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Abstract

Let V and V ∗ be a real reflexive Banach space and its dual space respectively.
This paper is devoted to the abstract Cauchy problem for doubly nonlinear evo-
lution equations governed by subdifferential operators with non-monotone pertur-
bations of the form: ∂V ψ

t(u′(t)) + ∂V ϕ(u(t)) +B(t, u(t)) 3 f(t) in V ∗, 0 < t < T ,
u(0) = u0, where ∂V ψ

t, ∂V ϕ : V → 2V ∗
denote the subdifferential operators of

proper, lower semicontinuous and convex functions ψt, ϕ : V → (−∞,+∞], re-
spectively, for each t ∈ [0, T ], and f : (0, T ) → V ∗ and u0 ∈ V are given data.
Moreover, let B be a (possibly) multi-valued operator from (0, T ) × V into V ∗.
We present sufficient conditions for the local (in time) existence of strong solutions
to the Cauchy problem as well as for the global existence. Our framework can
cover evolution equations whose solutions might blow up in finite time and whose
unperturbed equations (i.e., B ≡ 0) might not be uniquely solved in a doubly
nonlinear setting. Our proof relies on a couple of approximations for the equation
and a fixed point argument with a multi-valued mapping. Moreover, the preceding
abstract theory is applied to doubly nonlinear parabolic equations.
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1 Introduction

Let V and V ∗ be a reflexive Banach space and its dual space, respectively, and let H be
a Hilbert space whose dual space H∗ is identified with itself such that

V ↪→ H ≡ H∗ ↪→ V ∗

with continuous and densely defined canonical injections. Let ∂V ψ
t (for each t ∈ [0, T ])

and ∂V ϕ : V → 2V ∗
stand for the subdifferential operators of proper, lower semicontin-

uous and convex functions ψt and ϕ, respectively, from V into (−∞,+∞]. Moreover,
let B be a (possibly) multi-valued mapping from (0, T ) × V into V ∗ such that B(t, ·)
might be non-monotone in V ×V ∗ for each fixed t. We discuss the existence of local and
global (in time) strong solutions to the following Cauchy problem for a doubly nonlinear
evolution equation:

(CP)

{
∂V ψ

t(u′(t)) + ∂V ϕ(u(t)) +B(t, u(t)) 3 f(t) in V ∗, 0 < t < T,
u(0) = u0,

where u′(t) = du(t)/dt, and f : (0, T ) → V ∗ and u0 ∈ V are given.
Studies of evolution equations governed by subdifferential operators were initiated

with the following simple case:

u′(t) + ∂Hϕ(u(t)) 3 0, 0 < t < T(1. 1)

in a Hilbert space H (see, e.g., Brézis [20]), and various generalized forms of (1. 1)
have been studied by many authors to reinforce the applicability of theories of evolution
equations to nonlinear PDEs. We particularly choose three directions of generalization
among successful ones in applications to nonlinear PDEs.
1. Non-monotone perturbations. The development of perturbation theory for (1. 1)
is further extending the applicability of subdifferential approaches to nonlinear PDEs.
Indeed, Navier-Stokes equation (see Ôtani-Yamada [43], Ôtani [41, 42]), Allen-Cahn
equation and Cahn-Hilliard equation (see Kenmochi et al [34]) are reduced to the per-
turbation problem for (1. 1) of the form:

u′(t) + ∂Hϕ(u(t)) +B(t, u(t)) 3 f(t)(1. 2)

with a possibly non-monotone operator B : (0, T )×H → H in a Hilbert space H. In [41],
Mitsuharu Ôtani first established an abstract theory on the existence of local and global
(in time) strong solutions to Cauchy problems for (1. 2), and his framework can cover
nonlinear PDEs whose solutions possibly blow up in finite time, e.g., degenerate parabolic
equations with blow-up terms (see also [39], [40]). Moreover, his abstract theory has
been applied to various nonlinear parabolic equations and systems such as Navier-Stokes
equation, Keller-Segel system, Allen-Cahn equation, cross-diffusion systems arising from
biomathematics and so on.
2. Doubly nonlinear evolution equation. Barbu [14], Arai [10], Senba [48] and
Colli-Visintin [24] investigated sufficient conditions for the existence of strong solutions
to Cauchy problems for doubly nonlinear evolution equations in the form

∂Hψ(u′(t)) + ∂Hϕ(u(t)) 3 f(t) in H, 0 < t < T(1. 3)
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with two subdifferential operators ∂Hψ and ∂Hϕ, and their results were applied to doubly
nonlinear parabolic equations such as

α (ut(x, t)) − div a(∇u(x, t)) 3 f(x, t), (x, t) ∈ Ω × (0, T ),(1. 4)

where Ω is a bounded domain of RN , α : R → R and a : RN → RN are maximal
monotone graphs, and f : Ω × (0, T ) → R is a given function (see also [17], [23], [4], [8],
[37], [45, Sect. 11], [11], [47], [38] and [46]).

Moreover, Grange-Mignot [30], Barbu [16] and Kenmochi-Pawlow [35] also studied
other types of doubly nonlinear evolution equations such as

v′(t) + ∂Hϕ(u(t)) 3 f(t), v(t) ∈ ∂Hψ(u(t)) in H, 0 < t < T(1. 5)

(see also [9], [25], [49], [36], [12], [53], [45, Sect. 11], [1, 2, 3], [5]).
3. Banach space framework. It helps our analysis of nonlinear PDEs to choose a
proper function space as a base space of each setting. Indeed, one can find advantages
of frameworks which admit a flexible choice of function spaces particularly in studies on
doubly nonlinear parabolic equations, e.g., (1. 4) and the following

∂

∂t
|u|p−2u(x, t) − ∆mu(x, t) = f(x, t), (x, t) ∈ Ω × (0, T ),

where p,m ∈ (1,∞) and ∆m denotes the so-called m-Laplacian given by ∆mu(x) =
div(|∇u(x)|m−2∇u(x)) (see Raviart [44], Tsutsumi [51]). However, evolution equations
governed by subdifferential operators were originally studied only in Hilbert space set-
tings. Hence several authors (e.g., Brézis [19], Kenmochi [32], Barbu [16] and Colli [23])
made attempts to establish V -V ∗ frameworks which enable us to treat evolution equa-
tions in Banach spaces V and their dual spaces V ∗ (see also Akagi-Ôtani [6, 7, 8],
Akagi [5], Aso et al [12]).

In order to cover a broader range of nonlinear PDEs, particularly, doubly nonlinear
versions of various PDEs, e.g., Allen-Cahn equations and Navier-Stokes equations, it
would be necessary to study (CP) with as general assumptions as possible. However,
there seems to be no contribution to (CP) with three options, double nonlinearity, non-
monotone perturbations, Banach space framework. The purpose of the current paper
is to present sufficient conditions for the local (in time) existence of strong solutions to
(CP) as well as for the global existence. To do so, we overcome a couple of difficulties,
e.g., the strong nonlinearity of the equation and the defect of useful properties of maxi-
mal monotone operators defined in Banach spaces (cf. maximal monotone operators in
Hilbert spaces have fine properties such as the Lipschitz continuity of their resolvents
and Yosida approximations).

It is particularly noteworthy that the following unperturbed problems corresponding
to (CP) might not be uniquely solved.

∂V ψ
t(u′(t)) + ∂V ϕ(u(t)) 3 f(t) in V ∗, 0 < t < T, u(0) = u0.(1. 6)

Indeed, a simple example of non-unique solutions was given in [23] even for the case
where V is a Hilbert space and ψt is independent of t. Following a classical approach
to perturbation problems, one employs mappings ST : g 7→ u, which maps a function
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g : (0, T ) → V ∗ to the strong solution(s) u of (1. 6) with f replaced by f−g on [0, T ], and
FT : g 7→ B(·, u(·)) to obtain a strong solution u∗ := STg∗ of (CP) with a fixed point g∗
of FT . However, since we cannot ensure the uniqueness of strong solutions of (1. 6), FT

could be a multi-valued mapping. Fixed point theorems for multi-valued mappings have
already been established, in particular, several authors extended Schauder-Tychonoff’s
fixed point theorem to multi-valued mappings (see, e.g., [27], [22], [29]). Here we note that
such fixed point theorems require the convexity of the set FTg for every g; however, the
convexity is not obvious in our case. In order to overcome such a difficulty, we introduce
approximate problems for (CP) whose solutions can be constructed by the fixed point
argument mentioned above. More precisely, the unperturbed problem corresponding to
our approximation has a unique solution, so the fixed point argument can work well for
the approximate problems. Furthermore, our unperturbed problem with approximation
could be a new example of doubly nonlinear problems with the uniqueness of solutions
(cf. [23]). Thus we can construct approximate solutions for (CP), and then, we derive
the convergence of the approximate solutions to obtain a solution of (CP) (see §4 for
more details).

