we find that 〈g2
n′′ , vn′′(Tr,n′′) − u0,n′′〉 → 0. Hence there

exists a number N0 ∈ N such that |〈g2
N0

, vN0(Tr,N0) − u0,N0〉| < δ1 − δ0. From the fact that
ϕ2(u0,N0) < δ0, it follows that

ϕ2(vN0(Tr,N0)) ≤ ϕ2(u0,N0) + 〈g2
N0

, vN0(Tr,N0) − u0,N0〉 < δ1 = r,

which contradicts the definition of Tr,N0 = Tr(vN0). Therefore we conclude that (32) holds
true.

4 Application

In this section, we exemplify the applicability of our abstract results obtained in the present
paper by discussing the existence of local or global (in time) solutions of (NHE). Here
solutions of (NHE) mean:

Definition 2 A function u ∈ C([0, T ];W−1,p′(Ω)) is said to be a weak solution of (NHE)
on [0, T ] if the following conditions are satisfied.

(i) u(t) is a W−1,p′(Ω)-valued absolutely continuous function on [0, T ].
(ii) u(t) → u0 strongly in L2(Ω) as t → +0.

(iii) −∆pu(t), |u|q−2u(t) ∈ W−1,p′(Ω) for a.e. t ∈ (0, T )
and the following holds true.〈

∂u

∂t
(·, t), φ

〉

W 1,p
0 (Ω)

+
∫

Ω
|∇u|p−2∇u(x, t) · ∇φ(x)dx

−
〈
|u|q−2u(·, t), φ

〉
W 1,p

0 (Ω)
= 〈f(·, t), φ〉

W 1,p
0 (Ω)

for a.e. t ∈ (0, T ) and for all φ ∈ W 1,p
0 (Ω).

The existence of local or global solutions of (NHE) is already studied by [7] for the
case f(x, t) ≡ 0 and by [3, 4] for the case f ∈ L2(0, T ; L2(Ω)). The argument in [7] is
based on Faedo-Galerkin’s method and requires the growth condition q < 2p/(N + p) for
the existence of local solutions, and q < p∗ for the existence of small global solutions,
where p∗ = Np/(N − p) if p < N ; p∗ = +∞ if p ≥ N . On the other hand, the method
in [3, 4] is based on a nonmonotone perturbation theory for subdifferential operators in a
real Hilbert space and [3] requires the growth condition q < p∗/2 + 1 for the existence of
local and small global solutions. As for the semilinear case p = 2, however, it is shown in [4]
that (NHE) admits local solution and small global solution under the subcritical growth
condition q < 2∗.
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Since the abstract setting in [4] as well as in [3] is chosen in the Hilbert space and the
knowledge of elliptic estimate for ∆p in L2(Ω) is insufficient, [3, 4] could not assure the
existence of local solutions of (NHE) under the subcritical growth condition q < p∗.

Nevertheless, it is quite natural to conjecture that (NHE) should admit local solutions
in a suitable space (larger than L2(Ω)) under the subcritical growth condition q < p∗, which
has been left as an open problem for long time. It would be noteworthy that our abstract
framework enables us to give an affirmative answer to this open problem (see Theorem 4
below).

In order to reduce (NHE) to (CP), we choose V = W 1,p
0 (Ω) and H = L2(Ω) with norms

| · |V := |∇ · |Lp(Ω) and | · |H := | · |L2(Ω) respectively. We further put

ϕp(u) =
1
p

∫

Ω
|∇u(x)|p dx, ψq(u) =

1
q

∫

Ω
|u(x)|q dx ∀u ∈ V.

Here we assume that

(C)p,q

2N

N + 2
≤ p < +∞ and 1 < q < p∗ =





Np

N − p
if N > p,

+∞ if N ≤ p.

Then it is easy to see that (1) is satisfied and V is compactly embedded in Lq(Ω) (see [13]).
Hence ϕp and ψq belong to Φ(V ), ∂ϕp(u) and ∂ϕq(u) coincide with −∆pu and |u|q−2u in
the distribution sense, where D(ϕp) = D(∂ϕp) = D(ψq) = D(∂ψq) = V . Thus (NHE) is
reduced to (CP) with ϕ1 = ϕp and ϕ2 = ψq. Moreover (A1), (A2) and (A3) are all assured
by the following lemma.

Lemma 10 Assume (CP)p,q, then (A1), (A2) and (A3) hold true with ϕ1 = ϕp, ϕ2 = ψq

and C1 = C2 = 0.

Proof of Lemma 10. Since ϕp(u) = |u|pV /p, (A1) with C1 = C2 = 0 and C3 = p
follows at once. To check (A2), take any sequence {un} satisfying supt∈[0,T ]{ϕp(un(t)) +

|un(t)|H} +
∫ T
0 |dun(t)/dt|2Hdt ≤ C. Then, since V is compactly embedded in Lq(Ω) and

|un(t)− un(s)|H ≤ ‖dun/dt‖L2(0,T ;H)|t− s|1/2, {un(t)} forms a precompact set in Lq(Ω) for
all t ∈ [0, T ] and an equi-continuous set in C([0, T ];H). Moreover, by virtue of Gagliardo-
Nirenberg’s inequality: |u|Lq(Ω) ≤ C|u|θH |u|1−θ

V , θ ∈ (0, 1), ∀u ∈ V, we observe that {un(t)}
is also equi-continuous in C([0, T ];Lq(Ω)). Therefore by Ascoli’s lemma, there exists a
subsequence {n′} of {n} such that un′ → u strongly in C([0, T ];Lq(Ω)), whence easily
follows

|un′ |q−2un′(·) → |u|q−2u(·) strongly in C([0, T ];Lq′(Ω)).

