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Abstract

The existence of local (in time) solutions of the initial-boundary value problem
for the following degenerate parabolic equation: u:(z,t) — Apu(x,t) — |u|? 2u(z,t) =
f(z,t), (x,t) € Q x (0,T), where 2 < p < g < 400, Q is a bounded domain in
RY, f: Qx (0,T) — R is given and A, denotes the so-called p-Laplacian defined
by Apu := V- (|Vul[P72Vu), with an initial data ug € L"(Q2) is proved under r >
N(q — p)/p without imposing any smallness on ug and f. To this end, the above
problem is reduced into the Cauchy problem for an evolution equation governed by the
difference of two subdifferential operators in a reflexive Banach space, and the theory
of subdifferential operator and potential well method are employed to establish energy
estimates. Particularly, L™-estimates of solutions play a crucial role to construct a
time-local solution and reveal the dependence of the time interval [0,7p] in which the
problem admits a solution. More precisely, Ty depends only on |ug|zr and f.

1 Introduction

This article is concerned with the existence of solutions of the following initial-boundary
value problem for a degenerate parabolic equation:

(Z—?(w,t) — Apu(z,t) — lu|?2u(z, t) = f(x,t), (z,t) € Qx(0,T),
P) u(z,t) =0, (xz,t) € 9Q x (0,T),
u(z,0) = up(z) € L"(), x € Q,

where 2 < p, q,7 < 400, A, denotes the so-called p-Laplacian given by
Apu(z) = div(|Vu(z)[P?Vu(z))

and € is a bounded domain in RY with smooth boundary 9. Particularly, we address
ourselves to the case: p < ¢. It is well known that solutions of (P) possibly blow up in
finite time (see, e.g., [10], [18]) if p < g, so, in general, one cannot expect the existence
of time-global solutions for (P) without imposing any smallness on uy and f.
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For the case where p = 2 and f = 0, i.e., the semilinear heat equation, sufficient
conditions for the existence of solutions for (P) have already been proposed by many
authors; in particular, Weissler [20, 21] and Brézis-Cazenave [8] proved the time-local
well-posedness in L"(£2) of (P) with p =2 and f = 0 under the following condition:

(1. 1) r > N(g—2)/2;

moreover, they also dealt with the critical case: r = N(¢ —2)/2 > 1. As for the
case where r < N(q — 2)/2, the ill-posedness of (P) with p = 2 and f = 0 is proved
by [11], [20] and [8], so Weissler’s sufficient condition is essentially optimal. Further-
more, Brézis and Cazenave [8] also investigated the dependence of the interval [0, 7]
in which (P) admits a solution on initial data. More precisely, if (1. 1) holds true
(resp. r = N(q — 2)/2 > 1), then for any bounded set (resp. compact set) B in L"(2),
one can take Ty = Tp(B) > 0 such that for every ug € B, there exists a solution of (P)
with p =2 and f = 0 on [0, 7p]. These results and the latest developments in this field
are briefly and usefully summarized in Section 3.1 of [17].

Studies on the well-posedness of the semilinear heat equation such as [20, 21], [11]
and [8] rely on the reduction of (P) with p = 2 and f = 0 to the following integral
equation:

(1. 2) u(t) = ePug+ /Ot elt=9)A (\u\q_Qu(s)) ds

and decay estimates for the heat semi-group e*® and the well-known contraction map-
ping principle. Moreover, energy estimates also play an important role in studies of
asymptotic behaviors of solutions as well as those of the well-posedness.

On the other hand, for the case where p # 2, some of major tools described above
could not be applied to the degenerate equation (P). Particularly, the approach based
on the integral equation (1. 2) is no longer valid. However, energy method is still
effective, so the notion of subdifferential operators, which is a generalized one of Fréchet
derivative for non-smooth convex functionals and enables us to take account of the
energy structure of (P), is often employed to verify the existence of solutions for (P)
(see, e.g., [14], [12], [15], [19, §3.10], [3]).

For every ug € L*(£2), one can prove the local (in time) existence and the unique-
ness of solutions for (P) without imposing any restriction on the growth order ¢ of the
blow-up term; indeed, replacing the blow-up term |u|?~2u(x,t) by gas(u(x,t)), where
M := |ug|r~ + 1 and gpr : R — R is given as follows:

M1 if s> M,
gum(s) = |s|9725 if |s|] < M,
MY i s < —M,

since the mapping v — gus(v(+)) becomes Lipschitz continuous in L?(f2), one can
construct a unique time-global solution of (P) with |u|?=2u(z, t) replaced by gas(u(z,t))
in virtue of the standard theory of evolution equation; furthermore, the unique solution
coincides with a solution of the original problem (P) time-locally, since the function
t — |u(t)|Lee is right-continuous at ¢ = 0 and M = |ug|r~ + 1.

As for the case: ug € WyP(Q), which is (possibly) unbounded in €, Ishii [12] and
Otani [15] proved the local (in time) existence of a solution u satisfying Ay u(t), |u|9~2u(t) €



L?(Q) of (P) under the condition:
(1. 3) g < pY/2+1,

where p* denotes the so-called Sobolev’s critical exponent, by developing their abstract
theories on evolution equations governed by subdifferential operators in Hilbert spaces.
The condition (1. 3) is sufficient also for the compactness of the operator u — |u|?~2u
from Wol’p(Q) into L2(9).

In particular, if p = 2, then the existence of time-local solutions for (P) with
p = 2 can be also proved in [15] under the so-called subcritical growth condition
g < 2* in Sobolev’s sense by virtue of the elliptic estimate for the Laplacian: |u|g2 <
C(|Aulz2 + |u|z2). On the other hand, Tsutsumi [18] proved the existence of a time-
global solution u satisfying Apu(t), [u|9~2u(t) € W1 (Q) of (P) with f = 0 for enough
small initial data ugp in Wol P(Q)) under the subcritical growth condition in Sobolev’s
sense:

(1. 4) g < p°

for every p € [2,400) by using Galerkin’s method. Hence one can expect that (P)
admits a time-local solution under (1. 4) also for general p. However, the theory
developed in [12] and [15] could not be enough to prove so, because of the lack of the
knowledge of elliptic estimates for the nonlinear p-Laplace operator A,,.

In [3], they developed the theory of evolution equations governed by subdifferential
operators in reflexive Banach spaces and applied their theory to (P); then they suc-
ceeded to verify the existence of a time-local solution u satisfying A,u(t), |u|72u(t) €
W=7 (Q) for (P) with ug € Wol’p(Q) under (1. 4) for general p.