We apply the preceding abstract theory to the initial-boundary value problems for
doubly nonlinear parabolic equations of degenerate type such as

(1. 7) |ut|p−2ut(x, t) − ∆mu(x, t) − |u|q−2u(x, t) = f(x, t)

for (x, t) ∈ Ω × (0, T ), where Ω is a bounded domain in RN , 1 < m, p, q < ∞ and
f : Ω × (0, T ) → R is given. Such doubly nonlinear degenerate parabolic equations can
be regarded as a special case of generalized Allen-Cahn equations due to Gurtin [31].
Indeed, the solution u(x, t) of (1. 7) corresponds to the order parameter at (x, t) generated
by a generalized gradient system A(u′(t))u′(t) = −F ′(u(t)) of the free energy

F(u) :=
1

m

∫
Ω

|∇u(x)|mdx− 1

q

∫
Ω

|u(x)|qdx−
∫

Ω

f(x, t)u(x)dx

and the constitutive modulus A(u) := |u|p−2. Moreover, we also treat a semilinear
equation with a nonlinear term involving the gradient of u, e.g.,

(1. 8) |ut|p−2ut(x, t) − ∆u(x, t) − |u|q1−2u(x, t) ± |∇u(x, t)|q2−1 = f(x, t)

with 1 < q1, q2 <∞. It is noteworthy that (1. 8) can be no longer written as a generalized
gradient system, because of the gradient nonlinearity.

This paper consists of seven sections. In Section 2 we summarize without proofs the
relevant material on maximal monotone operators and subdifferential operators. Section
3 is devoted to our main results on the existence of local and global (in time) strong
solutions of (CP). Proofs of the main results will be given in Sections 4, 5 (for the local
existence) and in Section 6 (for the global existence). Finally, in Section 7 we discuss
applications of the preceding abstract theory to nonlinear PDEs.

2 Preliminaries

In this section, several standard facts on maximal monotone operators and subdifferential
operators are given for later use.
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Let E and E∗ be a reflexive Banach space and its dual space with the norms | · |E
and | · |E∗ , respectively, and the duality pairing 〈·, ·〉. According to [13], every reflexive
Banach space can be equivalently renormed (along with its dual) to be strictly convex.
Throughout this paper, we denote by D(A) the domain of each operator A : E → 2E∗

,
and moreover, we denote by A the graph of A, that is, [u, ξ] ∈ A means u ∈ D(A) and
ξ ∈ A(u).

An operator A : E → 2E∗
is said to be monotone if 〈ξ1 − ξ2, u1 − u2〉 ≥ 0 for all

[u1, ξ1], [u2, ξ2] ∈ A, and the maximality of A is known to be equivalent to the condition
that the range of FE + A coincides with E∗, where FE denotes the duality mapping
between E and E∗, provided that E and E∗ are strictly convex (see, e.g., [21], [15]). The
following proposition is concerned with the closedness of maximal monotone operators
in an appropriate topology (see [21]).

Proposition 2.1. Let E be a reflexive Banach space. Let A : E → 2E∗
be a maximal

monotone operator and let [un, ξn] ∈ A and [u, ξ] ∈ E × E∗ be such that un → u weakly
in E and ξn → ξ weakly in E∗. Moreover, suppose that

lim sup
n→∞

〈ξn, un〉 ≤ 〈ξ, u〉.

Then it follows that [u, ξ] ∈ A and 〈ξn, un〉 → 〈ξ, u〉.
We denote by Φ(E) the set of all proper, lower semicontinuous and convex functions

φ from E into (−∞,+∞], where the “proper” means φ 6≡ ∞. For each φ ∈ Φ(E), the
effective domain D(φ) of φ is given as follows:

D(φ) := {u ∈ E;φ(u) <∞},

and the subdifferential operator ∂Eφ : E → 2E∗
;u 7→ ∂Eφ(u) of φ is defined by

∂Eφ(u) := {ξ ∈ E∗;φ(v) − φ(u) ≥ 〈ξ, v − u〉 for all v ∈ D(φ)}

with the domain D(∂Eφ) := {u ∈ D(φ); ∂Eφ(u) 6= ∅}. It is well known that every
subdifferential operator is maximal monotone (see, e.g., [21], [15]).

Now, let H be a Hilbert space whose dual space H∗ is identified with itself, and define
the subdifferential operator ∂Hφ : H → 2H of φ ∈ Φ(H) as follows:

∂Hφ(u) := {ξ ∈ H;φ(v) − φ(u) ≥ (ξ, v − u)H for all v ∈ D(φ)}

with the domain D(∂Hφ) := {u ∈ D(φ); ∂Hφ(u) 6= ∅}. Here (·, ·)H denotes the inner
product of H. Then since ∂Hφ becomes maximal monotone, for λ > 0, one can define
the resolvent Jλ : H → D(∂Hφ) and the Yosida approximation (∂Hφ)λ : H → H of ∂Hφ
by

Jλ := (I + λ∂Hφ)−1, (∂Hφ)λ := (I − Jλ)/λ,

where I stands for the identity mapping of H. Furthermore, for λ > 0, the Moreau-
Yosida regularization φλ : H → R of φ ∈ Φ(H) is given by

φλ(u) := inf
v∈H

{
1

2λ
|u− v|2H + φ(v)

}
for all u ∈ H.(2. 1)

The following proposition provides fine properties of resolvents, Yosida approximations
and Moreau-Yosida regularizations in H (see [18] for its proof).
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Proposition 2.2. Let H be a Hilbert space and let φ ∈ Φ(H). Then φλ is a Fréchet
differentiable convex function from H into R. Moreover, the infimum in (2. 1) is attained
by Jλu, where Jλ denotes the resolvent of ∂Hφ, i.e.,

φλ(u) =
1

2λ
|u− Jλu|2H + φ(Jλu) =

λ

2
|(∂Hφ)λ(u)|2H + φ(Jλu).

Furthermore, the following (i)–(iii) hold.

(i) ∂H(φλ) = (∂Hφ)λ, where ∂H(φλ) is the subdifferential (Fréchet derivative) of φλ.

(ii) φ(Jλu) ≤ φλ(u) ≤ φ(u) for all u ∈ H and λ > 0.

(iii) φλ(u) → φ(u) as λ→ 0+ for all u ∈ H.

Finally, we recall the chain rule for subdifferential operators in a Banach space setting,
and it also plays important roles to deal with evolution problems (see [32], [23], [5]).
Throughout this paper, for each p ∈ (1,∞), we denote by p′ the Hölder conjugate of p,
i.e., p′ = p/(p− 1).

Proposition 2.3. Let E be a reflexive Banach space and let p ∈ (1,∞). Let φ ∈ Φ(E)
and let u ∈ W 1,p(0, T ;E) be such that u(t) ∈ D(∂Eφ) for a.e. t ∈ (0, T ). Suppose
that there exists g ∈ Lp′(0, T ;E∗) such that g(t) ∈ ∂Eφ(u(t)) for a.e. t ∈ (0, T ). Then
the function t 7→ φ(u(t)) is absolutely continuous on [0, T ]. Moreover, let I := {t ∈
[0, T ]; u(t) ∈ D(∂Eφ), u and φ(u(·)) are differentiable at t}. Then the set [0, T ] \ I is
negligible, i.e., its Lebesgue measure is zero, and

d

dt
φ(u(t)) = 〈h, u′(t)〉 for every h ∈ ∂Eφ(u(t)) and t ∈ I.

3 Main results

Let V and V ∗ be a real reflexive Banach space and its dual space, let H be a real Hilbert
space whose dual space H∗ is identified with itself such that

V ↪→ H ≡ H∗ ↪→ V ∗(3. 1)

with continuous and densely defined canonical injections. Here we set

CH := sup
u∈V \{0}

|u|H
|u|V

> 0.

