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Abstract. The existence, uniqueness and regularity of viscosity solutions to the Cauchy-
Dirichlet problem are proved for a fully nonlinear parabolic equation of the form ut = ∆∞u,
where ∆∞ denotes the so-called infinity-Laplacian given by ∆∞u =

∑N
i,j=1 uxiuxjuxixj . To

do so, a coercive regularization of the equation is introduced and barrier function arguments
are also employed to verify the equi-continuity of approximate solutions. Furthermore, the
Cauchy problem is also studied for (possibly) unbounded initial data satisfying a linear growth
condition by using Perron’s method.

1 Introduction

Let Ω be a bounded domain in IRN with boundary ∂Ω. In this paper, we study the
existence, uniqueness and regularity of viscosity solutions u = u(x, t) in Q = Ω × (0, T )
for the following Cauchy-Dirichlet problem:

ut = ∆∞u in Q,(1)

u = ϕ on PQ,(2)

where ut denotes the time-derivative of u, PQ denotes the parabolic boundary of Q and
∆∞ stands for the so-called infinity-Laplacian given by

∆∞φ(x) =
N∑

i,j=1

∂φ

∂xi

(x)
∂φ

∂xj

(x)
∂2φ

∂xi∂xj

(x).(3)
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The infinity-Laplacian is first introduced by Aronsson [2] to investigate the existence
of absolutely minimizing Lipschitz extensions (AMLE’s for short) of functions g defined
only on the boundary ∂Ω into Ω. According to Jensen’s formulation [7], the AMLE of
g into Ω means a function u ∈ W 1,∞(Ω) satisfying that u = g on ∂Ω and that for every
open subset U of Ω and φ ∈ W 1,∞(U), if u − φ ∈ W 1,∞

0 (U), then

|Du|L∞(U) ≤ |Dφ|L∞(U).

In [2], the following elliptic problem is also proposed as an Euler equation for smooth
AMLE’s.

∆∞u = 0 in Ω, u = g on ∂Ω.(4)

In Jensen’s celebrated work [7], the existence and uniqueness of AMLE’s are rigor-
ously demonstrated under somewhat general assumptions, and moreover, it is also shown
that u is a viscosity solution of (4) if and only if u is the AMLE of g. Furthermore, var-
ious problems related to the infinity Laplacian, e.g., limiting problems associated with
p-Laplacian as p → +∞, Harnack’s inequality, eigenvalue problem, have been studied
by many authors. The exciting developments in this field are summarized in Aronsson,
Crandall and Juutinen [3].

To the best of the authors’ knowledge, parabolic problems associated with the infinity-
Laplacian such as (1) have not been studied yet except in [5], [12] and [8]. In Crandall
and Wang [5], a characterization of subsolutions to (1) is proposed in terms of the
comparison properties with the functions: Φbdz(x, t) := b3(8/9)2t + b(|x − z| + d)4/3

(b, d ∈ IR, z ∈ IRN), which also become subsolutions of (1). More precisely, they prove
that an upper semicontinuous function u : Q → IR is a viscosity subsolution in Q of (1)
if and only if u − Φbdz satisfies the parabolic maximum principle in Q, i.e.,

max
Q′

(
u − Φbdz

)
= max

PQ′

(
u − Φbdz

)
for any Q′ ⊂⊂ Q ∩ dom(Φbdz),

for all b, d ∈ IR and z ∈ IRN . In [12], Ôtani proposes a new method of establishing gra-
dient estimates of the form supt∈[0,T ] |Du(·, t)|L∞(IRN ) ≤ C for solutions u to the Cauchy

problem (1)-(2) with Ω = IRN , provided that ϕ = ϕ(x) ∈ W 1,∞(IRN), by using the
L∞-energy method he developed, which is not used in this paper.

Another type of parabolic equation associated with the infinity-Laplacian is also
studied by Juutinen and Kawohl in [8], where they treat the following:

ut =
∆∞u

|Du|2
in Q.(5)

They investigate the existence and uniqueness of solutions of the Cauchy-Dirichlet prob-
lem for (5) with initial-boundary data ϕ, and moreover, they deal with the Cauchy
problem for the case Ω = IRN as well. To prove the existence, they introduce ap-
proximate problems of the form (uε,δ)t = ε∆uε,δ + ∆∞uε,δ/(|Duε,δ|2 + δ), and establish
boundary Hölder estimates of their solutions by constructing barrier functions such as
w(x, t) = ϕ(x0, t0) + C1|x − x0|α + C2(t0 − t) with constants C1, C2 and α ∈ (0, 1) for
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each point (x0, t0) ∈ ∂Ω× (0, T ). Their barrier function argument partially relies on the
form:

∆∞u

|Du|2
=

〈
D2u

Du

|Du|
,

Du

|Du|

〉
.

The main purpose of this paper is to investigate the comparison, uniqueness, ex-
istence and regularity of viscosity solutions of the Cauchy-Dirichlet problem (1)-(2).
Particularly, to prove the existence, we introduce the following approximate problems:

(uε)t = ε
(
|Duε|2 + ε

)
∆uε + ∆∞uε in Q.(6)

As in [8], we employ barrier function arguments to establish a priori estimates for solu-
tions of the Cauchy-Dirichlet problems for (6) with initial-boundary data ϕ. Our proof
of the existence is inspired by [8]. Moreover, we also prove the Lipschitz regularity of
solutions, provided that ϕ is Lipschitz continuous in Q. Furthermore, the existence of so-
lutions to the Cauchy problem for (1) with Ω = IRN is also studied for unbounded initial
data satisfying boundedness conditions of Dϕ and D2ϕ by using Perron’s method.