On the other hand, as for ug € L"(Q2), there seems to be few results for the local
existence (see [15] for the case of r = 2). In this paper, we shall prove that for all
ug € L"(92), there exists Ty > 0 depending only on |ug|r- and f such that (P) admits
a solution on [0, Tp] under the following:

(1. 5) r > N(g—p)/p

without imposing any smallness on ug and f. It is noteworthy that Weissler’s result
(up € L™(Q), p = 2 and f = 0) in [20], the result on the case where uy € L*>()
described above, and Akagi-Otani’s result (ug € VVO1 P(Q)) in [3] could be regarded
as special cases of our result, since (1. 5) with p = 2 is just (1. 1), and (1. 4) is
equivalent to (1. 5) with » = p*. Furthermore, since Ty depends only on |ug|rr, we
can immediately observe that the maximal existence time T4, of solutions for (P) is
finite if and only if lim; .7, |u(t)|r- = +00. These results could play an important
role in studying asymptotic behaviors of solutions for (P).

To prove this, we reduce (P) to the Cauchy problem for an evolution equation
governed by the difference of two subdifferential operators in a reflexive Banach space
as in [3] and also employ the potential well method (see, e.g., [12] and its references)
to confine its solutions within a closed ball in L"(€2) and establish energy estimates.
More precisely, the energy functional

1 p 1 q
T(u) = p/Q|Vu(a:)| da — q/Q|u(x)| dz



defined on W, ”(Q) N L4(Q) is not bounded below; however, the sum J(u) + Ix (u),
where Ix denotes the indicator function over a ball in L"(€2), turns to be coercive
in Wol’p(Q) N L"(Q) for r satisfying (1. 5). The potential well method could be one
of advantages of our approach based on the subdifferential operator theory, since this
method requires the notion of the derivatives of non-smooth functionals.

Furthermore, L"-estimates of approximate solutions for (P) will be also established
to construct a time-local solution of (P) with an initial data ug € L"(£2). In [12], [15]
and [3], they could not take account of L"-estimates of approximate solutions, because
of the simplicity of their frameworks, so they could not extract enough precise informa-
tion to prove local existence under (1. 5) for the case: ug € L"(f2). Such L"-estimates
also play an important role to reveal the dependence of Ty on |ug|z- and f.

Our main result will be stated in the next section. Section 3 provides some prelimi-
naries to be used later, and in Section 4, we give a proof of our main result. Finally, in
the appendix, some results related to the functional analysis will be given to be used
in Section 4.

2 Main result

To state our main result, we set up notation: the Holder conjugate of p € (1,400) is

denoted by p/, that is, 1/p + 1/p’ = 1; moreover, we write Cy,([a,b]; X) for the set of

all weakly continuous functions on [a, b] with values in a set X; furthermore,
W)+ L7(Q) = {ur +ug;ur € WH(Q), up € L7 ()},

which coincides with the dual space of W, (Q) N L"(Q).
Throughout the present paper, we denote by C' and ¢ a non-negative constant and
a non-decreasing function from [0, +00) into itself, respectively, which do not depend
on the elements of the corresponding space or set and may vary from line to line.
Now our main result is stated as follows:

Theorem 1 Let p,q,r € [2,400) be such that p < q and suppose that

(2. 1) r > N(g—p)/p.
Then for every ug € L"(Q) and f € WY (0, T; W12 (Q)+ L (Q))NL7(0,T; L7 ()
with v > 0 (resp. v = 0), there exist a non-increasing function Ty : [0, +00) x [0, +00) —
(0,T] (resp. T¢ : [0,400) — (0,T] ) independent of T,ug and f (resp. T and ug)
and at least one function u € Cy([0,To]; L™ () with Ty = T*(|u0]Lr,f0T ]f(t)|1LJ[7dt)
(resp. Ty := T¢(|uolrr)) such that

u € C([0,Tol; L2()) 1 LP(0, Tos WEP()) 1 LI x (0, Th)),

u|"=D/Py € LP(0, To; WHP(Q)),  |ul?™u € L7 (2 x (0,Tp)),

Apu € LP (0, To; WH'(Q)),  du/dt € LY (0, To; W (Q) + L7 (Q)),

t/7u € O ([0, To); Wy (R)),  t/2(du/dt) € L*(Q x (0,Ty))
and for every v € WyP(Q) N L"(Q),

ou

sty d:n—i—/ VulP2Vu(z, ) - Vol /|uyq 20z, t)o(x)de
Q

— /Qf(;p,t)v(x)d:v for a.e. t € (0,Tp)



and w satisfies the initial condition
u(-,t) — ug  strongly in L"(Q) as t — +0.
Remark 1 The assumption (2. 1) is equivalent to the following:
N+r
N 7

Now if r = p* or r = ¢, then (2. 2) is equivalent to the condition ¢ < p*, where p*
stands for Sobolev’s critical exponent given by p* := Np/(N — p) if p < N; p* = +o0
if p> N.

(2. 2) g <

3 Preliminaries

In order to prove Theorem 1, we review some of the standard facts on subdifferential
operators. We first give a definition of subdifferential operators dx¢ of functionals ¢
in a reflexive Banach space X.

Definition 1 Let ¢ € ®(X) = {p : X — (—o0,+00];p is lower semicontinuous
convex and ¢ Z +oo}. Then the effective domain D(¢) and the subdifferential operator
Ox¢: X — 2% of ¢ are given by

D(¢) = {u€ X;¢(u) <+oo},
Oxo(u) = {£€X¢(v) —o(u) = (v —u)x Yve D)},
where (-, -)x denotes the duality pairing between X and X*, with the domain D(0x¢) :=
{u € D(¢); 0x¢(u) # 0}.

It is well known that every subdifferential operator becomes maximal monotone.
Moreover, let H be a Hilbert space whose dual space H* is identified with H. Then
the subdifferential operator O ¢ : H — 21 of ¢ € ®(H) can be written by

Opd(u) = {§€ H;p(v) —¢(u) = (§,v—u)n YveD(@)},

where (-, ) denotes the inner product of H, and also becomes a maximal monotone
operator from H into 2%.
Furthermore, the Moreau-Yosida regularization ¢, of ¢ € ®(H) is defined as follows.

e L 2
oa(u) = 1)1%1[5{2)\@ vH+qb(v)} Yu € H, YA > 0.