Hence ∂ψq(un′(·)) → ∂ψq(u(·)) strongly in C([0, T ];V ∗).
As for (A3), we put ϕ̃2(u) = ϕ2(u) if u ∈ V ; ϕ̃2(u) = +∞ if u ∈ H \ V . Then it is

easily seen that ϕ̃2 ∈ Φ(H) and ϕ̃2|V = ϕ2. Furthermore, since the mapping r ∈ R 7→
(I + λ∂H ϕ̃2)r = Jλr becomes non-expansive on R, we find that |∇Jλu(x)| ≤ |∇u(x)| holds
for a.e. x ∈ Ω. Hence ϕ1(Jλu) ≤ ϕ1(u) which implies (A3) (see the proof for Corollary 16
of [12]).
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4.1 The case where p ≤ q and u0 ∈ W 1,p
0 (Ω).

By applying Theorems 2 and 3, we obtain the following Theorems 4 and 5.

Theorem 4 (Local existence) Assume (C)p,q and p ≤ q. Then, for all u0 ∈ W 1,p
0 (Ω) and

f ∈ W 1,p′(0, T ; W−1,p′(Ω)), there exists a number T0 ∈ (0, T ] such that (NHE) has a weak
solution u on [0, T0] satisfying :

u ∈ Cw([0, T0];W
1,p
0 (Ω)) ∩ C([0, T0];Lq(Ω)) ∩ W 1,2(0, T0; L2(Ω)).(39)

Proof of Theorem 4. By Lemma 10 and Theorem 2, there exists a number T0 ∈ (0, T ]
such that (NHE) has a solution u on [0, T0]. Moreover since ψq(u(·)) ∈ C([0, T0]), the
uniformly convexity of Lq(Ω) ensures u ∈ C([0, T0];Lq(Ω)).

Theorem 5 (Global existence) Assume (C)p,q and p < q. Let R be an arbitrary positive
number, and let δ be a positive number such that δ < C(p, q)−p/(q−p), where C(p, q) denotes
the best possible constant for the Sobolev-Poincaré-type inequality : |u|Lq(Ω) ≤ C(p, q)|u|V .
Then there exists a positive number δR independent of T such that if u0 and f satisfy

1
p
|u0|pV +

∫ T

0
|f(τ)|p

′

V ∗dτ +
∫ T

0

∣∣∣∣
df

dτ
(τ)

∣∣∣∣
p′

V ∗
dτ ≤ R,

|u0|Lq(Ω) < δ, |u0|L2(Ω) +
{

max
(

1,
1
T

) ∥∥∥|f(·)|p
′

V ∗

∥∥∥
1,T

}1/p

< δR,

then (NHE) has a weak solution u on [0, T ] satisfying (39) with T0 replaced by T .

Proof of Theorem 5 By the Sobolev-Poincaré-type inequality, it follows that |u|Lq(Ω) ≤
C(p, q)|u|V for all u ∈ V . Hence we find that

〈∂ϕp(u) − ∂ψq(u), u〉 = |u|pV − |u|qLq(Ω)

≥ |u|pV − C(p, q)p|u|pV |u|
q−p
Lq(Ω)

= pϕp(u)
[
1 − C(p, q)p {qψq(u)}(q−p)/q

]
,

which implies

pϕp(u) ≤ 〈∂ϕp(u) − ∂ψq(u), u〉 + pC(p, q)p {qψq(u)}(q−p)/q ϕp(u)

for all u ∈ V. Therefore (A5) holds with α = p, l3(r) = pC(p, q)p(qr)(q−p)/q and δ0 = δq/q <
C(p, q)−pq/(q−p)/q. Thus Theorem 3 ensures the existence of weak solutions on [0, T ] for
(NHE) when u0 and f satisfy the suitable conditions above.
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4.2 The case where p > q and u0 ∈ W 1,p
0 (Ω).

The case where p > q can be covered by Theorem 1.

Theorem 6 (Global existence) Assume (C)p,q and p > q. Then, for all u0 ∈ W 1,p
0 (Ω) and

f ∈ W 1,p′(0, T ; W−1,p′(Ω)), (NHE) has a weak solution u on [0, T ] satisfying (39) with T0

replaced by T .

Proof of Theorem 6. Conditions (A1), (A2) and (A3) are already assured by Lemma
10. Moreover, since p > q, we find

ψq(u) =
1
q
|u|qLq(Ω) ≤

1
q
C(p, q)q|u|qV ≤ 1

2
ϕp(u) + C ∀u ∈ V,

which implies (A4) with k = 1/2. Therefore, by Theorem 1, (NHE) has a global weak
solution on [0, T ].
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