This paper is composed of five sections. In the next section, we state our main results
on the comparison, uniqueness, existence and Lipschitz regularity of viscosity solutions
of the Cauchy-Dirichlet problem (1)-(2). Sections 3 and 4 are devoted to proofs of the
existence and regularity results, respectively. Moreover, Section 5 is concerned with the
Cauchy problem for (1) with Ω = IRN .

Notation: Throughout of this paper, we use the following notation: Q = Ω × (0, T ),
SQ = ∂Ω × (0, T ), BQ = Ω × {0}, CQ = ∂Ω × {0}, PQ = SQ ∪ BQ ∪ CQ,

φt =
∂φ

∂t
, Di =

∂

∂xi

, D = (D1, D2, . . . , DN), D2
ij =

∂2

∂xi∂xj

,

and D2 denotes the N × N matrix whose (i, j)-th element is D2
ij. Furthermore, we

also use the Einstein summation convention, where we sum over repeated Greek indices.
As for the definitions of function spaces such as C2,1, Hα and H`,`/2 and (semi-)norms,
we refer the reader to [10, pp. 7-8]. Moreover, we denote by Lip(Q) the class of Lip-
schitz continuous functions in Q, and we simply denote by | · |∞ the sup-norm in the
corresponding space if no confusion arises.

2 Main Results

Priori to state our main results, we give a couple of definitions to be used. First, we
define

P (s, p, X) := pipjXij − s, (s, p, X) ∈ IR × IRN × SN ,

where SN denotes the set of all symmetric N ×N matrices. We are then concerned with
viscosity solutions of (1) given in the following.
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Definition 2.1 Let Ω be a domain in IRN and let Q = Ω × (0, T ). A function u ∈
USC(Q) is said to be a viscosity subsolution in Q of (1) if

P (φt(x̂, t̂), Dφ(x̂, t̂), D2φ(x̂, t̂)) ≥ 0

for all (x̂, t̂) ∈ Q and φ ∈ C2,1(Q) satisfying u − φ attains its local maximum at (x̂, t̂).
A function u ∈ LSC(Q) is said to be a viscosity supersolution in Q of (1) if

P (φt(x̂, t̂), Dφ(x̂, t̂), D2φ(x̂, t̂)) ≤ 0

for all (x̂, t̂) ∈ Q and φ ∈ C2,1(Q) satisfying u − φ attains its local minimum at (x̂, t̂).
Moreover, u ∈ C(Q) is said to be a viscosity solution in Q of (1) if it is both a

viscosity subsolution and a viscosity supersolution in Q of (1).

Furthermore, viscosity solutions of the Cauchy-Dirichlet problem (1)-(2) are defined
as follows:

Definition 2.2 A function u ∈ USC(Q) (resp., LSC(Q)) is said to be a viscosity
subsolution (resp., supersolution) in Q of (1)-(2) if u is a viscosity subsolution (resp.,
supersolution) in Q of (1), u ≤ ϕ (resp., u ≥ ϕ) on PQ. Furthermore, u ∈ C(Q) is
a viscosity solution in Q of (1)-(2) if it is both a viscosity subsolution and a viscosity
supersolution in Q of (1)-(2).

Applying Theorem 8.2 of [4], we can derive immediately the comparison principle for
(1)-(2), and moreover, it also provides the continuous dependence on initial-boundary
data and the uniqueness of solution.

Theorem 2.3 (Comparison and uniqueness) Let Ω be a bounded domain in IRN with
boundary ∂Ω and let u ∈ USC(Q) and v ∈ LSC(Q) be a viscosity sub- and supersolution
in Q = Ω × (0, T ) of (1), respectively, such that u ≤ v on PQ. Then u ≤ v in Q.

In particular, let ϕ1, ϕ2 ∈ C(Q) and let u1 and u2 be viscosity solutions in Q of (1)-(2)
with the initial-boundary data ϕ1 and ϕ2, respectively. Then it follows that

sup
(x,t)∈Q

|u1(x, t) − u2(x, t)| ≤ sup
(x,t)∈PQ

|ϕ1(x, t) − ϕ2(x, t)|,(7)

which also implies the uniqueness of solution.

Proof of Theorem 2.3 Due to Theorem 8.2 of [4], the comparison part follows
immediately. Now, let u1 and u2 be viscosity solutions of (1)-(2) with initial-boundary
data ϕ1 and ϕ2, respectively, and put w±(x, t) := u2(x, t)±sup(x,t)∈PQ |ϕ1(x, t)−ϕ2(x, t)|.
Then the functions w− and w+ become a viscosity sub- and supersolution of (1)-(2) with
ϕ replaced by ϕ1, respectively. Thus we have

w− ≤ u1 ≤ w+ in Q,

which implies (7). In particular, if ϕ1 = ϕ2 on PQ, then the uniqueness of solution
follows.
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As for the existence of solution, we first introduce a uniform exterior sphere condition
defined in the following.

{
For all x0 ∈ ∂Ω, there exists y0 ∈ IRN such that |x0 − y0| = R and
{x ∈ IRN ; |x − y0| < R} ∩ Ω = ∅ for some positive constant R independent of x0.