Let ψt, ϕ ∈ Φ(V ) and let ∂V ψ
t and ∂V ϕ be the subdifferential operators of ψt and ϕ,

respectively, for every t ∈ [0, T ] with T > 0. Moreover, let B be a mapping from
(0, T ) × V into 2V ∗

. We consider the following Cauchy problem.

(CP)

{
∂V ψ

t(u′(t)) + ∂V ϕ(u(t)) +B(t, u(t)) 3 f(t) in V ∗, 0 < t < T,
u(0) = u0,

where f : (0, T ) → V ∗ and u0 ∈ V are given data. Here and henceforth, we are concerned
with strong solutions of (CP) defined as follows.
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Definition 3.1. For each S ∈ (0, T ], a function u ∈ C([0, S];V ) is said to be a strong
solution of (CP) on [0, S], if the following conditions are satisfied :

(i) u is a V -valued absolutely continuous function on [0, S];

(ii) u(0) = u0;

(iii) u(t) ∈ D(∂V ϕ), u′(t) ∈ D(∂V ψ
t) for a.e. t ∈ (0, S), and there exist sections

η(t) ∈ ∂V ψ
t(u′(t)), ξ(t) ∈ ∂V ϕ(u(t)) and g(t) ∈ B(t, u(t)) such that

η(t) + ξ(t) + g(t) = f(t) in V ∗ for a.e. t ∈ (0, S);(3. 2)

(iv) the function t 7→ ϕ(u(t)) is absolutely continuous on [0, S].

Before describing our main results, let us introduce assumptions on ψt, ϕ and B for
p ∈ (1,∞) and T > 0. We first give assumptions on the coercivity and the boundedness
of ∂V ψ

t : V → V ∗ as follows.

(A1) There exist constants C1 > 0 and C2 ≥ 0 such that

C1|u|pV ≤ ψt(u) + C2 for all t ∈ [0, T ] and u ∈ D(ψt).

(A2) There exist a constant C3 ≥ 0 and m1 ∈ L1(0, T ) such that

|η|p
′

V ∗ ≤ C3ψ
t(u) +m1(t) for a.e. t ∈ (0, T ) and all [u, η] ∈ ∂V ψ

t.

Here we give a proposition, which will be used later.

Proposition 3.2. Let p ∈ (1,∞) and suppose that (A2) is satisfied. In addition, we
assume that there exists a function w : [0, T ] → V such that

(3. 3) µ0 := sup
t∈[0,T ]

{
|w(t)|V + |ψt(w(t))|

}
< +∞.

Then the following (A2)′ holds true:

(A2)′ For all ζ ∈ (0, 1), there exists Nζ ∈ L1(0, T ) depending only on ζ, p, C3,m1, µ0 such
that

(1 − ζ)ψt(u) ≤ 〈η, u〉 +Nζ(t) for all t ∈ [0, T ] and [u, η] ∈ ∂V ψ
t.

In particular, if m1 ≡ 0 and µ0 = 0, then Nζ ≡ 0 for any ζ; hence ψt(u) ≤ 〈η, u〉.

Proof. Let t ∈ [0, T ] and [u, η] ∈ ∂V ψ
t be fixed. By the definition of subdifferentials, it

then follows that

ψt(u) − ψt(w(t)) ≤ 〈η, u− w(t)〉 ≤ 〈η, u〉 + |η|V ∗ |w(t)|V
for each t ∈ [0, T ]. By (A2) and Young’s inequality, for any ζ ∈ (0, 1), there exists a
constant Cζ ≥ 0 such that

ψt(u) ≤ 〈η, u〉 + ζψt(u) + ζ
m1(t)

C3

+ Cζ sup
t∈[0,T ]

|w(t)|pV + sup
t∈[0,T ]

ψt(w(t)).

Hence setting Nζ(t) := ζm1(t)/C3 + Cζµ
p
0 + µ0, we obtain (A2)′, and moreover, we also

notice that Nζ ≡ 0 if m1 ≡ 0 and µ0 = 0.
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Remark 3.3. Mielke and Theil [37] studied the rate-independent processes generated
by some energy formulation of doubly nonlinear evolution equations with dissipation
functionals ψ homogeneous of degree 1, i.e., ψ(αu) = αψ(u) for α ≥ 0 and u ∈ V .
Unfortunately, our framework cannot handle their setting, which corresponds to the
case p = 1 in our assumptions, since this case is excluded.

We write {ψt}t∈[0,T ] ∈ Φ(V, [0, T ];α, β, `0) for functions α, β : (0, T ) → R and a
non-decreasing function `0 on [0,∞) if the following (i) and (ii) are satisfied:

(i) ψt ∈ Φ(V ) for all t ∈ [0, T ];

(ii) there exists a constant δ > 0 such that for all t0 ∈ [0, T ] and v0 ∈ D(ψt0), we can
take a function v : Iδ(t0) := [t0 − δ, t0 + δ] ∩ [0, T ] → V satisfying

|v(t) − v0|V ≤ |α(t) − α(t0)|`0(|ψt0(v0)| + |v0|V )

ψt(v(t)) ≤ ψt0(v0) + |β(t) − β(t0)|`0(|ψt0(v0)| + |v0|V )

for all t ∈ Iδ(t0).

Particularly, (ii) ensures a smooth movement of the graph for ψt in t, and this type
of assumptions was well studied by several authors (see, e.g., [32, 33]) to treat time-
dependent subdifferential operators. Then our third assumption reads,

(A3) There exist functions α, β ∈ W 1,1(0, T ) and a non-decreasing function `0 on [0,∞)
such that {ψt}t∈[0,T ] ∈ Φ(V, [0, T ];α, β, `0).

Remark 3.4. The assumption (A3) ensures that the function t 7→ ψt(u(t)) is measurable
in (0, T ) whenever u ∈ L1(0, T ;V ), and moreover, by (A3) one can always take a function
w : [0, T ] → V satisfying (3. 3) (see [8] and [32]).

Suppose that (A3) is satisfied and define Ψ : Lp(0, T ;V ) → (−∞,+∞] by

Ψ(u) :=


∫ T

0

ψt(u(t))dt if [t 7→ ψt(u(t))] ∈ L1(0, T ),

+∞ otherwise.

Then Ψ ∈ Φ(Lp(0, T ;V )). Moreover, by Proposition 1.1 of [32], we can assure that

η ∈ ∂Lp(0,T ;V )Ψ(u) if u ∈ Lp(0, T ;V ), η ∈ Lp′(0, T ;V ∗),(3. 4)

and [u(t), η(t)] ∈ ∂V ψ
t for a.e. t ∈ (0, T ).

As to ϕ, we employ the following compactness condition.

(Φ1) There exist a reflexive Banach space X and a non-decreasing function `1 in R such
that X is compactly embedded in V and

|u|X ≤ `1(ϕ(u) + |u|H) for all u ∈ D(∂V ϕ).
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We next introduce assumptions on the non-monotone operator B. Condition (B1)ε

provides some growth condition for B(t, ·) : V → V ∗ with a constant ε > 0. Condition
(B2) can be regarded as a condition on the compactness and the closedness for the
operator B : u 7→ B(·, u(·)) in the sense of multivalued operators. Moreover, to treat
multi-valued operators B : (0, T ) × V → V ∗, we also impose (B3) so that the operator
B will be well defined and convex-valued in a proper Bochner-Lebesgue space (see also
Remark 3.5).

(B1)ε D(∂V ϕ) ⊂ D(B(t, ·)) for a.e. t ∈ (0, T ). There exist mε
2 ∈ L1(0, T ) and a non-

decreasing function `ε2 on [0,∞) satisfying the following:

|g|p
′

V ∗ ≤ ε|ξ|σV ∗ + |mε
2(t)|`ε2(|ϕ(u)| + |u|V ), σ := min{2, p′}

for a.e. t ∈ (0, T ) and all u ∈ D(∂V ϕ), g ∈ B(t, u) and ξ ∈ ∂V ϕ(u).