The following proposition provides some useful properties of Moreau-Yosida regular-
izations.

Proposition 1 For every ¢ € ®(H), the Moreau-Yosida regularization ¢y of ¢ is
convex and Fréchet differentiable in H, and its derivative Oy (py) coincides with the
Yosida approzimation (0gd)x of Ou¢. Furthermore, the following properties are all
satisfied.

(3. 1) oa(u) = %\u — qu\% + qS(qu) Yu € H, YA >0,
(3. 2) $(J{u) < a(u) < @(u) Yu € H, ¥A> 0,
(3. 3) o(JSu) T pu) as A — +0 Vu € H,

where Jf denotes the resolvent of O ¢.



In order to deal with evolution equations, we often employ the following type of
chain rule for subdifferential operators.

Proposition 2 Let ¢ € ®(X), let p € (1,+00) and let u € W'P(0,T; X) be such that
u(t) € D(Ox¢) for a.e. t € (0,T). Moreover, suppose that there exists g € L (0,T; X*)
such that g(t) € Ox¢(u(t)) for a.e. t € (0,T). Then the function t — ¢(u(t)) is
differentiable for a.e. t € (0,T); moreover, for every section f(t) € dxd(u(t)),

%g{)(u(t)) = <f(t),cj;:(t)>X for a.e. t € (0,T).

Let  be a bounded domain in RY, let u € L?(Q) and let & be a maximal monotone
graph in R?. Here we discuss the representation of a/(u(+)) : Q© — 2® in the form of the
subdifferential 9720 (u) of some functional © defined on L?(f2). Since every maximal
monotone graph in R? becomes cyclic monotone (see Example 1 of [4, p. 60]), there
exists a function § € ®(R) such that Orf = o. Moreover, we have:

Proposition 3 Let Q be a bounded domain in RN and let § € ®(R). Define O :
L2(Q) — (—00,+0q] as follows:

o) = /QH(u(x))dx if we L) and O(u(-)) € LH(Q),
+00

otherwise.

Let Jf) and jf\ denote the resolvents of 0120 and Or0, respectively. Then the following
properties are all satisfied for all A > 0:

(1) © € ®(L3(Q)).

(2) For all f,u € L?(%), it follows that f € 0720 (u) if and only if f(z) € OrO(u(x))
for a.e. x € Q.

(3) For allu € L*(Q), (JQu)(z) = 58 (u(x)) for a.e. x € Q.
(4) For every s € [1,+o], if u,v € L5() N L%(Q), then JOu and 9120,(u) belong
to L¥(Q) N L3(Q) and

2
[T u = TR0|ge < fu—vlpe,  |0120x(u) = 9L2Ox(v)[1e < Tlu—v]Le.

5) For every p € (1,400], if u € WHP(Q) N L3(Q), then JOu belongs to WIP(Q) N
A
L2(Q) and [V JQu|rr < |VulLse.

(6) If OrO(0) > 0, then for every p € (1,+00), it follows that JQ0 = 0, Jou €
Wy P(Q) N L2(Q) for all u € WyP(Q) N L3(Q).

Proof of Proposition 3 For the proof of (1) and (2), we refer to [4, p. 61], so we give a
proof only for (3)-(6). From the definition of J9, it follows that JPu-+A3720(JQu) > u
for every u € L?(Q2). Hence, by virtue of (2), we have

(J2u)(z) + ARO((JLu)(x)) 3 u(z) for ae. z € Q.

Therefore, from the definition of j§, we obtain (3). Moreover, since |j§(u(z)) —
38 (w(z))| < Ju(z) —v(z)| for a.e. € Q and all u,v € L*(Q)NL3(Q), we can obtain (4).
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Furthermore, we also observe that |j¢(u(z + h)) — j§(u(z))| < Ju(z + h) — u(z)| for a.e.
x € Q and every h € RY satisfying z + h € §; hence we can derive (5) from (3). As
for the case where dr6(0) 3 0, it is obvious that ij = 0, which implies J§?0 =0 and
|(J9u)(x)] < |u(z)| for a.e. z € Q. Now let u € Wol’p(Q) N L%(Q) and take a sequence
u, in C§°(Q) such that w, — u strongly in W1P(Q) N L?(Q). Then we can deduce
from (4) and (5) that JQu, — JQu strongly in LP(2) N L%(2) and weakly in W1P(Q).
Thus (6) follows from the fact that suppJ)(?un C suppu, CC €. 1

4 Proof of main result
Let V := Wol’p(Q) NL"(Q) and H := L?*(Q) be equipped with the norms: |- |y := (|-
2, +|V-13,)/? and || := || 2. Then since r > 2, we observe that V.C H = H* C V*

with densely defined and continuous natural injections.

Remark 2 If r < ¢, then it follows from (2. 2) that ¢ < p*; hence ¢ < max{r,p*}.
Therefore V' is compactly embedded in L7(€2).

Moreover, define ¢, : V' — [0, +00) in the following
1 1
o(u) i= 7/ Vu(z)Pde, (u) = 7/ lu(z)|%de Vu e V.
b Ja qJQ
It then follows that ¢,% € C1(V;R), and 9y ¢ and dy ¢ coincide with —Apu equipped

with the homogeneous Dirichlet boundary condition u|gq = 0 and |u|?~2u, respectively,
in V* under (2. 2). Thus (P) is rewritten as the following Cauchy problem:

o) )+ oy p(ult) — o) = f() m V', 0<E<T,
u(0) = up.

First we assume ug € D(p) and f € C*([0,7]; V). Define ¢ € ®(H) by

1 ) . )
(4. 1) blu) = ;/Q lu(z)|"de  if we L"(€),

400 otherwise,
and let o := ¢(up) + 1. Moreover, we introduce ¢? € ®(V) given by
{ o(u) if uwekK,

400 otherwise,

7 (u) =

where K := {v € V;¢(v) < o}. Then we can easily obtain that D(¢?) = K C D(y)
and D(0y¢?) = K C D(dyp); moreover, Theorem 2.2 of [9] ensures that dyp?(u) =
Ovp(u) + Oy ik (u) for all u € D(Oy¢?), where I denotes the indicator function over
K. Here we deal with the following auxiliary problem instead of (CP).

(CP) %(t) +0ve? (u(t) — vep(u(t) 3 f(t) m V¥, 0<t<T,

u(0) = up.