(8)

This condition is employed only for the construction of approximate solutions in classical
sense. Now, our result reads:

Theorem 2.4 (Existence) Let Ω be a bounded domain in IRN with boundary ∂Ω and
let Q = Ω × (0, T ). Suppose that (8) is satisfied. Then, for every ϕ ∈ C(Q), the
Cauchy-Dirichlet problem (1)-(2) admits a viscosity solution u ∈ C(Q) in Q such that

sup
(x,t)∈Q

|u(x, t)| ≤ sup
(x,t)∈PQ

|ϕ(x, t)|.(9)

In particular, if ϕ is Lipschitz continuous on Q, then we can also prove the Lipschitz
continuity of the solution u in Q for the Cauchy-Dirichlet problem (1)-(2).

Theorem 2.5 (Lipschitz regularity) Let Ω be a bounded domain in IRN with boundary
∂Ω. Let u be a viscosity solution of the Cauchy-Dirichlet problem (1)-(2) with ϕ ∈
Lip(Q). Then there exists a constant L depending only on |ϕ|∞, |Dϕ|∞, |ϕt|∞, diam(Ω)
such that

|u(x, t) − u(y, t)| ≤ L|x − y| for all x, y ∈ Ω and t ∈ (0, T ),(10)

where diam(Ω) stands for the diameter of Ω, i.e., diam(Ω) = supx∈Ω supy∈Ω |x − y|.

In Section 4, we also provide a couple of variants of the above regularity result.

3 Existence (Proof of Theorem 2.4)

In this section, we give a proof of Theorem 2.4, which is concerned with the existence of
viscosity solutions of the Cauchy-Dirichlet problem (1)-(2). First, we deal with the case
ϕ ∈ H2+α,1+α/2(Q) for some α ∈ (0, 1). We then introduce the following approximation
of (1)-(2) for all ε ∈ (0, 1).

(uε)t = ε
(
|Duε|2 + ε

)
∆uε + ∆∞uε in Q,(11)

uε = ϕ on PQ.(12)

Define aε
ij ∈ C∞(IRN) and Pε ∈ C(IR × IRN × SN) by

aε
ij(p) := ε(|p|2 + ε)δij + pipj, i, j = 1, 2, . . . , N, p ∈ IRN

and

Pε(s, p, X) := aε
ij(p)Xij − s, (s, p, X) ∈ IR × IRN × SN .

5



Then, (11) is rewritten into

Pε((uε)t(x, t), Duε(x, t), D2uε(x, t)) = 0, (x, t) ∈ Q.

Moreover, we observe that

ε(|p|2 + ε)|ξ|2 ≤ aε
ij(p)ξiξj ≤

{
ε(|p|2 + ε) + |p|2

}
|ξ|2

for all ξ ∈ IRN , and furthermore,
∣∣∣∣∣
∂aε

ij

∂pk

∣∣∣∣∣ (1 + |p|)3 ≤ C(1 + |p|)4, i, j, k = 1, 2, . . . , N.

Thus, since Ω satisfies (8), Theorem 4.4 of [10, Chap. VI, p. 560] ensures that the Cauchy-
Dirichlet problems (11)-(12) admits a classical solution uε ∈ C(Q) ∩ H2+α,1+α/2(Q).

We now establish a priori estimates for solutions uε of the Cauchy-Dirichlet problems
(11)-(12) for each ε ∈ (0, 1). To derive the convergence of uε as ε → +0, by grace of the
stability of viscosity solutions, it suffices to obtain a Hölder estimate for uε on Q, which
implies the precompactness of uε in C(Q). The following lemma is concerned with an
L∞-estimate for uε.

Lemma 3.1 (L∞-estimate) Let Ω be a bounded domain in IRN with boundary ∂Ω and
let u ∈ C(Q)∩C2,1(Q) be a classical solution in Q = Ω× (0, T ) of the Cauchy-Dirichlet
problem (11)-(12) with ϕ ∈ C(Q). Then we have

|u|∞ ≤ |ϕ|∞.

Proof of Lemma 3.1 The function w+(x, t) ≡ |ϕ|∞ (resp., w−(x, t) ≡ −|ϕ|∞) be-
comes a classical supersolution (resp., subsolution) in Q of (11)-(12), so the classical
comparison principle (see, e.g., Theorem 9.1 of [11, p. 213]) implies that |u|∞ ≤ |ϕ|∞.

We have several steps to establish Hölder estimates for uε in Q. The first step is
concerned with a Lipschitz estimate for uε(x, ·) at t = 0 (see Lemma 3.2), and the
second step yields a Lipschitz estimate at any t ∈ (0, T ) (see Lemma 3.3). In the third
step, we estimate a Hölder constant of uε(·, t) on ∂Ω (see Lemma 3.4). Hence these three
steps imply a boundary Hölder estimate on PQ (see Lemma 3.5). Finally, we derive a
global Hölder estimate for uε in Q from the boundary Hölder estimate (see Lemma 3.6).
Our derivations of these estimates are due to the well-known barrier function argument,
and we also employ the translation invariance of the equation (11) to extend Lipschitz
and Hölder estimates established only on the boundary, e.g., t = 0, ∂Ω, PQ, as in [9].