(B2) Let S ∈ (0, T ] and let {un} and {ξn} be sequences in C([0, S];V ) and Lσ(0, S;V ∗)
with σ := min{2, p′}, respectively, such that

un → u strongly in C([0, S];V ), [un(t), ξn(t)] ∈ ∂V ϕ for a.e. t ∈ (0, S),

sup
t∈[0,S]

|ϕ(un(t))| +
∫ S

0

|u′n(t)|pHdt+

∫ S

0

|ξn(t)|σV ∗dt is bounded for all n ∈ N.

Moreover, let {gn} be a sequence in Lp′(0, S;V ∗) such that

gn(t) ∈ B(t, un(t)) for a.e. t ∈ (0, S), gn → g weakly in Lp′(0, S;V ∗).

Then {gn} is precompact in Lp′(0, S;V ∗) and g(t) ∈ B(t, u(t)) for a.e. t ∈ (0, S).

(B3) Let S ∈ (0, T ] and let u ∈ C([0, S];V )∩W 1,p(0, S;H) be such that supt∈[0,S] |ϕ(u(t))| <
+∞. Suppose that there exists ξ ∈ Lp′(0, S;V ∗) such that ξ(t) ∈ ∂V ϕ(u(t)) for
a.e. t ∈ (0, S). Then there exists a V ∗-valued strongly measurable function g such
that g(t) ∈ B(t, u(t)) for a.e. t ∈ (0, S). Moreover, the set B(t, u) is convex for all
t ∈ (0, T ) and u ∈ D(B(t, ·)).

Here we give a couple of remarks on (B1)ε–(B3).

Remark 3.5. (i) Let us show a couple of simpler (but more restrictive) alternatives
to (B2).

(B2)1 B(t, u) = B(u) is single-valued and locally uniformly continuous from V into
V ∗.

If (B2)1 is assumed, then for any sequence un → u strongly in C([0, S];V ), it follows
that gn(t) := B(un(t)) → B(u(t)) strongly in V ∗ uniformly on [0, T ]. Hence (B2)
follows. However, this condition could be somewhat restrictive in applications to
PDEs.

(B2)2 For each S ∈ (0, T ), the operator B : u 7→ B(·, u(·)) is single-valued, continu-
ous and compact from L∞(0, S;X) ∩W 1,p(0, S;H) into Lp′(0, S;V ∗).
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Let (un) be a sequence in the assumption of (B2). Then by (Φ1), we find that (un)
is bounded in L∞(0, S;X) ∩W 1,p(0, S;H). Hence by (B2)2, up to a subsequence,
we have gn := B(·, un(·)) → B(·, u) strongly in Lp′(0, S;V ∗).

(ii) Condition (B3) is not necessary to be assumed under (Φ1) and (B1)ε if X is
separable and B is single-valued and M(0, T )×B(X)-measurable, where M(0, T )
is the σ-algebra of Lebesgue measurable sets on (0, T ) and B(X) is the Borel tribe
generated by X. Indeed, the function t 7→ B(t, u(t)) is M(0, T )-measurable for
any M(0, T )-measurable function u : (0, T ) → X. Hence by (B1)ε, we deduce that
B(u) belongs to Lp′(0, T ;V ∗), provided that u satisfies all assumptions in (B3).
Moreover, B(t, u) is always convex.

(iii) Suppose that both (B1)ε and (Φ1) are satisfied. Then we get, by (Φ1),

|u|V ≤ C|u|X ≤ C`1(|ϕ(u)| + |u|H).

Hence we can derive the following (B1)′ε from (B1)ε by putting `ε3(x) := `ε2(x +
C`1(x)).

(B1)′ε D(∂V ϕ) ⊂ D(B(t, ·)) for a.e. t ∈ (0, T ). There exist mε
2 ∈ L1(0, T ) and a

non-decreasing function `ε3 on [0,∞) satisfying the following:

|g|p
′

V ∗ ≤ ε|ξ|σV ∗ + |mε
2(t)|`ε3(|ϕ(u)| + |u|H), σ := min{2, p′}

for a.e. t ∈ (0, T ) and all u ∈ D(∂V ϕ), g ∈ B(t, u) and ξ ∈ ∂V ϕ(u).

Hence we use (B1)′ε instead of (B1)ε to prove main results stated below.

Now, our result on the local (in time) existence is stated as follows:

Theorem 3.6 (Local existence). Let p ∈ (1,∞) and T > 0 be given. Suppose that (A1)–
(A3), (Φ1), (B1)ε–(B3) are all satisfied with a sufficiently small ε > 0 (the smallness
of ε is determined only from p, C1, C3 and CH). Then, for all f ∈ Lp′(0, T ;V ∗) and
u0 ∈ D(ϕ), there exists T∗ = T∗(ϕ(u0) + |u0|H + ‖f‖Lp′ (0,T ;V ∗)) ∈ (0, T ] such that (CP)

admits at least one strong solution u ∈ W 1,p(0, T∗;V ) on [0, T∗] satisfying

η, ξ, g ∈ Lp′(0, T∗;V
∗), ϕ(u(·)) ∈ W 1,1(0, T∗),

where η(t), ξ(t) and g(t) denote the sections of ∂V ψ
t(u′(t)), ∂V ϕ(u(t)) and B(t, u(t)),

respectively, as in (3. 2) for a.e. t ∈ (0, T∗).

A proof of Theorem 3.6 will be given in Sections 4 and 5; its outline will be also
shown at the beginning of §4.

As for the global (in time) existence, we have:

Theorem 3.7 (Global existence). Let p ∈ (1,∞) and T > 0 be fixed. Suppose that
(A1)–(A3), (Φ1), (B2), (B3) and the following (B4)ε are satisfied with a sufficiently
small ε > 0 (the smallness of ε is determined only from p, C1, C3 and CH).
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(B4)ε D(∂V ϕ) ⊂ D(B(t, ·)) for a.e. t ∈ (0, T ). There exists mε
3 ∈ L1(0, T ) satisfying the

following :

|g|p
′

V ∗ ≤ ε|ξ|σV ∗ + |mε
3(t)| {|ϕ(u)| + |u|pV + 1} , σ := min{2, p′}

for a.e. t ∈ (0, T ) and all u ∈ D(∂V ϕ), g ∈ B(t, u) and ξ ∈ ∂V ϕ(u).

Then, for all f ∈ Lp′(0, T ;V ∗) and u0 ∈ D(ϕ), there exists a strong solution u ∈
W 1,p(0, T ;V ) of (CP) on [0, T ] such that

η, ξ, g ∈ Lp′(0, T ;V ∗), ϕ(u(·)) ∈ W 1,1(0, T ),(3. 5)

where η(t), ξ(t) and g(t) denote the sections of ∂V ψ
t(u′(t)), ∂V ϕ(u(t)) and B(t, u(t)),

respectively, as in (3. 2) for a.e. t ∈ (0, T ).

Furthermore, the global existence is assured for small data u0 and f in a proper sense
by employing the following (B5) and (B6)ε instead of (B4)ε.

(B5) There exist a positive constant C4 and non-decreasing functions `i (i = 4, 5) on
[0,∞) such that lims→+0 `i(s) = 0 and

C4ϕ(u) ≤ 〈ξ + g, u〉 + `4(ϕ(u))ϕ(u),(3. 6)

|u|pV ≤ `5(ϕ(u))ϕ(u),(3. 7)

for a.e. t ∈ (0, T ) and all u ∈ D(∂V ϕ), ξ ∈ ∂V ϕ(u), g ∈ B(t, u).

(B6)ε There exists a non-decreasing function `ε6 on [0,∞) such that lims→+0 `
ε
6(s) = 0

and

|g|p
′

V ∗ ≤ ε|ξ|p
′

V ∗ + `ε6(ϕ(u))ϕ(u)(3. 8)

for a.e. t ∈ (0, T ) and all u ∈ D(∂V ϕ) ∩D(B(t, ·)), ξ ∈ ∂V ϕ(u), g ∈ B(t, u).

