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A VARIATIONAL PRINCIPLE
FOR DOUBLY NONLINEAR EVOLUTION

GORO AKAGI AND ULISSE STEFANELLI

Abstract. The weighted energy-dissipation principle stands as a novel variational tool for

the study of dissipative evolution and has been already applied to rate-independent systems
and gradient flows. We provide here an example of application to a specific yet critical doubly

nonlinear equation featuring a super-quadratic dissipation.

1. Introduction

This note is concerned with the illustration of the so-called weighted energy-dissipation
(WED) variational principle in the case of a class of doubly nonlinear and degenerate par-
abolic PDEs. In particular, we are interested in the study of the WED functionals Iε :
W1,p(0, T ; Lp(Ω))→ (−∞,∞] given, for ε > 0, by

Iε(u) .=



∫ T

0

∫
Ω

e−t/ε
(

1
p
|ut|p +

1
εq
|∇u|q +

1
ε
F (u)

)
if u|∂Ω = 0 a.e.

and u(0) = u0,

∞ else.

Here and in the following Ω ⊂ Rn is a non-empty, bounded, open set with smooth boundary,
2 ≤ p < q∗

.= nq/(n − q)+, F is smooth and convex, and u0 ∈ W 1,q
0 (Ω) is smooth. In

particular, we ask for |∇u0|q + F (u0) ∈ L1(Ω) and −∆qu0 + f(u0) ∈ Lp
′
(Ω) where ∆qu0

.=
div (|∇u0|q−2∇u0) and f

.= F ′ (non-decreasing).

The functional Iε is convex and lower semicontinuous in W1,p(0, T ; Lp(Ω))∩Lq(0, T ; W1,q
0 (Ω)).

Moreover, we immediately check that the sublevels of Iε are bounded in this space and that Iε
is strictly convex. Hence, Iε admits a unique global minimizer uε.

Our aim is to show the connection of the minimization problem min Iε with the doubly
nonlinear degenerate parabolic PDE

|ut|p−2ut −∆qu+ f(u) = 0 in Ω× (0, T ). (1)

In particular, we show that the minimizers uε converge strongly to solutions of the latter. Here
is our main result.

Theorem 1.1 (Convergence). uε → u strongly in W1,p(0, T ; Lp(Ω)) (up to subsequences) where
u is a strong solution of (1) with u|∂Ω = 0 and u(0) = u0.
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The interest in this convergence result consists in the possibility of reformulating the differ-
ential problem (1) as a (limit of a class of) minimization problem(s). The idea is to possibly
reduce the difficult PDE problem (1) to the easier convex constrained minimization problem
for Iε. In particular, this paves the way to the application of the specific tools of the Calculus
of Variations to (1), especially the Direct Method, relaxation, and Γ-convergence.

The WED approach is quite classical in the linear case [6]. Its application to the gradient
flow situation (p = 2) starts from the paper by Ilmanen [5] on the mean curvature flow. Two
examples of relaxation of gradient flows via the WED approach are provided by Conti and
Ortiz [3] in the context of microstructure evolution and some general abstract treatment is
then given in [9]. The rate-independent case (p = 1) has been considered by Mielke and Ortiz
[7] and detailed in [8]. Finally, the abstract doubly-nonlinear case (1 < p <∞) is addressed in
[2]. The present analysis does not follow from the results of [2] as the nonlinearities here are
stronger than the ones which are allowed in [2] and hence require extra care.

The advantage of the WED formalism with respect to former variational approaches [4, 10,
8, 11] is that it relies on a true minimization procedure (plus passage to the limit) and directly
applies to doubly nonlinear evolution. In particular, we directly focus on the related Euler
system (2) in the following.

We mention that Theorem 1.1 may be much generalized. In particular, smoothness plays
indeed little role and the same results hold for a convex, proper, and lower semicontinuous
function F and for some more general classes of initial data u0. Indeed, even the choice of the
q-laplacian as a leading elliptic term in (1) is just illustrative and can be generalized. Of course,
a forcing term on the right hand side of (1) can also be included.

2. Causal limit

This section sketches the proof of Theorem 1.1 starting from the following Lemma.