Lemma 3.2 (Lipschitz estimate for uε(x, ·) at t = 0) Let Ω be a bounded domain in IRN

with boundary ∂Ω and let u ∈ C(Q) ∩ C2,1(Q) be a classical solution in Q = Ω × (0, T )
of the Cauchy-Dirichlet problem (11)-(12) with ϕ ∈ C2,1(Q). Then it follows that

|u(x, t) − ϕ(x, 0)| ≤ M1t for all t ∈ (0, T ) and x ∈ Ω,(13)

where M1 := 2(|Dϕ|2∞ + 1)|D2ϕ|∞ + |ϕt|∞.
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Proof of Lemma 3.2 Put w±(x, t) = ϕ(x, 0) ± M1t and observe that

P (w+
t (x, t), Dw+(x, t), D2w+(x, t))

= −M1 + aε
ij(Dϕ(x, 0))D2

ijϕ(x, 0)

≤ −M1 + ε(|Dϕ|2∞ + ε)|D2ϕ|∞ + |Dϕ|2∞|D2ϕ|∞ ≤ 0

for all (x, t) ∈ Q. Moreover, if (x, t) ∈ PQ, then

w+(x, t) = ϕ(x, 0) + M1t

= ϕ(x, t) − ϕ(x, t) + ϕ(x, 0) + M1t

≥ ϕ(x, t) − |ϕt|∞t + M1t ≥ ϕ(x, t).

We can also deduce that P (w−
t (x, t), Dw−(x, t), D2w−(x, t)) ≥ 0 for all (x, t) ∈ Q and

w− ≤ ϕ on PQ. Therefore, the classical comparison principle ensures that w− ≤ u ≤ w+

in Q. Hence we obtain (13).
By using the translation invariance of the equations (11) and the above lemma, we

can derive a Lipschitz estimate for uε(x, ·) in (0, T ).

Lemma 3.3 (Lipschitz estimate for uε(x, ·) in (0, T )) Let Ω be a bounded domain in IRN

with boundary ∂Ω and let u ∈ C(Q) ∩ C2,1(Q) be a classical solution in Q = Ω × (0, T )
of the Cauchy-Dirichlet problem (11)-(12) with ϕ ∈ C2,1(Q). Then it follows that

|u(x, t) − u(x, s)| ≤ M1|t − s| for all t, s ∈ (0, T ) and x ∈ Ω,(14)

where M1 = 2(|Dϕ|2∞ + 1)|D2ϕ|∞ + |ϕt|∞.

Proof of Lemma 3.3 Let h ∈ (−T, T ) be fixed and set Qh = Ω× (h, T +h). Putting
v(x, t) = u(x, t − h), we see that v remains to be a solution in Qh of (11)-(12) with ϕ
replaced by ϕ(·, · − h). Hence, by Lemma 3.2, we infer that

|v(x, t) − u(x, t)| ≤ M1|h| for all (x, t) ∈ B(Q ∩ Qh).

Here we used the fact that t = max{0, h} if (x, t) ∈ B(Q ∩ Qh). Thus we can derive
u ≤ v+M1|h| on B(Q∩Qh). Moreover, if (x, t) ∈ S(Q∩Qh), then we see that (x, t) ∈ SQ,
which implies that

v(x, t) + M1|h| = u(x, t − h) + M1|h|
= ϕ(x, t − h) + M1|h|
≥ ϕ(x, t) = u(x, t).

Therefore, since u(x, t) ≤ v(x, t) + M1|h| for all (x, t) ∈ P(Q ∩ Qh) and v + M1|h| also
becomes a supersolution in Q ∩ Qh of (11), it follows that u ≤ v + M1|h| in Q ∩ Qh.
Repeating the above argument with v+M1|h| replaced by v−M1|h|, we can deduce that
v−M1|h| ≤ u ≤ v + M1|h| in Q∩Qh, which also gives |u(x, t)− u(x, t− h)| ≤ M1|h| for
all (x, t) ∈ Q ∩ Qh. Furthermore, using the arbitrariness of h, we can verify (14).

We next proceed to the third step, where a Hölder estimate is derived for uε(·, t) on
∂Ω.
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Lemma 3.4 (Hölder estimate for uε(·, t) on ∂Ω) Let Ω be a bounded domain in IRN with
boundary ∂Ω and let α ∈ (0, 1) and R > 0 be fixed. Let u ∈ C(Q)∩C2,1(Q) be a classical
solution in Q = Ω × (0, T ) of the Cauchy-Dirichlet problem (3.1)-(3.2) with ϕ ∈ C(Q)
satisfying

|ut|∞ < ∞ and 〈ϕ〉αx,Q := sup

{
|ϕ(x, t) − ϕ(y, t)|

|x − y|α
; x, y ∈ Ω, x 6= y, t ∈ [0, T ]

}
< ∞.

Then there exists a number M2 depending only on |ϕ|∞, |ϕt|∞, 〈ϕ〉αx,Q, N , α and R such
that

|u(x, t) − ϕ(x0, t0)| ≤ M2(|x − x0|α + t0 − t)

for all (x0, t0) ∈ SQ, x ∈ Ω ∩ BR(x0) and t ∈ (max{0, t0 − 1}, t0),
where BR(x0) := {x ∈ IRN ; |x − x0| < R}.

In particular, the same conclusion also follows with Ω∩BR(x0) replaced by Ω by choosing
R > 0 enough large.