Theorem 3.8 (Global existence for small data). Let p ∈ (1,∞) and T > 0 be fixed.
Suppose that ψt(0) ≡ 0, (A1)–(A3), (Φ1), (B1)ε–(B3) and (B5), (B6)ε are all satisfied
with C2 = 0, m1 ≡ 0 and a sufficiently small ε > 0 (the smallness of ε is determined
only from p, C1, C3 and CH). Then there exists δ > 0 independent of T such that for
all f ∈ Lp′(0, T ;V ∗) and u0 ∈ D(ϕ) satisfying ‖f‖? + ϕ(u0) < δ, where ‖f‖? is given by

‖f‖? :=


sup

t∈[1,T ]

∫ t

t−1

|f(τ)|p
′

V ∗dτ if 1 ≤ T,∫ T

0

|f(τ)|p
′

V ∗dτ if 0 < T < 1,

(3. 9)

the Cauchy problem (CP) admits a strong solution u ∈ W 1,p(0, T ;V ∗) on [0, T ] and (3. 5)
holds true.
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Remark 3.9. We can assume that ψt ≥ 0 and ϕ ≥ 0 without any loss of generality
in our proofs of the main results. Indeed, putting ψ̂t := ψt + C2 and using (A1), we
find that ψ̂t ≥ 0, D(ψ̂t) = D(ψt), D(∂V ψ̂

t) = D(∂V ψ
t) and ∂V ψ̂

t = ∂V ψ
t. As for ϕ,

from the fact that ϕ ∈ Φ(V ) and (Φ1), the extension by infinity ϕ̃ of ϕ onto H (see
also (4. 1) below) belongs to Φ(H). Hence there exist u∗ ∈ H and µ ∈ R such that
ϕ̃(u) ≥ (u∗, u)H +µ for all u ∈ H (see, e.g., Proposition 2.1 of [15, p. 51]). Thus we have
ϕ̂(u) := ϕ(u)− (u∗, u)H −µ ≥ 0 for all u ∈ V , and moreover, it holds that D(ϕ̂) = D(ϕ),
D(∂V ϕ̂) = D(∂V ϕ) and ∂V ϕ̂ = ∂V ϕ − u∗. Therefore the evolution equation of (CP) is
equivalent to the following:

∂V ψ̂
t(u′(t)) + ∂V ϕ̂(u(t)) +B(t, u(t)) 3 f̂(t) := f(t) − u∗.

Moreover, (A1)–(A3), (B1)ε–(B4)ε and (Φ1) are all satisfied with ψt and ϕ replaced by

ψ̂t and ϕ̂ respectively. In particular, if (B5) is satisfied, it then follows from (3. 7) that
ϕ ≥ 0 without any replacement of ϕ.

In the rest of this paper, we denote by C a non-negative constant, which does not
depend on the elements of the corresponding space or set and may vary from line to line.

4 Approximate problems for (CP)

Our proof of Theorem 3.6 is divided into two steps. In the first step, we propose ap-
proximate problems for (CP) and construct their solutions by employing Kakutani-Fan’s
fixed point theorem for multi-valued mappings. To do so, we first define the extension
of ϕ onto H as follows:

ϕ̃(u) :=

{
ϕ(u) if u ∈ V,
+∞ if u ∈ H \ V.(4. 1)

Then the assumption (Φ1) yields ϕ̃ ∈ Φ(H). We now introduce approximate problems
for (CP) as follows:

(CP)λ

{
λu′(t) + ∂V ψ

t(u′(t)) + ∂Hϕ̃λ(u(t)) +B(t, Jλu(t)) 3 f(t) in V ∗, 0 < t < T,
u(0) = u0,

where Jλ and ∂Hϕ̃λ denote the resolvent and the Yosida approximation of ∂Hϕ̃ respec-
tively. Before discussing the existence of strong solutions for (CP)λ, we first prove in §4.1
the existence and uniqueness of strong solutions for the following unperturbed problems
with an arbitrary function g ∈ Lp′(0, T ;V ∗):

(CP)λ,g

{
λu′(t) + ∂V ψ

t(u′(t)) + ∂Hϕ̃λ(u(t)) + g(t) 3 f(t) in V ∗, 0 < t < T,
u(0) = u0.

We next define the solution operator ST : Lp′(0, T ;V ∗) → W 1,p(0, T ;V ), which maps g
into the unique strong solution u of (CP)λ,g on [0, T ]. In order to prove the existence
of local (in time) strong solutions for (CP)λ, we find a fixed point of the mapping

FT0 : Lp′(0, T0;V
∗) → 2Lp′ (0,T0;V ∗); g 7→ FT0g given by

FT0g := {h ∈ Lp′(0, T0;V
∗);h(t) ∈ B(t, Jλ(ST0g)(t)) for a.e. t ∈ (0, T0)}
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for some T0 ∈ (0, T ] independent of λ. Indeed, for every fixed point g∗ of FT0 , the strong
solution u∗ := ST0g∗ of (CP)λ,g∗

satisfies B(t, Jλu∗(t)) 3 g∗(t) for a.e. t ∈ (0, T0). Hence
u∗ also becomes a strong solution of (CP)λ on [0, T0]. The detail of our proof for the
existence of fixed points of FT0 will be given in §4.2.

The second step is devoted to the limiting procedure of strong solutions uλ for (CP)λ

as λ→ +0. To do so, we establish a priori estimates for uλ (see §5).

Remark 4.1. For the case where V = V ∗ = H is a Hilbert space (see [11]), one can
more easily prove the uniqueness of strong solutions for (CP)λ,g. Indeed, (CP)λ,g can be
rewritten into

u′(t) = (λI + ∂Hψ
t)−1 (f(t) − g(t) − ∂Hϕ̃λ(u(t))) in H, 0 < t < T,

and we observe that the mapping u 7→ (λI + ∂Hψ
t)−1 (f(t) − g(t) − ∂Hϕ̃λ(u)) becomes

Lipschitz continuous in H for every t ∈ [0, T ]. Hence the uniqueness of strong solutions
follows immediately. However, for the case where V is not a Hilbert space, the mapping
(λI + ∂V ψ

t)−1 : V ∗ → V is no longer Lipschitz continuous.

4.1 Unperturbed problem

In this subsection, the existence and uniqueness of strong solutions are proved for the
unperturbed problems (CP)λ,g.

Theorem 4.2. Let T > 0 and p ∈ (1,∞) be fixed. Suppose that (A1)–(A3) and (Φ1)
are satisfied. Then, for each λ ∈ (0,∞), f, g ∈ Lp′(0, T ;V ∗) and u0 ∈ D(ϕ), the Cauchy
problem (CP)λ,g admits a unique strong solution u ∈ W 1,p(0, T ;V ) ∩W 1,2(0, T ;H) on
[0, T ] such that

Jλu(·) ∈ C([0, T ];V ) ∩W 1,p(0, T ;H), ϕ̃λ(u(·)) ∈ W 1,1(0, T ), η ∈ Lp′(0, T ;V ∗),

where η(t) denotes the section of ∂V ψ
t(u′(t)) such that λu′(t)+η(t)+∂Hϕ̃λ(u(t))+g(t) =

f(t) for a.e. t ∈ (0, T ).

Proof. We first prove the uniqueness part. Let u1 and u2 be strong solutions for (CP)λ,g

on [0, T ] and put w := u1 − u2. We then see that

λw′(t) + η1(t) − η2(t) + ∂Hϕ̃λ(u1(t)) − ∂Hϕ̃λ(u2(t)) 3 0,

where ηi(t) := f(t) − g(t) − ∂Hϕ̃λ(ui(t)) − λu′i(t) ∈ ∂V ψ
t(u′i(t)) (i = 1, 2). Multiplying

this by w′(t), we can deduce that

λ |w′(t)|2H + 〈η1(t) − η2(t), w
′(t)〉

= − (∂Hϕ̃λ(u1(t)) − ∂Hϕ̃λ(u2(t)), w
′(t))H ≤ 1

λ
|w(t)|H |w′(t)|H .

Using the monotonicity of ∂V ψ
t, we have

λ |w′(t)|2H ≤ 1

λ
|w(t)|H |w′(t)|H ,
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which implies

d

dt
|w(t)|H ≤ |w′(t)|H ≤ 1

λ2
|w(t)|H .

Therefore integrating this over (0, t), we get

|w(t)|H ≤ |w(0)|H +
1

λ2

∫ t

0

|w(τ)|Hdτ for all t ∈ [0, T ],

which together with Gronwall’s inequality implies

|w(t)|H ≤ |w(0)|H exp

(
t

λ2

)
for all t ∈ [0, T ].

Thus the uniqueness of strong solutions follows, provided that λ > 0.