To construct a solution of (CP)?, we define the extensions 7,1 € ®(H) of ¢ and
1, respectively, given by

07 (u) if weV,
T(u) = _
400 otherwise,

and

otherwise.

1

f/ |u(x)|9dx if we L1(Q),
qJQ

400

We then observe that
4. 2) D(%%) = D(¢?), D(0u®”) C D(0v¢?),
Oy’ (u) C Oy y?(u) Vu € D(Oup?),

{ P(u) =(u) YueV, D@u)NV C D(Ovi),

4-3) Ou(u) C Dyib(u) Vu € D) V.

Furthermore, let us introduce the following approximate problems in H:

(CPY] %(t) + 0P (ux(t)) — Oty (ux(t)) D f(t) in H, 0<t<T,
ux(0) = uo,

where 1), denotes the Moreau-Yosida regularization of 1, for A > 0. Then 9y,
coincides with the Yosida approximation (9gv)y of Oy, so g1y becomes Lipschitz
continuous in L"(12) as well as in H (see Proposition 3). Thus there exists a unique
solution uy € Cy([0,T); V) N WH2(0,T; H) of (CP)S on [0, T] such that

s[%lgf] dlun(t)) < o, vy = |un| T Puy € LP(0, T; WHP(Q))
te|0,

and the function t — @7 (uy(t)) is absolutely continuous on [0,7] (see Appendix B for
more details).

Lemma 1 [t follows that

(4. 4) Y(u) < Uo(u){p(u) + 11175 Vu e D(p) N D(9)

for some € € (0,1].

Proof of Lemma 1 For the case where g < r, we can easily see
W) < Cow)" Yue D(9),

since () is bounded. On the other hand, for the case where r < ¢, by Remark 2,
we have ¢ < p*. Hence, by Gagliardo-Nirenberg’s inequality, it follows that |u|ps <
C|Vulf,|ult?, where 0 € (0,1) is given by
1 N — 1-0
Py =2

4.5 o=
(4. 5) . Np "
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Moreover, noting that (2. 2) implies

@0 60 = (a-n/(1- ) < (St -r) /(1 SE) =

we can deduce that

Pw) < CIVul% P < Cop(u)?9/Pg(u)t-0a/r

and 0 < fOg/p < 1.y
By grace of the above lemma, we get

(4.7 V() < (o) {p(w) + 1} < Lo(u) +6(0) Yu e D(g")
Moreover, it is easily seen that
(4. ) Wlf, < Cle"(u)+ 07"} Vue D).

We can also derive the compactness of dy4 in the following sense. Let M > 0 and
let {u,} be a sequence in W12(0,T; H) N L*(0,T; V) such that

r

By Remark 2 and (4. 8), the Ascoli compactness lemma (see, e.g., [16]) ensures

2

dt + sup ¢7(un(t)) < M VneN.
t€[0,T]

duy,

T (t)

uy — w strongly in C([0,T]; LY(2))

for some subsequence {n’} of {n}; therefore, since Ayt (tun (-)) = |t |92 uyy, it follows
that

Ovip(uw () — Ovi(u())) strongly in C([0,T]; L ().

Furthermore, let Jy denote the resolvent of 1. By Proposition 3, we can then
verify that

(4. 9) P(Iau) < p(u) <o, p(Jau) < p(u) Yu € D(¢?).
Hence we conclude that
(4. 10) $T(hu) < ¢7(w) VYue D).

Therefore, as in the proof of Theorem 1 of [3], we can construct a solution u of (CP)?
n [0,77; indeed, multiplying (CP)$ by duy(t)/dt and integrating this over (0,t), by
Proposmon 2, we can deduce from ( 7) and (4. 8) that

d
(4. 11) / “*(t) dt+ sup ¢ (ur(t) < C;
o | dt t€[0,7)
moreover, (4. 8) and (4. 11) imply
(4. 12) sup |ux(t)|ly < C;

t€[0,T



furthermore, (4. 10) and (4. 11) yield (4. 11) with uy(t) replaced by Jyuy(t); thus we
have the following convergences by taking a subsequence of {\}, which will be written
by the same letter {A}, if necessary:

uy — u, Jyuy — u  weakly star in L>°(0,T;V),
weakly in W12(0,T; H),
O (ua(-)) = dvp(u(-))  strongly in C([0,TT; LY (),
gr — g € vy (u(-)) weakly in L*(0,T; V™),

(4. 13)

where gA(t) := f(t) — dux(t)/dt + Ou\(u(t)) € OnP? (u(t)).

Now we establish a further a priori estimate for ¢(u(t)) by multiplying (CP)S by
On¢u(ux(t)), where ¢, denotes the Moreau-Yosida regularization of ¢ and y > 0. Then
we see

%%(m(t)) + (ga(1), O b (un(t))) 1

= (Ou¥A(ur(t)), 0 u(ur(t)))m + (f(t), O du(un(t)))m-

(4. 14)

Here we prepare a couple of lemmas.

Lemma 2 For all u € D(0y ), it follows that
Jou e D(Ovy), Oudu(w) €V, vy :=|J0u|""2D/P 00 e WhP(Q),
where Jl‘f denotes the resolvent of Oy d; in particular, if u € D(0y¢?), then
(4. 15) a|Voulp, < (9, 0n¢u(u)) Vg € dve?(u)
for some positive constant o independent of .

Proof of Lemma 2 By Proposition 3, we notice that Jl‘fu €V =D(0yyp) foralluecV.
Hence we see that Op¢,(u) = (u — J;fu)/u €V for any u € V.

On the other hand, let w € D(0y¢) N D(0g¢) be such that dgp(w) € V. Then
since Oy ¢(w) = |w|" 2w, we have the following formal computation:

(4. 16) (Oveo(w), Ond(w))v
_ /Q Vu(@)P2Vu(e) - V (@) () de

= (=1 [ [Vu@p w2

= =1 [ @2 V)

— -1 <7ﬂ+;2)p/§2]v (jw(@)| 2P w())| da.

Thus we can verify that v, := |Jﬁu](’”_2)/pJ;fu € WhP(Q) for every u € V, since
Jl‘fu € D(dyy) and BHqﬁ(J;fu) = Ou¢u(u) € V (see also Appendix A for rigorous
derivation).

dx

10



Furthermore, if u € D(0y¢?) = K, then, by Propositions 1 and 3, Jl‘fu € K. Hence
we have, for all u € D(0y¢?) and g € dy¢? (u),

(4. 17) (0.050,(0) >+ {"(w) = " ()}
SR CORTE D)

> (Ol u—JTfuly

= (Ove(Jou), dudu(u))y.
Therefore combining (4. 17) with (4. 16), we can derive (4. 15). g
Lemma 3 There ezists € € (0,1] such that

(4. 18) (O (u), O b)) < US(){IVolL, + 1}
Vu € D(¢) satisfying v := |u|""2/Pu € WHP(Q).