Proof of Lemma 3.4 Let (x0, t0) ∈ SQ and α ∈ (0, 1) be fixed and define

w+(x, t) = ϕ(x0, t0) + κ|x − x0|α + ρ(t0 − t)

for all x ∈ BR(x0) := {x ∈ IRN ; |x − x0| < R} and all t < t0 with positive constants κ
and ρ which will be determined later. Observing that

w+
t (x, t) = −ρ, Diw

+(x, t) = κα|x − x0|α−2(x − x0)i,

D2
ijw

+(x, t) = κα(α − 2)|x − x0|α−4(x − x0)i(x − x0)j + κα|x − x0|α−2δij,

we then see that

∆∞w+(x, t) = (κα)3(α − 1)|x − x0|3α−4.

Thus, it follows that

−w+
t (x, t) + aε

ij(Dw+(x, t))D2
ijw

+(x, t)

= ρ + (κα)3 {ε(α − 2 + N) + α − 1} |x − x0|3α−4

+ε2κα(α − 2 + N)|x − x0|α−2.

Here taking ε enough small such that

ε(α − 2 + N) + α − 1 <
1

2
(α − 1),

we have

−w+
t (x, t) + aε

ij(Dw+(x, t))D2
ijw

+(x, t)

< ρ +
(κα)3

2
(α − 1)|x − x0|3α−4 + ε2κα(α − 2 + N)|x − x0|α−2

= ρ + κα|x − x0|α−2

{
(κα)2

2
(α − 1)|x − x0|2α−2 + ε2(α − 2 + N)

}

≤ ρ + κα|x − x0|α−2

{
(κα)2

2
(α − 1)R2α−2 + ε2(α − 2 + N)

}
,
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where we used the fact that |x − x0| < R. Hence

(κα)2

2
(α − 1)R2α−2 + ε2(α − 2 + N) ≤ (κα)2

4
(α − 1)R2α−2,

provided that κ ≥ 1 and ε is enough small such that

α2

4
(α − 1)R2α−2 + ε2(α − 2 + N) ≤ 0.

Thus,

−w+
t (x, t) + aε

ij(Dw+(x, t))D2
ijw

+(x, t)

≤ ρ +
(κα)3

4
(α − 1)R2α−2|x − x0|α−2

≤ ρ +
(κα)3

4
(α − 1)R3α−4.

Therefore, taking κ enough large such that 4ρ ≤ (κα)3(1 − α)R3α−4, we conclude that

−w+
t (x, t) + aε

ij(Dw+(x, t))D2
ijw

+(x, t) ≤ 0

for all x ∈ BR(x0) ∩ Ω and all t < t0.
We next prove that w+ ≥ u on P((BR(x0)∩Ω)× (t0 −1, t0)) for the case that t0 > 1.

To do so, we divide our proof to the following three cases:

(i) Let x ∈ (∂BR(x0))∩Ω and t < t0 be fixed. From the fact that |x−x0| = R, we then
see that

w+(x, t) = ϕ(x0, t0) + κRα + ρ(t0 − t) ≥ ϕ(x0, t0) + κRα ≥ |ϕ|∞ ≥ u(x, t),

provided that κ ≥ 2|ϕ|∞/Rα.

(ii) Let x ∈ BR(x0) ∩ ∂Ω and t < t0 be fixed. Since ϕ(x, t) = u(x, t), it follows that

w+(x, t) = u(x, t) + ϕ(x0, t0) − u(x, t) + κ|x − x0|α + ρ(t0 − t) ≥ u(x, t),

provided that κ ≥ 〈ϕ〉αx,Q and ρ ≥ |ϕt|∞.

(iii) Let x ∈ BR(x0) ∩ Ω and let t = t0 − 1 be fixed. Then

w+(x, t) = ϕ(x0, t0) + κ|x − x0|α + ρ ≥ ϕ(x0, t0) + ρ ≥ |ϕ|∞ ≥ u(x, t),

provided that ρ ≥ 2|ϕ|∞.

Now as for the case where t0 < 1, we employ (BR(x0)∩Ω)×(0, t0) instead of the cylinder
used in the last case. Then it is easily seen that, for x ∈ BR(x0) ∩ Ω and t = 0,

w+(x, 0) = ϕ(x0, t0) + κ|x − x0|α + ρt0 ≥ ϕ(x, 0) = u(x, 0),

provided that κ ≥ 〈ϕ〉αx,Q and ρ ≥ |ϕt|∞.
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Therefore the comparison principle ensures that

u ≤ w+ on BR(x0) ∩ Ω × [max{0, t0 − 1}, t0].

Repeating the same argument with the function w−(x, t) := ϕ(x0, t0) − κ|x − x0|α −
ρ(t0 − t), we can also obtain w− ≤ u on BR(x0) ∩ Ω× [max{0, t0 − 1}, t0]. Consequently,
we can deduce that

|u(x, t) − ϕ(x0, t0)| ≤ κ|x − x0|α + ρ(t0 − t)

for all (x0, t0) ∈ SQ and x ∈ BR(x0) ∩ Ω and t ∈ [max{0, t0 − 1}, t0].
Thus, Lemmas 3.3 and 3.4 imply the following:

Lemma 3.5 (Hölder estimate on PQ) Let Ω be a bounded domain in IRN with boundary
∂Ω and let α ∈ (0, 1). Suppose that (8) is satisfied. Let u ∈ C(Q)∩C2,1(Q) be a classical
solution in Q = Ω × (0, T ) of the Cauchy-Dirichlet problem (11)-(12) with ϕ ∈ C2,1(Q).
Then it follows that

|u(x, t) − ϕ(x0, t0)| ≤ M3 (|x − x0|α + |t − t0|) for all (x0, t0) ∈ PQ and (x, t) ∈ Q,(15)

where M3 = M1 + M2 + 〈ϕ〉(α)
x,Q.