Remark 4.3. Several criteria have been provided for the uniqueness of solutions in [24]
and [23] (see also [37]). However, (CP)λ,g could not be classified into their categories.
We emphasize that (CP)λ,g is truly doubly nonlinear, i.e., both operators acting on u(t)
and u′(t), respectively, are nonlinear and not self-adjoint, but its solution is unique.

As for the existence of strong solutions for (CP)λ,g, we further introduce the following
approximate problems in H:

(CP)H
λ,gn

{
λu′n(t) + ∂Hψ̃

t(u′n(t)) + ∂Hϕ̃λ(un(t)) + gn(t) 3 fn(t) in H, 0 < t < T,
un(0) = u0,

where ψ̃t denotes the extension of ψt onto H defined as in (4. 1), and {fn} and {gn} are
approximate sequences in C([0, T ];H) such that

fn → f and gn → g strongly in Lp′(0, T ;V ∗) as n→ ∞.

Here we remark that (A1) implies ψ̃t ∈ Φ(H) for all t ∈ [0, T ], so that ∂Hψ̃
t becomes

maximal monotone in H. Then (CP)H
λ,gn

can be rewritten into

u′n(t) = Fn(t, un(t)), un(0) = u0

with the mapping Fn : [0, T ] ×H → H defined by

Fn : (t, u) 7→
(
λI + ∂Hψ̃

t
)−1

(fn(t) − gn(t) − ∂Hϕ̃λ(u)) .

Then since ∂Hϕ̃λ and (λI + ∂Hψ̃
t)−1 are Lipschitz continuous in H, so is Fn(t, ·) for all

t ∈ [0, T ]. By Lemma 2.9 of [8], we can deduce from (A3) that the function t 7→ Fn(t, u)
is continuous in [0, T ] for all u ∈ H. Hence the existence and uniqueness of strong
solutions un ∈ C1([0, T ];H) for (CP)H

λ,gn
on [0, T ] are ensured by Cauchy-Lipschitz-

Picard’s existence theorem with obvious modifications (see, e.g., Corollary 1.1 of [20]).
Furthermore, as in [8, p. 694], we can prove that u′ is a V -valued weakly continuous
function on [0, T ].

We next establish a priori estimates for un in the following lemmas.
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Lemma 4.4. There exists a constant M ≥ 0 such that for all n ∈ N, all strong solutions
un of (CP)H

λ,gn
on [0, T ] satisfy

λ

∫ T

0

|u′n(t)|2Hdt+

∫ T

0

ψt(u′n(t))dt+ sup
t∈[0,T ]

ϕ̃λ(un(t))(4. 2)

≤ M
{
ϕ(u0) + C2T + |N 1

2
|L1(0,T ) + ‖fn − gn‖p′

Lp′ (0,T ;V ∗)

}
with a constant M = M(p, C1) depending only on p and C1.

Proof. Multiplying (CP)H
λ,gn

by u′n(t) and using Proposition 2.3, we get

λ|u′n(t)|2H + 〈ηn(t), u′n(t)〉 +
d

dt
ϕ̃λ(un(t)) = 〈fn(t) − gn(t), u′n(t)〉,

where ηn(t) := fn(t) − gn(t) − ∂Hϕ̃λ(un(t)) − λu′n(t) ∈ ∂Hψ̃
t(u′n(t)) ⊂ ∂V ψ

t(u′n(t)), for
a.e. t ∈ (0, T ). Then, by virtue of (A2)′ with ζ = 1/2, it follows that

λ|u′n(t)|2H +
1

2
ψt(u′n(t)) +

d

dt
ϕ̃λ(un(t))

≤ N 1
2
(t) + c0

(
|fn(t) − gn(t)|p

′

V ∗ + C2

)
+

1

4
ψt(u′n(t))

with a constant c0 = c0(p, C1) depending only on p and C1. Thus

λ|u′n(t)|2H +
1

4
ψt(u′n(t)) +

d

dt
ϕ̃λ(un(t)) ≤ N 1

2
(t) + c0

(
|fn(t) − gn(t)|p

′

V ∗ + C2

)
.

Integrating this over (0, t), we have

λ

∫ t

0

|u′n(τ)|2Hdτ +
1

4

∫ t

0

ψτ (u′n(τ))dτ + ϕ̃λ(un(t))

≤ ϕ(u0) + |N 1
2
|L1(0,T ) + c0

(
‖fn − gn‖p′

Lp′ (0,T ;V ∗)
+ C2T

)
for all t ∈ [0, T ], since Proposition 2.2 gives ϕ̃λ(u0) ≤ ϕ̃(u0) = ϕ(u0).

Lemma 4.5. There exist constants C and Cλ such that

sup
t∈[0,T ]

|un(t)|V +

∫ T

0

|u′n(t)|pV dt ≤ C,(4. 3)

sup
t∈[0,T ]

|Jλun(t)|H +

∫ T

0

∣∣∣∣ ddtJλun(t)

∣∣∣∣p
H

dt ≤ C,(4. 4) ∫ T

0

|ηn(t)|p
′

V ∗dt ≤ C,(4. 5)

sup
t∈[0,T ]

|∂Hϕ̃λ(un(t))|H ≤ Cλ,(4. 6)

where C is independent of λ, but Cλ may not.
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Proof. By (A1) and (4. 2), we get
∫ T

0
|u′n(t)|pV dt ≤ C. Moreover, we note that

|un(t)|V = |u0|V +

∫ t

0

d

dτ
|un(τ)|V dτ ≤ |u0|V +

∫ t

0

|u′n(τ)|V dτ,

which implies (4. 3).
Since the resolvent Jλ is non-expansive in H, it follows that |Jλun(t+h)−Jλun(t)|H ≤

|un(t+ h) − un(t)|H for all t, t+ h ∈ [0, T ], which implies∫ T

0

∣∣∣∣ ddtJλun(t)

∣∣∣∣p
H

dt ≤
∫ T

0

|u′n(t)|pHdt ≤ C.

Moreover, as in the proof of (4. 3), we also derive that supt∈[0,T ] |Jλun(t)|H ≤ C.
By virtue of the assumption (A2),

|ηn(t)|p
′

V ∗ ≤ C3ψ
t(u′n(t)) +m1(t)

for a.e. t ∈ (0, T ). Thus (4. 2) also implies (4. 5).
Moreover, since ∂Hϕ̃λ is Lipschitz continuous in H, we can deduce that

|∂Hϕ̃λ(un(t))|H ≤ Cλ (|un(t)|H + 1) ,

which together with (4. 3) yields (4. 6).

From these a priori estimates, we can derive the following convergences.

Lemma 4.6. There exist a subsequence {n′} of {n}, u ∈ W 1,p(0, T ;V ) ∩W 1,2(0, T ;H)
and η ∈ Lp′(0, T ;V ∗) such that

un′ → u weakly in W 1,p(0, T ;V ) ∩W 1,2(0, T ;H),(4. 7)

ηn′ → η weakly in Lp′(0, T ;V ∗),(4. 8)

∂Hϕ̃λ(un′(·)) → ∂Hϕ̃λ(u(·)) weakly in L2(0, T ;H),(4. 9)

Jλun′(·) → Jλu(·) weakly in W 1,p(0, T ;H),(4. 10)

strongly in C([0, T ];V ).(4. 11)

Hence we have ϕ̃λ(u(·)) ∈ W 1,1(0, T ) and λu′(t) + η(t) + ∂Hϕ̃λ(u(t)) + g(t) = f(t) for
a.e. t ∈ (0, T ).

Proof. By Lemmas 4.4 and 4.5, there exist u ∈ W 1,p(0, T ;V ) ∩W 1,2(0, T ;H) and η ∈
Lp′(0, T ;V ∗) such that (4. 7)–(4. 8) hold, and moreover, there exist ξ ∈ L2(0, T ;H) and
v ∈ W 1,p(0, T ;H) such that

∂Hϕ̃λ(un′(·)) → ξ weakly in L2(0, T ;H),(4. 12)

Jλun′(·) → v weakly in W 1,p(0, T ;H).(4. 13)

By Proposition 2.2 and Lemma 4.4, we see that

ϕ(Jλun(t)) = ϕ̃(Jλun(t)) ≤ ϕ̃λ(un(t)) ≤ C
{
ϕ(u0) + 1 + ‖fn − gn‖p′

Lp′ (0,T ;V ∗)

}
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for each t ∈ [0, T ], which together with (4. 4) and (Φ1) implies that {Jλun(·)} is bounded
in L∞(0, T ;X) ∩W 1,p(0, T ;H). Therefore since X is compactly embedded in V , and V
is continuously embedded in H, Theorem 5 of [50] ensures that

Jλun′(·) → v strongly in C([0, T ];V ).(4. 14)

Hence since ∂Hϕ̃λ(un(t)) ∈ ∂Hϕ̃(Jλun(t)), by Proposition 1.1 of [32] and Proposition
2.1 of Section 2, we can derive from (4. 12) and (4. 14) that ξ(t) ∈ ∂Hϕ̃(v(t)) for a.e.
t ∈ (0, T ).