Proof of Lemma 8 Noting that |(Jyu)(z)| < |u(z)| and |(Jl‘fu)(:c)| < |u(x)|, we have

(OuY (), 0Ogdu(u))H
= /Q () (@) |72 (Taw) (@) (J7u) ()2 (g u) (x)da

< [ lu@)r2ds.
Q

Now, by (2. 2), we see that

N+r

g+r—2 < p+r—2:<1+f\’7>r+p—2.

On the other hand, if p < N, then we observe that

r+p—2p* N - N
P N—-p N-p

P N
= (1 —2
(+N_p>T+N_p(p ),

(p—2)

which implies p:=p(g+r—2)/(r+p—2) < p*.

Now let v := |u|"~?/Py. Then we note that |u(z)|?"2 = |u(z)|’ and |u(z)]" =
lu(z)|P/("+P=2). Hence observing that 1 < pr/(r +p — 2) < p and using Gagliardo-
Nirenberg’s inequality, since |v|y1, < C(|V|rr + 0| ppr/(r4p-2)), We obtain

— —0
|'U|Lp S C|U’19/V17P|U‘2pr9/(r+p72) S C’V/U|%p‘v|2pr/(r+p72) + C|U|LPT/(T+1’_2)

with

0 (7‘—|—p—2_ r+p—2 >/<r+p—2_N—p>
' pr plg+r—2) pr Np )’

11



Thus we assure that
@19 [ @) = g,

0 1-6
S C { |VU|LF;3 ’/U|(Lpr/()rp+p72) + |U|Zp'r/(r+p72) }

0 1-6 r—2 r—
= C{IVellBlull T g

Moreover, we remark that (2. 2) yields

r+p—2 N—p>
Op = -2 < — r
p (¢—-2)/ » Np
N+r r+p—2_N—p)_
= < N7 2>/< P Np )P

which together with (4. 19) proves (4. 18). g
Now let A > 0 be fixed. By Lemmas 2 and 3, it follows from (4. 2) and (4. 14) that

d
Z0ur (1) + alVor (O,

< L) {1V + 117+ (1), O b(ua () o,
where vy, 1= |Jl‘fu,\|(7"*2)/pj;‘fu>\, for a.e. t € (0,T). Here we notice that

(f(t),0udu(ux(®)n < |f(O)|rr|0adu(ux(t))|
< Ol d(JLun()V™ < Co™ | f (1)1

(4. 20)

Integrating this over (0,1), since vy = |uy|"=2/Puy € LP(0, T; WP()), we get

(4. 21) bu(ur() +a [ [Vorur) e
< 0ulu) +100) [ (Ve + 1)+ [

for all t € [0,T]. Therefore recalling that ¢,(up) < ¢(up) and taking a subsequence if
necessary, we deduce that

(4. 22) vau — wy  weakly in LP(0, T; WHP(Q))

for some wy € LP(0,T; W'P(Q)) as 4 — +0. Here we also noticed that |vy ,(t)|zr <
|ua(t)|L» for all > 0. Now, by Proposition 1, we see that

(4. 23) iIUA(It) — Jpua(t) = du(ua(t)) = (Jfua(t)) < o,

which implies that Jl‘qu — uy, strongly in C([0,T]; H) as u — +0. Hence, by (4. 22),
we can assure that wy = vy = |u,\|(r_2)/pu,\. Moreover, we get

t t
/0|V1))\(7') ipdT < litni}i-%f/o ’vvk,u(TNiz’dT'

12



Thus passing to the limit in (4. 21) as p — +0 and applying Young’s inequality,
we have

o t
(4. 24) Blnr(t) + 5 /O Vor(r) 2y dr
, T
< Glw) +th(o) +t5 + O [ If()|irdr
0

for all ¢ € [0,T].

In order to pass to the limit in (4. 24) as A\ — 40, we notice the following fact;
since V' is compactly embedded in L7(Q2), by Ascoli’s compactness lemma, it follows
from (4. 13) that

(4. 25) uy — u  strongly in C([0,T]; LY(Q2)).

So now letting A — +0, since ¢(uy(t)) <o forall t € [0,7] and 2(r +p—2)/p < r, we
can deduce from (4. 24) that

Uy — U weakly star in L>°(0,T; L"(€2)),
vy — v = |u| TPy, weakly star in L°°(0,T; H)
weakly in LP(0,T; WhP(Q)).

Therefore we conclude that
a [t »
(4. 26 Su(t) +5 [ 1Vo()f,dr
oot
< Blu) +to) + 5 +CoV [ 157w,
0

which also gives limsup;_, g ¢(u(t)) < ¢(ug). Furthermore, since u belongs to C([0,77; H),
the lower semi-continuity of ¢ implies that liminf, ¢ ¢(u(t)) > ¢(up). Therefore, by
the uniform convexity of L" (), we can verify that

(4. 27) u(t) — uo strongly in L"(Q2) as t — +0.

Now, for the case where v > 0, take a non-increasing function T} : [0,+00) X
[0,4+00) — (0,T]; (z,y) — Ti(z,y) independent of T, uy and f such that

| =

Ti(z,y) {E(x +1) + a} + C(x + DY T, (2, )/ 0y /047 <

5 <
For the case where v = 0, i.e., f € LY(0,T; L"(Q)), then we can choose a non-increasing
function T} : [0, +00) — (0,T]; = +— T¢(x), which depends on f but not on 7" and wuy,
such that

N =

o 1/r T (@)
Tf(ac) {€($+1)+2}+C($+1) / ‘f(T)‘erT <
0
Moreover, since o = ¢(ug) + 1, it follows that

(4. 28) sup o(u(t)) < o,
t€[0,Tp]

13



where Tj is given by

T
Ty := T, <¢(U0)7/0 |f(7) ;de) >0 or Tp:=Tr(¢(ug)).