Proof of Lemma 3.5 For the case: (x0, t0) ∈ SQ, by virtue of Lemmas 3.3 and 3.4,

|u(x0, t0) − u(x, t)| ≤ |u(x0, t0) − u(x, t0)| + |u(x, t0) − u(x, t)|
≤ M2|x0 − x|α + M1|t0 − t|.

For the case: (x0, t0) ∈ BQ, that is, t0 = 0, by Lemma 3.2, we also have

|u(x0, 0) − u(x, t)| ≤ |ϕ(x0, 0) − ϕ(x, 0)| + |ϕ(x, 0) − u(x, t)|
≤ 〈ϕ〉(α)

x,Q|x0 − x|α + M1t.

Hence (15) follows.
Now, we extend the above Hölder estimate on the parabolic boundary PQ into the

parabolic domain Q in the following lemma, which is derived from Theorem 6 of [9], but
for the completeness, we give a proof.

Lemma 3.6 (Global Hölder estimate) Let Ω be a bounded domain in IRN with boundary
∂Ω and let α ∈ (0, 1). Suppose that (8) is satisfied. Let u ∈ C(Q) ∩ C2,1(Q) be a
classical solution in Q = Ω × (0, T ) of the Cauchy-Dirichlet problem (11) and (12) with
ϕ ∈ C2,1(Q). Then it follows that

|u(x, t) − u(y, s)| ≤ M3 (|x − y|α + |t − s|) for all (x, t), (y, s) ∈ Q,(16)

where M3 = M1 + M2 + 〈ϕ〉(α)
x,Q.
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Proof of Lemma 3.6 Let h := (hx, ht) ∈ IRN × IR be fixed and let Q+h := {(x, t) ∈
IRN+1; (x − hx, t − ht) ∈ Q}. Moreover, put v(x, t) = u(x − hx, t − ht). We then find
that v still remains to be a solution in Q + h of (11) and (12) with ϕ replaced by
ϕ(· − hx, · − ht). Then, by Lemma 3.5, we can assure that, for (x, t) ∈ P{Q ∩ (Q + h)},
|v(x, t) − u(x, t)| ≤ M3|h|α,1, where |h|α,1 := |hx|α + |ht|; hence, v − M3|h|α,1 ≤ u ≤
v + M3|h|α,1 on P{Q ∩ (Q + h)}. Furthermore, since v ± M3|h|α,1 also become a super-
and subsolution in Q ∩ (Q + h) of (11), the classical comparison theorem ensures that
v − M3|h|α,1 ≤ u ≤ v + M3|h|α,1 in Q ∩ (Q + h). Using the arbitrariness of h, we can
verify (16).

By virtue of the global Hölder estimate for uε in Lemma 3.6 and Ascoli-Arzela’s
compactness theorem, taking a sequence εn → +0, we can deduce that

uεn → u uniformly on Q(17)

as εn → +0. We also note that

Pε(s, p, X) → P (s, p,X) as ε → +0, for all (s, p, X) ∈ IR × IRN × SN .

Therefore, the stability of viscosity solution (see, e.g., Section 6 of [4]) ensures that the
limit u becomes a viscosity solution of (1)-(2).

Now we proceed to the case ϕ ∈ C(Q). By virtue of Weierstrass’s approximation
theorem (see, e.g., 1.29 Corollary of [1, p. 10]), we can take an approximate sequence
ϕn ∈ H2+α,1+α/2(Q) such that ϕn → ϕ uniformly on Q. Hence, due to the last case, there
exists a viscosity solution un of (1)-(2) with ϕ replaced by ϕn. Moreover, by Theorem
2.3,

sup
(x,t)∈Q

|un(x, t) − um(x, t)| ≤ sup
(x,t)∈PQ

|ϕn(x, t) − ϕm(x, t)| → 0

as n,m → +∞. Thus (un) forms a Cauchy sequence in C(Q), so un → u uniformly on
Q. Therefore, from the stability of viscosity solution, u also becomes a viscosity solution
of (1)-(2) with the initial data ϕ ∈ C(Q). Furthermore, as in Lemma 3.1, (9) follows
immediately. This completes our proof of Theorem 2.4.

4 Lipschitz Regularity

In this section, a couple of regularity results are established for solutions of the Cauchy-
Dirichlet problem (1)-(2); particularly, we give a proof of Theorem 2.5, which ensures
the Lipschitz regularity of solutions of (1)-(2) with ϕ ∈ Lip(Q). For this purpose, in the
following lemma, we first verify a boundary estimate with a bound L by constructing a
barrier function. It is noteworthy that the barrier function used in our proof can not be
applied to the approximate problems (11)-(12) in the last section.

Lemma 4.1 Let Ω be a bounded domain in IRN with boundary ∂Ω. Let u ∈ C(Q) be
a viscosity solution of (1)-(2) with ϕ ∈ C(Q) and let r > 0. Suppose that there exist a
constant λ0 and a function ω ∈ C2((0, r]) such that ω(+0) = 0, ω′(s) > 0 and ω′′(s) ≤ 0
for all s > 0, ω0 := sups∈(0,r] ω

′(s)s < +∞ and

|ϕ(x, t) − ϕ(x0, t0)| ≤ ω(|x − x0|) + λ0(t0 − t)
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for all (x, t) ∈ Q, (x0, t0) ∈ SQ satisfying t ≤ t0 and |x − x0| ≤ r. Then there exists a
constant C1 = C1(r, |ϕ|∞, λ0, ω0, ω

′(r), ω(r)) ≥ 1 such that

|u(x, t) − ϕ(x0, t0)| ≤ C1ω(|x − x0|) + λ0(t0 − t)(18)

for all (x0, t0) ∈ SQ and (x, t) ∈ Q satisfying |x − x0| ≤ r and t ≤ t0.