Now, it remains to prove that v(t) = Jλu(t) and ξ(t) = ∂Hϕ̃λ(u(t)) for a.e. t ∈ (0, T ).
To this end, from the definition of resolvents and Yosida approximations (see §2), we
have Jλun′(t) + λ∂Hϕ̃λ(un′(t)) = un′(t) for a.e. t ∈ (0, T ). Passing to the limit as
n′ → ∞, we can deduce that v(t) + λξ(t) = u(t) for a.e. t ∈ (0, T ), and therefore,
since ξ(t) ∈ ∂Hϕ̃(v(t)), we can deduce that v(t) = Jλu(t) and ξ(t) = ∂Hϕ̃λ(u(t)) for a.e.
t ∈ (0, T ). Moreover, by Proposition 2.3, it follows that

d

dt
ϕ̃λ(u(·)) = (ξ(·), u′(·))H ∈ L1(0, T ),

which implies ϕ̃λ(u(·)) ∈ W 1,1(0, T ).

We next verify that the limit u satisfies the initial condition u(0) = u0, and moreover,
the pointwise convergence of un′ at each t ∈ [0, T ] is also derived in the following lemma.

Lemma 4.7. The limit u of un′ obtained in Lemma 4.6 by choosing the subsequence {n′}
of {n} satisfies

u(t) → u0 strongly in V as t→ +0.

Furthermore, for each t ∈ [0, T ], it follows that

un′(t) → u(t) weakly in V.(4. 15)

Proof. By (4. 3), for any q ∈ (1,∞), we can take a subsequence {nq} of {n} such that
unq → u weakly in Lq(0, t;V ) for all t ∈ (0, T ). Hence we have, by (4. 3),

‖u− u0‖Lq(0,t;V ) ≤ lim inf
nq→∞

‖unq − u0‖Lq(0,t;V )

= lim inf
nq→∞

(∫ t

0

∣∣∣∣∫ τ

0

u′nq(s)ds

∣∣∣∣q
V

dτ

)1/q

≤ C

(
p′

q + p′

)1/q

t1/q+1/p′

for all q ∈ (1,∞). Therefore passing to the limit as q → ∞, since u ∈ C([0, T ];V ), we
can deduce that, for each t ∈ [0, T ],

|u(t) − u0|V ≤ sup
τ∈[0,t]

|u(τ) − u0|V = lim
q→∞

‖u− u0‖Lq(0,t;V ) ≤ Ct1/p′ ,

which implies that u(t) → u0 strongly in V as t→ +0.
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Moreover, since u(0) = un′(0) = u0, we get, by (4. 7),

〈w, un′(t) − u(t)〉 =

∫ t

0

〈w, u′n′(τ) − u′(τ)〉dτ → 0 for all w ∈ V ∗ and t ∈ [0, T ],

which implies (4. 15).

Finally, we prove that η(t) ∈ ∂V ψ
t(u′(t)) for a.e. t ∈ (0, T ) to close our proof of

Theorem 4.2. Multiply ηn(t) by u′n(t) and integrate this over (0, T ). By Proposition 2.3,
it then follows from (CP)H

λ,gn
that∫ T

0

〈ηn(t), u′n(t)〉dt

=

∫ T

0

〈fn(t) − gn(t), u′n(t)〉dt− ϕ̃λ(un(T )) + ϕ̃λ(u0) − λ

∫ T

0

|u′n(t)|2Hdt.

Hence, by Lemmas 4.6 and 4.7, we get

lim sup
n′→∞

∫ T

0

〈ηn′(t), u′n′(t)〉dt

≤
∫ T

0

〈f(t) − g(t), u′(t)〉dt− ϕ̃λ(u(T )) + ϕ̃λ(u0) − λ

∫ T

0

|u′(t)|2Hdt

=

∫ T

0

〈f(t) − g(t) − ∂Hϕ̃λ(u(t)) − λu′(t), u′(t)〉dt =

∫ T

0

〈η(t), u′(t)〉dt,

which together with (4. 7) and (4. 8) implies η ∈ ∂Lp(0,T ;V )Ψ(u′) (see Proposition 2.1).
Consequently, we can deduce from (3. 4) that [u′(t), η(t)] ∈ ∂V ψ

t for a.e. t ∈ (0, T ). This
completes our proof for Theorem 4.2.

4.2 Perturbed problem

This subsection is devoted to proving the existence of local (in time) strong solutions for
(CP)λ. As was mentioned in the beginning of Section 4, we shall obtain a fixed point

g∗ of the mapping FT0 : Lp′(0, T0;V
∗) → 2Lp′ (0,T0;V ∗) for some T0 ∈ (0, T ] independent of

λ by using the following Kakutani-Fan’s fixed point theorem for multi-valued mappings
(see Corollary 2 to Theorem 6.3 of [22, p. 75] for more detail):

Proposition 4.8. Let K be a non-empty compact convex subset of a locally convex
topological vector space E. Let T be an upper semicontinuous mapping from K into 2E

such that T x is a closed convex subset of E and T x ∩K 6= ∅ for each x ∈ K. Then T
has a fixed point x∗ ∈ K, that is, T x∗ 3 x∗.

We also emphasize that T0 is independent of λ, and this fact plays a crucial role in
the limiting process, which will be described in §5.

Now our goal of this subsection is the following:
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Theorem 4.9. Let T > 0 and p ∈ (1,∞) be fixed. Suppose that (A1)–(A3), (Φ1)
and (B1)ε–(B3) are all satisfied with a sufficiently small ε > 0 (the smallness of ε is
determined only from p, C1, C3 and CH). Then for any f ∈ Lp′(0, T ;V ∗) and u0 ∈ D(ϕ),
there exists T0 = T0(‖f‖Lp′ (0,T ;V ∗) + ϕ(u0) + |u0|H) > 0 such that for each λ ∈ (0, 1],

the Cauchy problem (CP)λ admits at least one strong solution u ∈ W 1,p(0, T0;V ) ∩
W 1,2(0, T0;H) on [0, T0] satisfying

Jλu(·) ∈ C([0, T0];V ) ∩W 1,p(0, T0;H),

ϕ̃λ(u(·)) ∈ W 1,1(0, T0), η, g ∈ Lp′(0, T0;V
∗),

where η(t) and g(t) stand for the sections of ∂V ψ
t(u′(t)) and B(t, Jλu(t)), respectively,

such that λu′(t) + η(t) + ∂Hϕ̃λ(u(t)) + g(t) = f(t) for a.e. t ∈ (0, T0).

Proof. Repeating the same argument as in the proof of Lemma 4.4, we can immediately
derive the following lemma.

Lemma 4.10. There exists a constant M ≥ 0 such that for all S ∈ (0, T ] and g ∈
Lp′(0, S;V ∗), every strong solution u of (CP)λ,g on [0, S] satisfies

λ

∫ S

0

|u′(t)|2Hdt+

∫ S

0

ψt(u′(t))dt+ sup
t∈[0,S]

ϕ̃λ(u(t))(4. 16)

≤ M
{
ϕ(u0) + C2S + |N 1

2
|L1(0,S) + ‖f − g‖p′

Lp′ (0,S;V ∗)

}
with a constant M = M(p, C1) depending only on p and C1.

By Theorem 4.2, (B1)′ε and (B3), we can assert that FSg is non-empty for every
S ∈ (0, T ] and g ∈ Lp′(0, S;V ∗). We next prove the closedness of the graph of FS in
Lp′(0, S;V ∗).