Now we claim that Oy ¢ (u(t)) = dye(u(t)) for a.e. t € (0,Tp) to verify that u is a
solution of (CP) on [0, Tp]. Actually, since ¢(u(t)) < o for all t € [0, Tp], we can deduce
that Oy Ik (u(t)) = {0}, which implies dy¢7(u(t)) = dvp(u(t)) for a.e. t € (0,Tp).
Therefore we conclude that u becomes a solution of (CP) on [0, Tp].

Before proceeding to the next step, we establish further estimates for u to be used
later. Multiply (CP)S by u(t) and integrate this over (0,¢). Then we get, by (4. 8),

t
Sl @+ [ 7 un(r))dr
|
< gluoli+ [ 10ms(a()] ua(r)] e

+ [ @@ lvdr

IN

Shuoll +C [ wlustrar
t
+C/ dT+;/0 E‘T(u,\(T))dT—FgUp/T.

Hence, by Lemma 1, as in (4. 7), we can deduce that

(4. 29) sup [ur(H)[ + /
t€[0,T)

< C<|uoH+T€ +/ dt)

Furthermore, multiplying (CP)S by ¢(duy(t)/dt) and noting that
(r0 %2 0) = G @) - 00O

t(F000) .

we have

duy , |

L] + % {177 (ur(£)} — 7° (ua(t))
< SO} - )
00 - G0.m0 (L 0,m0)

t

.
Hence integrate this over (0,¢). It then follows from (4. 7) and (4. 8) that

t
|
0

du),

2 t
)| ) + | Batunar
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IN

() + [ (un(r))ar
U0, urO) = [ (i) — |

0

tT (Z_(T),U)\(T)) dr

H

L) + 0 / T@“(um»m

IN

+C sup T|f(7')
7€[0.7T] T

T
+/
0

Therefore, by virtue of (4. 29), we can assert that

(4. 30) /0 Y

Lo (ua(t +C/\f

pl
dr+T¢(o).

V*

- (1)

)| v+ sup 177 (us(0)

t€[0,T]

) T , T\ df P’
< c \u0|H—{—T£(0)+/ £ {D/*dt~|—/ (il ar) .
0 0 dt Vv
Here we have used the fact (see [2]) that
, T TN
sup 1. < ¢ [ 17@F T ar).
t€[0,T] 0

Then letting A — +0, by (4. 13) and (4. 25), we can obtain

(4. 31) sup |u(t ‘HJF/
te[0,T)
< C(\uoyHJrTe +/ {’/*dt>
and
T |du, |?
(4. 32) / G 0] dit s o7 ()
o |dt te[0,T]

t

< C<uoyH+T£ +/ dt+/

) |

Secondly, we deal with the case where ug € L"(Q) and f € WL (0,T;V*) N
L*(0,T; L7(Q)). To do this, we take approximate sequences up, € D(p) and
fn € CY([0,T);V) such that ug, — ug strongly in L"(Q) and f, — f strongly in
W' (0,T; V*) N L*7(0,T; L7 (Q)). Moreover, let ¢ := ¢(ug) 4+ 2 and remark that
d(uon) < dlug) + 1 and [ |fo(t)|;7dt < [T £t)|;57dt 4+ 1 for enough large n. Fur-
thermore, there exists h € L'T7(0,T) such that | f,/(t)|z- < h(t) for a.e. t € (0,T) and

all n’ for some subsequence n’ of n, which will be denoted briefly by n.

Hence we can construct solutions u,, of (CP) with initial data wug, and the forcing
term f,,, which will be denoted by (CP),, in the rest of this section, on [0, Tp] such that

(4. 33) sup ¢(un(t)) < ¢p(uopn) +1 <0
te[0,To]
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for some Tj > 0 independent of n, by recalling the first step. Actually, for the case v >
0, it is obvious that Tu(d(uon), fi |fo(O)|1Fdt) > Tu(b(uo) +1, fi |f(#)| 7 dt+1) > 0.
As for the case: v = 0, since |f,,(t)|- < h(t), we can choose T}, : [0,+00) — (0, 7] such
that Ty (z){f(z + 1) +a/2} + C(z+ 1)V [ |h(r)|dr < 1/2 and Ty, (z) > Ti(z) > 0
for all z € [0, +00) and n. Thus we can take Ty > 0 uniformly with respect to n.

Now we shall establish a priori estimates for w, and derive convergences of u, as
n — +oo. First, by recalling (4. 31) and (4. 32), we have

To
(4. 34) sup Jun(t)| + / Vun(®)2dt < C,
t€[0,T0) 0
To |du, .|
(4. 35) / t|—=()| dt+ sup t|Vu,(t)[f,dt < C.
0 dt g t€[0,T0)]
Moreover, since dy ¢ (un(t)) = —Apu,(t), we can also derive
TO p/
(4. 36) | vl ar < ©

from (4. 34). Furthermore, by Lemma 1, we observe
To / To
/ |8V@D(un(r))|qq/d7 < C U(up(7))dr
0 L 0
T,
< E(U)/ ’ {o(un (7)) + 1} dr < C.
0

Thus since LY (Q) is continuously embedded in V*, we get, by (CP),,

To | d q
(4. 37) S a < e
o | di v
Now, by virtue of (4. 26) with u = up, v = v, = |up|""2/Pu,, ug = ug,, and
f = fu, it follows that
To
(4. 38) / [V (7)[fpdr < C.
0

Moreover, since 2(r + p — 2)/p < r, it follows from (4. 33) that v, is bounded in
L(0, Ty; H).

From these a priori estimates, we can obtain the following convergences by taking
a subsequence of {n}, which will be also denoted by the same letter {n}, if necessary:

-
w

9
0

Up — U weakly star in L°°(0, Tp; L"(2)),
weakly in LP(0,Tp; V),
Py, — t/Py weakly star in L (0, To; W, 7(Q)),
Vp — U weakly star in L°°(0,To; H),
weakly in LP(0, Ty; WHP(1)),
duy /dt — du/dt — weakly in L9 (0, Tp; V*),
2 (duy, /dt) — tY2(du/dt)  weakly in L2(0,Tp; H),
Ovep(un(-) —g  weakly in LV (0, Tp; W17 (1)),
v p(un(s)) — h weakly in L7 (0, Tp; L7 (2)).

Ll
o =
N =

=
IS
SRS

AN N N N N N N N N
=~ W~
IS =~
-~ [J8)
NN N N N N N
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Hence we can also deduce that u € Cy, ([0, Tp]; L"(2)) N C((0, To]; H). Moreover, since
V and L"(Q2) are compactly embedded in L9(2) and V*, respectively, we can deduce
that

(4. 48) Up — U strongly in LP(0, To; LY(Q2)) N C([0, Tol; V™),

which together with (4. 42) implies v = |u|"~2/Pyu. Moreover, it follows from (4. 37)
and (4. 48) that u(t) — wug strongly in V* as t — +0.