Proof of Lemma 4.1 Let (x0, t0) ∈ SQ be fixed and let N := {(x, t) ∈ IRN+1; |x −
x0| < r, t < t0}. Moreover, define w±(x, t) := ϕ(x0, t0) ± {C1ω(|x − x0|) + λ0(t0 − t) −
|x − x0|2}, where C1 will be determined later. Then we see that

P (w+
t (x, t), Dw+(x, t), D2w+(x, t))

≤ λ0 − 2

(
C1

ω′(|x − x0|)
|x − x0|

− 2

)2

|x − x0|2

≤ λ0 − 2C2
1(ω′(r))2 + 8C1ω0 for all (x, t) ∈ Q ∩ N.

Hence, P (w+
t (x, t), Dw+(x, t), D2w+(x, t)) ≤ 0, provided that λ0−2C2

1(ω′(r))2+8C1ω0 ≤
0. Moreover, if (x, t) ∈ PQ ∩ N , then since ω(s) =

∫ s
0 ω′(τ)dτ ≥ ω′(r)s, we see that

w+(x, t) ≥ ϕ(x, t)−ϕ(x, t)+ϕ(x0, t0)+{C1−r(ω′(r))−1}ω(|x−x0|)+λ0(t0−t) ≥ ϕ(x, t)+
{C1 − r(ω′(r))−1 − 1}ω(|x − x0|) ≥ ϕ(x, t) = u(x, t), provided that C1 ≥ r(ω′(r))−1 + 1.
Furthermore, if (x, t) ∈ SN , then w+(x, t) = ϕ(x0, t0)+C1ω(r)+λ0(t0−t)−r2 ≥ |ϕ|∞ ≥
u(x, t), provided that C1ω(r) ≥ r2 + 2|ϕ|∞.

Thus taking C1 = C1(r, |ϕ|∞, λ0, ω0, ω
′(r), ω(r)) enough large such that

λ0 − 2C2
1(ω′(r))2 + 8C1ω0 ≤ 0 and C1 ≥ max

(
r

ω′(r)
+ 1,

r2 + 2|ϕ|∞
ω(r)

)
,

we observe that P (w+
t , Dw+, D2w+) ≤ 0 in Q∩N and w+ ≥ u on P(Q∩N). Moreover,

repeating the same argument for w−, we have P (w−
t , Dw−, D2w−) ≥ 0 in Q ∩ N and

w− ≤ u on P(Q ∩ N). Hence Theorem 2.3 ensures that w− ≤ u ≤ w+ in N ∩ Q.
Therefore, we obtain (18).

Now, we prove the global Lipschitz estimate in Theorem 2.5 by using the boundary
Lipschitz estimate and the comparison principle obtained in Lemma 4.1 and Theorem
2.3, respectively.
Proof of Theorem 2.5 Let h ∈ IRN be fixed. We then notice that v(x, t) := u(x −
h, t) remains to be a viscosity solution in Q̃h := {(x, t) ∈ IRN+1; x− h ∈ Ω, t ∈ (0, T )} of
(1)-(2) with ϕ replaced by ϕ(· − h, ·). Moreover, if (x, t) ∈ S(Q ∩ Q̃h), we then deduce
that |v(x, t)−u(x, t)| ≤ L|h|, where L = C1|Dϕ|∞ and C1 is a constant appeared in (18),
by using Lemma 4.1 with r = diam(Ω) := supx∈Ω supy∈Ω |x − y|, ω(s) = |Dϕ|∞s and

λ0 = |ϕt|∞, so v−L|h| ≤ u ≤ v +L|h| on S(Q∩ Q̃h). Further, if (x, t) ∈ B(Q∩ Q̃h), i.e.,
t = 0, then v(x, 0) + L|h| = ϕ(x − h, 0) + L|h| ≥ ϕ(x, 0) = u(x, 0) and v(x, 0) − L|h| ≤
u(x, 0). Thus, since v − L|h| ≤ u ≤ v + L|h| on P(Q ∩ Q̃h) and v ± L|h| also become
viscosity solutions of (1), the Theorem 2.3 implies that v−L|h| ≤ u ≤ v+L|h| in Q∩Q̃h.
Therefore we have

|u(x − h, t) − u(x, t)| ≤ L|h| for all (x, t) ∈ Q ∩ Q̃h.

From the arbitrariness of h, we can obtain (10).
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Remark 4.2 As for the case ϕ ∈ C2,1(Q), one can also verify the Lipschitz regularity
in time of viscosity solutions in Q of (1)-(2), that is,

|u(x, t) − u(x, s)| ≤ M4|t − s| for all x ∈ Ω, t, s ∈ (0, T )(19)

with M4 = |Dϕ|2∞|D2ϕ|∞ + |ϕt|∞, by repeating the similar argument as in proofs of
Lemmas 3.2 and 3.3.

Furthermore, we give another type of regularity result in the following.