Lemma 2.1. The only minimizer uε of Iε belongs to the space W1,p(0, T ; Lp(Ω))∩Lq(0, T ; W1,q
0 (Ω)),

fulfills u(0) = u0, and is the unique strong solution of the Euler system

−ε(|uε,t|p−2uε,t)t + |uε,t|p−2uε,t −∆quε + f(uε) = 0 in Ω× (0, T ), (2a)

|uε,t(T )|p−2uε,t(T ) = 0 in Ω. (2b)

Moreover, there exists a constant c > 0 depending on u0 such that

sup
t∈[0,T ]

∫
Ω

|∇uε|q +
∫ T

0

∫
Ω

|uε,t|p +
∫ T

0

∫
Ω

(
| −∆quε + f(uε)|p

′
)

+ε−p
′/2

∫ T

0

∫
Ω

|ε(|uε,t|p−2uε,t)t|p
′
+
∫

Ω

|uε,t(0)|p ≤ c. (3)

The Euler system (2) is degenerate elliptic in space-time. In fact, the WED approach consists
in the (degenerate) elliptic regularization of (1). Problem (2) is non causal, i.e., its solution uε
at time t depends on the future (see the final condition (2b)) as well. As the limiting equation
(1) is instead causal, we refer to the limit uε → u as the causal limit. Estimate (3) is the key
step for proving Theorem 1.1 and consists in the classical energy estimate (first two terms) and
a maximal regularity estimate for (2) (remainder terms). A proof of Lemma 2.1 is given by
time-discretization in Section 3.
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By extracting not-relabeled subsequences and exploiting p < q∗ we have

uε ⇀ u in W1,p(0, T ; Lp(Ω)),

uε → u in C([0, T ]; Lp(Ω)),

|uε,t|p−2uε,t ⇀ ξ in Lp
′
(Ω× (0, T )),

−∆quε + f(uε) ⇀ η in Lp
′
(Ω× (0, T )),

ε(|uε,t|p−2uε,t)t → 0 in Lp
′
(Ω× (0, T )).

Hence, we can pass to the limit in equation (2a) and get ξ + η = 0. The identification η =
−∆qu + f(u) follows immediately from the above convergences and the observation that u 7→
−∆qu+f(u) is maximal monotone in Lp(Ω), see [1]. By multiplying (2a) by uε,t and integrating
in space-time we have∫ T

0

∫
Ω

|uε,t|p =
∫ T

0

∫
Ω

(ε(|uε,t|p−2uε,t)t uε,t −
∫ T

0

∫
Ω

(−∆quε + f(uε))uε,t

(2b)
= − ε

p′

∫
Ω

|uε,t(0)|p −
∫

Ω

(
1
q
|∇uε(T )|q + F (uε(T ))

)
+
∫

Ω

(
1
q
|∇u0|q + F (u0)

)
.

Next, by passing to the lim sup as ε→ 0 we find that

lim sup
ε→0

∫ T

0

∫
Ω

|uε,t|p ≤ −
∫ T

0

∫
Ω

(−∆qu+ f(u))ut =
∫ T

0

∫
Ω

ξut.

Hence, ξ = |ut|p−2ut again by monotonicity and we have also proved that uε,t → ut strongly in
Lp(Ω× (0, T )).

3. Time-discretization

The WED formalism has a discrete counterpart [8, 9], which in turn provides a proof of
Lemma 2.1. For a fixed time-step τ = T/N there exists a unique vector {u0

ε, u
1
ε, . . . , u

N
ε } ∈

(W1,q
0 (Ω))N+1 such that

− εδ(|δui+1
ε |p−2δui+1

ε ) + |δuiε|p−2δuiε −∆qu
i
ε + f(uiε) = 0 in Ω,

for i = 1, . . . , N − 1, (4)

|δuNε |p−2δuNε = 0 in Ω (5)

where we have used the short-hand notation δvi
.= (vi − vi−1)/τ . This fact follows from the

existence of a unique minimizer of the discrete WED functional Iετ : (W1,q
0 (Ω))N+1 → (−∞,∞]

given by

Iετ (u0, . . . , uN ) .=
N∑
i=1

τλiετ

∫
Ω

1
p
|δui|p +

N−1∑
i=1

τ
λi+1
ετ

ε

∫
Ω

(
1
q
|∇ui|q + F (ui)