Next, we shall prove that dy¢(u(t)) = h(t) for a.e. t € (0,Ty). To this end, we
divide our proof into two cases. For the case where r < ¢, as in the proof of Lemma 1,
we can deduce from (4. 6) that

To
/ [ (t) — u(t)|2, dt
0

TO eq/p TO 1/11
< C (/ [V (t) — Vu(t) Zipdt> (/ |un(t) — u(t>‘(LlT—9)qut> ,
0 0

where 6 is given by (4. 5) and v := p/(p — 0q). Moreover, by (4. 33) and (4. 48), we
can assure that

(4. 49) Uy, — U strongly in LU3=9% (0, Ty; L7(92)).
Hence (4. 34) and (4. 49) imply
(4. 50) Up — U strongly in L7(0, Tp; LY(Q2)).

Here we note that dy(u) = 9patprea(u) if w € V, where ¢pq : LY(2) — [0,+00) is
defined by ¢ r¢(u) := (1/q) [q |u(x)|?dx for all uw € L(§2). Therefore, on account of the
demiclosedness of drq«trq in LI() x LY (Q) and Proposition 1.1 of [13], we can assert
that h(t) = dyp(u(t)) for a.e. t € (0,7p). For the case where ¢ < r, (4. 50) follows
immediately from (4. 33) and (4. 48). Hence we can also verify that h(t) = dyv(u(t))
for a.e. t € (0,Tp).

Now, in order to show that g(t) = dye(u(t)) for a.e. t € (0,Tp), by (4. 48), we
take a set I C (0,7p) such that wu,(s) — u(s) strongly in L1(Q) for all s € I and
|(0,7p) \ I| = 0. Hence multiply dy¢(u,(t)) by u,(t) and integrate this over (s, Tp) for
an arbitrary s € I. It then follows that

To
| @velun(®), un(t)) e
To TO
=[G )+ [ @), ua(®)at
1 1
(Do) + 5 ()
Hence letting n — +o0, since (4. 45) ensures u € Wh2(s, Ty; H), we have

To
timsup [ (@ oua(t)), wn (0)dt
n—+oo Js
To To
< [T+ [ v ). u)
Tl + S = [ tgte) u(o)e
2 ulto)lg 9 u\s)lg = B glt),u .
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Therefore it follows from (4. 40) and (4. 46) that g(t) = ( (t)) for a.e. t € (s,
From the arbitrariness of s and the fact that |(0,7p) \ | = 0, we conclude that g(¢
Ay e(u(t)) for a.e. t € (0,7p).

Finally, we check the initial condition u(0) = ug in the sense of L"(£2). To do this,
we recall (4. 26) with v = u,, v = vy, ug = ug, and f = f,, and pass to the limit as
n — +oo. It then follows that

Tp).
) =

Sult) < otu) +t{t0)+ 5} + 0o [1f)lpar

for all ¢ € [0,Tp], which implies that limsup;_, g @(u(t)) < ¢(ug). Hence, since ¢ is
weakly lower semi-continuous in L"(2), we conclude that

P(u(t)) — d(uo) as t — +0.

Therefore u(t) — up strongly in L"(Q2) as t — 40; moreover, u € C([0,Tp]; H). Thus
we complete the proof. g

A Rigorous calculation of (4. 16)

In this section, we provide a rigorous proof of (4. 16), that is,

Proposition 4 Let Q be a (possibly unbounded) domain in RN with smooth boundary
0 and suppose that

(A. 1) 2<r<+4o00, 2<p<+oo.
For every u € WHP(Q) satisfying |u|"~2u € WHP(Q), it follows that v = |u|("=2)/Py
belongs to WHP(Q) and
(A.2) / |Vu(z)|P2Vu(z) - V (]u(a:)]T_2u(a:)> dx = a/ |Vou(z)Pdz,
Q Q

where o := (r — 1)pP/(r+p —2)P > 0.

On the other hand, for any u € W1P(Q) N L>(Q), it is well known that |u|"2u
also belongs to W1P(Q) N L>(Q); moreover, it follows that

(A. 3) O, (Ju(@) 2u@)) = (r = Dlu(@)"20u(w),

where 0,, := 0/0x; (see, e.g., Proposition IX.5 of [5]). However, for all u € WP(Q)
satisfying |u|"~2u € WHP(Q), it would not be obvious whether (A. 3) holds true or
not, and (A. 3) will be required to prove Proposition 4. To verify (A. 3) for every

u € WHP(Q) satisfying |u|"~2u € WP(Q), we introduce a non-decreasing function
(n € CH(R) characterized by

s if |s| <mn,
Cn(s) = q n+1 if s>n+2, [G(s) < sl, [Gu(s) <1 Vs €R,
—(n+1) if s<—(n+2),

and prepare the following.
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Lemma 4 Let p € [1,+00) and let w € LP(Q) and put u, = ((u(-)). Then u, €
LP(Q) N L>(2) and

Up — U strongly in LP(Q) as n — +oo.
In particular, if u € WYP(Q), then u, € WHP(Q) N L¥(Q) and
Up — U strongly in WP(Q) as n — +oo.

Proof of Lemma 4 Let wy, := {z € Q;|u(x)| > n} and let up(z) := §,(u(z)). We then
find that w, € LP(2) N L>°(2). Moreover, it follows that

/Q |t (z) — u(z)|Pde = /w Jun() — u(@)Pdz < 2 / lu()|Pdw

Wn

as n — 400, since |w,| — 0. In particular, if u € WIP(Q), then since 0, u,(z) =
¢ (u(2))0g,u(x) (see also Proposition IX.5 of [5]), we have

[ 1Vun(a) = Vut)pds = [ 16 0(2) Vu(w) - Vua)Pds
Q Q
= [ 16 w(@)Vu(x) - Vule)Pde

< 2p/ |Vu(x)|Pde — 0

as n — +o00. Therefore u, — u strongly in WhP(Q). 4
Now we have:

Lemma 5 Suppose that (A. 1) is satisfied and let u € WHP(Q) be such that |u|"?u €
WLP(Q). Then it follows that