Corollary 4.3 Let Ω be a bounded domain in IRN with boundary ∂Ω. Let u ∈ C(Q)
be a viscosity solution of the Cauchy-Dirichlet problem (1)-(2) with ϕ ∈ C(Q). Suppose
that

〈ϕ〉(α)
x,Q := sup

t∈[0,T ]
sup

{
|ϕ(x, t) − ϕ(y, t)|

|x − y|α
; x, y ∈ Ω, x 6= y

}
< +∞, |ϕt|∞ < +∞

for some α ∈ (0, 1). Then there exists a constant L depending only on α, |ϕ|∞, 〈ϕ〉(α)
x,Q,

|ϕt|∞, diam(Ω) such that

|u(x, t) − u(y, t)| ≤ L|x − y|α for all x, y ∈ Ω and t ∈ (0, T ).(20)

Proof of Lemma 4.3 Apply Lemma 4.1 with

r = diam(Ω), λ0 = |ϕt|∞, ω(s) = 〈ϕ〉(α)
x,Qsα.

We then observe that w′(s) = 〈ϕ〉(α)
x,Qαsα−1 > 0 and w′′(s) = 〈ϕ〉(α)

x,Qα(α − 1)sα−2 < 0 for
all s > 0. Thus repeating the same argument as in the proof of Theorem 2.5, we can
derive (20).

In particular, if ϕ = ϕ(x) is independent of t, we can then establish a sharper estimate.
The following lemma will be also employed in §5.

Corollary 4.4 Let Ω be a bounded domain in IRN with boundary ∂Ω. Let u ∈ C(Q)
be a viscosity solution of the Cauchy-Dirichlet problem (1)-(2) with ϕ ∈ Hα(Ω) (resp.,
Lip(Ω)) and α ∈ (0, 1) (resp., α = 1). Then it follows that

|u(x, t) − u(y, t)| ≤ L|x − y|α for all x, y ∈ Ω and t ∈ (0, T )(21)

with L = 〈ϕ〉(α)
Ω := sup{|ϕ(x) − ϕ(y)|/|x − y|α; x, y ∈ Ω, x 6= y} (resp., L = |Dϕ|L∞(Ω)).

Proof of Corollary 4.4 Let x0 ∈ ∂Ω and put w±(x, t) := ϕ(x0) ± L|x − x0|α
with α ∈ (0, 1) (resp., α = 1) and L = 〈ϕ〉(α)

Ω (resp., L = |Dϕ|L∞(Ω)). It then follows
immediately that

±P (w±
t (x, t), Dw±(x, t), D2w±(x, t)) ≤ 0 for all (x, t) ∈ Q.

Moreover, we can also derive that w+(x, t) = ϕ(x)−ϕ(x)+ϕ(x0)+L|x−x0|α ≥ ϕ(x) =
u(x, t) for all (x, t) ∈ PQ and that w− ≤ u on PQ. Therefore, w− ≤ u ≤ w+ on PQ.
Hence, Theorem 2.3 implies w− ≤ u ≤ w+ in Q. Thus it follows that |u(x, t)−u(x0, t)| ≤
L|x−x0|α for all (x, t) ∈ Q and x0 ∈ ∂Ω. Moreover, we can extend this boundary estimate
into Ω, by repeating the same argument as in the proof of Theorem 2.5.
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5 Cauchy Problem

This section concerns the existence and uniqueness of solutions of the Cauchy problem
for (1) with Ω = IRN and ϕ = ϕ(x) ∈ C2(IRN). Suppose that ϕ ∈ C2(IRN) satisfies

sup
x∈IRN

{
|Dϕ(x)| + |D2ϕ(x)|

}
< +∞.(22)

Thus there exists a constant K independent of x such that |ϕ(x)| ≤ K(|x| + 1) for all
x ∈ IRN . Therefore, Theorem 2.1 of [6] ensures the comparison principle for solutions of
the Cauchy problem with an initial data ϕ.

Moreover, let w±(x, t) := ϕ(x) ± M1t and obtain

P (w+
t , Dw+, D2w+) = M1 − Diϕ(x)Djϕ(x)D2

ijϕ(x)

≥ M1 − |Dϕ|2∞|D2ϕ|∞ ≥ 0,

by taking M1 = |Dϕ|2∞|D2ϕ|∞. We can also deduce that w− becomes a classical subso-
lution of (1) in IRN × (0, T ). Furthermore, w±(·, 0) = ϕ.

Now, define

W (x, t) := sup
{
v(x, t); w−(x, t) ≤ v(x, t) ≤ w+(x, t), v ∈ S

}
,

where S denotes the set of all viscosity subsolutions of (1) in IRN × (0, T ). Then,
by virtue of the comparison principle and Perron’s method, the restriction of W on
QR := {(x, t) ∈ IRN × (0, T ); |x| ≤ R} becomes a viscosity solution of (1) in QR for
any R > 0. Thus, we can deduce that W becomes a viscosity solution of P = 0
in IRN × (0, T ) from the arbitrariness of R. Furthermore, since w− ≤ W ≤ w+ and
w−(x, 0) = w+(x, 0) = ϕ(x), it follows that W (x, 0) = ϕ(x). Therefore, W is a viscosity
solution of the Cauchy problem in IRN × (0, T ).

Consequently, we have:

Theorem 5.1 Let Q = IRN×(0, T ) and let ϕ ∈ C2(IRN). Suppose that (22) holds. Then
there exists a unique viscosity solution u ∈ C(Q) in Q of the Cauchy problem (1)-(2).
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