)
if u0 = u0 and Iετ (u0, . . . , uN ) .=∞ else

where λiετ = (ε/(ε + τ))i > 0. The latter functional is strictly convex and coercive and the
discrete Euler system (4)-(5) follows from ∂Iετ (u0

ε, . . . , u
N
ε ) 3 0.
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Henceforth c > 0 depends on u0 but not on ε nor τ . The classical energy estimate at the
final time reads

N−1∑
i=1

τ

∫
Ω

|δuiε|p +
∫

Ω

(
1
q
|∇uN−1

ε |q + F (uN−1
ε )

)
≤ c (6)

and follows at once by exploiting the final boundary condition (5).

A second estimate exploits the following elementary inequalities, valid indeed for all x, y ∈ R

(|x|p−2x−|y|p−2y)(x− y) ≥ cp
∣∣|x|(p−2)/2x−|y|(p−2)/2y

∣∣2, (7)∣∣|x|p−2x−|y|p−2y
∣∣ ≤ Cp(|x|(p−2)/2+|y|(p−2)/2

)∣∣|x|(p−2)/2x−|y|(p−2)/2y
∣∣ (8)

where cp
.= 4(p− 1)/p2 and Cp

.= 2(p− 1)/p.

Multiply (4) by −τδ2ui+1
ε

.= −τδ(δui+1
ε ), integrate on Ω, and sum for i = 1, . . . , N − 1,

getting

cp

N−1∑
i=1

τ

∫
Ω

ε|δ(|δui+1
ε |(p−2)/2δui+1

ε )|2
(7)

≤
N−1∑
i=1

τ

∫
Ω

εδ(|δui+1
ε |p−2δui+1

ε )δ2ui+1
ε

(4)
=

N−1∑
i=1

τ

∫
Ω

|δuiε|p−2δuiεδ
2ui+1
ε +

N−1∑
i=1

τ

∫
Ω

(−∆qu
i
ε + f(uiε))δ

2ui+1
ε

≤ 1
p

∫
Ω

|δuNε |p −
1
p

∫
Ω

|δu1
ε|p −

∫
Ω

(−∆qu0 + f(u0))δu1
ε ≤ −

1
2p

∫
Ω

|δu1
ε|p + c. (9)

We now use (8) in order to get that

|δ(|δui+1
ε |p−2δui+1

ε )|p
′

≤ Cp
′

p

(
|δui+1

ε |(p−2)/2 + |δuiε|(p−2)/2
)p′ ∣∣∣δ(|δui+1

ε |(p−2)/2δui+1
ε

)∣∣∣p′

.

Hence, by integrating on Ω and summing on i we deduce that(
N−1∑
i=1

τ

∫
Ω

|εδ(|δui+1
ε |p−2δui+1

ε )|p
′

)1/p′

≤ Cpε1/2

(N−1∑
i=1

τ

∫
Ω

|δui+1
ε |p

)(p−2)/(2p)

+

(
N−1∑
i=1

τ

∫
Ω

|δuiε|p
)(p−2)/(2p)

×
×

(
N−1∑
i=1

τ

∫
Ω

ε|δ(|ui+1
ε |(p−2)/2ui+1

ε )|2
)1/2

(6)+(9)

≤ cε1/2. (10)

By comparison in (4) and estimates (6) and (10) we get
N−1∑
i=1

τ

∫
Ω

| −∆qu
i
ε + f(uiε)|p

′
≤ c. (11)

Finally, by performing again the energy estimate (now summing for 1 ≤ i ≤ m < N − 1), we
get

max
1≤i≤N

∫
Ω

(
1
q
|∇uiε|q + F (uiε)

)
≤ c. (12)
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Estimates (6), (10)-(12) are sufficient in order to pass to the limit into (2) as τ → 0 [2].
Hence, we deduce that the (time-interpolant of the) solution of (4)-(5) converges to a solution
u of (2) and that estimate (3) holds. In order to conclude our argument, we may check that all
solutions of (2) (which have been now proved to exist) are critical for Iε [2]. As the minimizer
of Iε is unique, we deduce that it necessarily solves (2) and fulfills (3). Namely Lemma 2.1
holds true.
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