O, ([u(@)"2u(@)) = (r = Dlu(@)205,u(@).
Proof of Lemma 5 Since up, = y(u(-)) € WHP(Q) N L°(Q), we notice that
O, (lun(@)"Pun(@)) = (r = Dlun(@)|" 200, un ().
Thus we get, for every ¢ € C§°(Q),
(A4 . e @12 (2)0, ()
Q
= —(r=1) /Q [n ()72 (O, un () (@) da
Now we claim the following;:

(A.5) [t |" 2 — Jul""%u strongly in LP(Q),
(A.6) |t |20ty — u|" 20,1 strongly in LP(2)

for some p > 1 as n — +o0. Indeed, recalling w, := {x € Q; |u(z)| > n}, we obtain

/Q [t (@) 2 () — ) u(a)| dz < 22 /w ()P Vdz — 0.

n

19



Moreover, by virtue of Lemma 4, taking a subsequence if necessary, we see
| ()" 20, un () —  |u(x)|""20p,u(x) for ae. x € Q.
Furthermore, we find that
[tn (@) 200 un (@) < Ju(@)]"2|0p,u(w)] € LP(Q),

where p € [1,4+00) is given by

. r-=2 n
p o (r=1)p
since the fact that |u["~2u € WHP(Q) implies that v € L'~VP"(Q). Thus Lebesgue’s
dominant convergence theorem ensures (A. 6).
Therefore passing to the limit in (A. 4) as n — 400, we conclude that for every
v € G (),

| @ 2@ p@de =~ =1) [ ju@]? @nu(@) p(a)de,

which implies that 0., (Ju(x)|"2u(z)) = (r — 1)|u(x)|"~20.,u(z). 1
Now we proceed to the proof of Proposition 4. First, we have:

<= f-=1

"=

1 1
p P

Lemma 6 Suppose that (A. 1) is satisfied, and let u € WHP(2) be such that |u|"?u €
WLP(Q). Moreover, put uy, := Co(u(-)). Then it follows that

|t |2 up — Ju""%u strongly in WP(Q).
Proof of Lemma 6 In the proof of Lemma 5, we have proved that
[t |" 2 up — |u|""2u  strongly in LP(Q),
O, (Jun (@) "2un(2)) = O, (Ju(@)"2u(z))  for ae. z Q.
Moreover, since, by Lemma 5, (r — 1)|u|""20,,u = 0y, (|u]""2u) € LP(£2), it follows that

O, (lun(@)"un(@)| = (0 = 1)fun(@)|" 2|0, un ()]
< (= Du(@) 20 u(@)] € L(Q).

Therefore we can deduce that
O, <|un|T_2un> — Oy, (|u|r_2u> strongly in LP(Q). g

Proof of Proposition 4 We recall the approximate sequence uy, := ¢, (u(-)) € WP(Q)n
L>°(Q) of u again and compute

| 19un(@) 2 9un(@) - ¥ (jun(a) 2 un(2)) da
= =) [ [Vun@) (@)

= =) [ [l @)DV @) do

— -1 (HZ;_QY/Q\v(yun(x)|<r—2>/f?un(x))]pdx.
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Now letting n — 400 and noting Lemmas 4 and 6, we can derive
/ |Vun(x)‘p72vun(x) "V (’Un(flf)V*Qun(x)) dz
Q
~ [ 1Vu@)P2Vu(@) - ¥ (ju(@)u(x) do.
Q

which implies that |V (|u,|"~2/Pu,)|r» < C. Moreover, we notice that p < r+p—2 <
p(r —1) and

(r+p=2)/p |u|(r+p—2)/p

’ |Un|(r_2)/pun’ = |un |Lr+p72 Lr+p—2

Lp
Thus, by Lemma 4, |u,|"=2/Pu, — |u|"=2/Py weakly in W'P(Q2). Furthermore, by
Lemma 6 with r replaced by (r —2)/p + 2, we deduce that

un| "2/ Py, — |u](T2/Py, strongly in W1P(Q).

Thus we assure that (A. 2) holds true. g

B Regularity of solutions for (CP)

In this section, we discuss the existence, the uniqueness and the regularity of solu-
tions of the approximate problems (CP)S with ug € D(¢?) and f € L%*(0,T;H) N
LY(0,T;L7(£2)). The existence part and the uniqueness part can be proved in virtue
of Theorem 3.6 and Proposition 3.12 of [6], since dg1)y is Lipschitz continuous from
H into itself. Moreover, the unique solution u of (CP)$ belongs to W12(0,T; H) and
satisfies that u(t) € V, ¢(u(t)) < o for all t € [0,T] and the function t — ¢ (u(t)) is
absolutely continuous on [0, 7).

Furthermore, we claim that |u|"=2/Py € LP(0,T; WP(Q))). Indeed, multiplying
(CP)S by 0méu(u(t)) with p > 0, by Proposition 2, we get

0uult) + (9(0), O u(u(t)) 1

< @ra(u(®), Ordu(u(t)n + (£ (1), O du(u(t)))a,
where g(t) := f(t) — du(t)/dt + Op,(u(t)) € Ogp° (u(t)), for a.e. t € (0,T). Then, by
Lemma 2, it follows from (4. 2) that

alVou ()|, < (0% (u(t)), Ondpu(ult)))

where v, (t) := \qu(t)](r_Q)/pqu(t). Moreover, by Proposition 3, 1, also becomes
Lipschitz continuous from L"(Q2) into itself; hence, by Proposition 1, we have

(B. 1)

A

(8H@A(U(t))73H¢u(U(t))>H < |0\ (u(t)|Lr [0 Py (u(t))] o
< Chp(u(t)) <Cho

for some constant Cy depending on A but not on . Furthermore, we can also obtain

(f),0nduu®))u < Co|f(#)]Lr.
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Combining these facts and integrating (B. 1) over (0,t), by Proposition 1, we can
deduce that

t
(B. 2) S(J0u(t)) + o /0 Vo ()2, dr
< é(ug) + CroT + CoV/" /OT \f(7)|rdr Vit € [0,T].

Now, by passing to the limit as  — 0, as in (4. 23), we can derive
¢ : :
Jiu—u strongly in C([0,T]; H).
Furthermore, since 2(r + p —2)/p < r, it follows from (B. 2) that

qu —u weakly star in L°°(0,7; L"(Q2)),
vy — v weakly star in L>°(0,T; H),
weakly in LP(0,T; WHP(Q))

and v = |u|("=2/Py, which proves the claim.
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