Lemma 4.11. Let S ∈ (0, T ] be arbitrarily given. Let [gn, hn] ∈ FS be such that gn → g
and hn → h strongly in Lp′(0, S;V ∗) as n→ ∞. Then it follows that [g, h] ∈ FS.

Proof. Let un := SSgn and let ηn(t) := f(t)−gn(t)−∂Hϕ̃λ(un(t))−λu′n(t) ∈ ∂V ψ
t(u′n(t)).

Then by Lemma 4.10, we have

λ

∫ S

0

|u′n(t)|2Hdt+

∫ S

0

ψt(u′n(t))dt+ sup
t∈[0,S]

ϕ̃λ(un(t))(4. 17)

≤ C
{
ϕ(u0) + 1 + ‖f − gn‖p′

Lp′ (0,S;V ∗)

}
≤ C,

which also implies

sup
t∈[0,S]

|un(t)|V +

∫ S

0

|u′n(t)|pV dt ≤ C, sup
t∈[0,S]

|∂Hϕ̃λ(un(t))|H ≤ Cλ,(4. 18) ∫ S

0

|ηn(t)|p
′

V ∗dt ≤ C,(4. 19)

sup
t∈[0,S]

|Jλun(t)|H +

∫ S

0

∣∣∣∣ ddtJλun(t)

∣∣∣∣p
H

dt ≤ C.(4. 20)
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Hence by (Φ1), the sequence {Jλun(·)} is bounded in L∞(0, S;X). Thus just as in the
proof of Lemma 4.6, by virtue of Theorem 5 of [50], there exists a subsequence {n′} of
{n} such that Jλun′(·) → Jλu(·) strongly in C([0, S];V ) as n′ → ∞, and moreover, we
can also obtain

un′ → u weakly in W 1,p(0, S;V ) ∩W 1,2(0, S;H),

un′(t) → u(t) weakly in V for each t ∈ [0, S],

∂Hϕ̃λ(un′(·)) → ∂Hϕ̃λ(u(·)) weakly in L2(0, S;H),

Jλun′(·) → Jλu(·) weakly in W 1,p(0, S;H),

ηn′ → η weakly in Lp′(0, S;V ∗)

for some u ∈ W 1,p(0, S;V ) ∩ W 1,2(0, S;H) and η ∈ Lp′(0, S;V ∗). Furthermore, since
gn → g strongly in Lp′(0, S;V ∗), we get η(t) = f(t) − g(t) − ∂Hϕ̃λ(u(t)) − λu′(t) ∈
∂V ψ

t(u′(t)) for a.e. t ∈ (0, S). Therefore u becomes a strong solution of (CP)λ,g on
[0, S]. Hence we have u = SSg.

Now we recall the assumptions that hn → h strongly in Lp′(0, S;V ∗) and hn(t) ∈
B(t, Jλun(t)) for a.e. t ∈ (0, S). Therefore noting that (4. 17) gives

sup
t∈[0,S]

ϕ(Jλun(t)) ≤ sup
t∈[0,S]

ϕ̃λ(un(t)) ≤ C

and that ∂Hϕ̃λ(un(t)) ∈ ∂Hϕ̃(Jλun(t)) ⊂ ∂V ϕ(Jλun(t)), we can derive that h(t) ∈
B(t, Jλu(t)) for a.e. t ∈ (0, S) from (4. 18), (4. 20) and (B2). Consequently, we can
deduce that [g, h] ∈ FS.

Thus we have:

Lemma 4.12. The following (i)–(iii) hold true.

(i) Let R ≥ ‖f‖p′

Lp′ (0,T ;V ∗)
+ ϕ(u0) + |m1|L1(0,T ) + |N 1

2
|L1(0,T ) + T (C2 + 1) be fixed.

Then there exists a constant T0 = T0(‖f‖Lp′ (0,T ;V ∗) + R + ϕ(u0) + |u0|H) ∈ (0, T ]

independent of λ ∈ (0, 1] such that FT0B
T0
R ⊂ BT0

R , where

BT0
R :=

{
g ∈ Lp′(0, T0;V

∗);

∫ T0

0

|g(t)|p
′

V ∗dt ≤ R

}
;

(ii) Let QT0
R := conv(FT0B

T0
R ) be the closed convex hull of FT0B

T0
R in Lp′(0, T0;V

∗).
Then FT0Q

T0
R ⊂ QT0

R , and QT0
R is compact in Lp′(0, T0;V

∗);

(iii) The restriction of FT0 to QT0
R is an upper-semicontinuous mapping from QT0

R into

2Lp′ (0,T0;V ∗).

Proof. Proof of (i). Let T0 ∈ (0, T ] be a number which will be determined later. Let
g ∈ BT0

R and let u = ST0g, i.e., u is a strong solution of (CP)λ,g on [0, T0]. We can then
derive from (CP)λ,g that

|∂Hϕ̃λ(u(t))|V ∗ ≤ |f(t)|V ∗ + |g(t)|V ∗ + λ|u′(t)|V ∗ + |η(t)|V ∗ ,
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where η(t) := f(t) − g(t) − ∂Hϕ̃λ(u(t)) − λu′(t) ∈ ∂V ψ
t(u′(t)). Putting σ := min{2, p′},

we get, by (A2)∫ T0

0

|∂Hϕ̃λ(u(t))|σV ∗dt

≤ c1

{∫ T0

0

|f(t)|p
′

V ∗dt+

∫ T0

0

|g(t)|p
′

V ∗dt+ λ2

∫ T0

0

|u′(t)|2Hdt

+

∫ T0

0

ψt(u′(t))dt+ |m1|L1(0,T0) + T0

}
,

where c1 = c1(p, C3, CH) is a constant depending only on p, C3 and CH .
Let h ∈ FT0g be arbitrarily given, that is, h ∈ Lp′(0, T0;V

∗) and h(t) ∈ B(t, Jλu(t))
for a.e. t ∈ (0, T0). Since ∂Hϕ̃λ(u(t)) ∈ ∂V ϕ(Jλu(t)), by (B1)′ε and Lemma 4.10, it
follows that∫ T0

0

|h(t)|p
′

V ∗dt

≤ εc1

{∫ T

0

|f(t)|p
′

V ∗dt+

∫ T

0

|g(t)|p
′

V ∗dt+ λ2

∫ T0

0

|u′(t)|2Hdt

+

∫ T0

0

ψt(u′(t))dt+ |m1|L1(0,T0) + T0

}

+

(∫ T0

0

|mε
2(t)|dt

)
`ε3

(
sup

t∈[0,T0]

{ϕ̃λ(u(t)) + |Jλu(t)|H}

)

≤ εc2

{
‖f‖p′

Lp′ (0,T ;V ∗)
+R + ϕ(u0) + |m1|L1(0,T ) + |N 1

2
|L1(0,T ) + T (C2 + 1)

}
+

(∫ T0

0

|mε
2(t)|dt

)
`ε3

(
C{‖f‖p′

Lp′ (0,T ;V ∗)
+R + ϕ(u0) + |u0|H + 1}

)
,

where c2 = c2(p, C1, C3, CH) is a constant depending only on p, C1, C3 and CH . Here we
also remark that the constant C above is independent of λ ∈ (0, 1] and T0. We set ε > 0
such that

(4. 21) εc2 ≤
1

4
,

then εc2{‖f‖p′

Lp′ (0,T ;V ∗)
+R+ϕ(u0) + |m1|L1(0,T ) + |N 1

2
|L1(0,T ) + T (C2 + 1)} ≤ R/2. Since

mε
2 ∈ L1(0, T ), we can take T0 ∈ (0, T ] independent of λ such that(∫ T0

0

|mε
2(t)|dt

)
`ε3

(
C{‖f‖p′

Lp′ (0,T ;V ∗)
+R + ϕ(u0) + |u0|H + 1}

)
≤ R/2.

It then follows that ∫ T0

0

|h(t)|p
′

V ∗dt ≤ R,
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which proves (i).
Proof of (ii). Since BT0

R is convex and closed in Lp′(0, T0;V
∗), (i) gives

QT0
R := conv(FT0B

T0
R ) ⊂ conv(BT0

R ) = BT0
R .

Hence it follows that FT0Q
T0
R ⊂ FT0B

T0
R ⊂ QT0

R .
It now remains to prove that QT0

R is compact in Lp′(0, T0;V
∗). To this end, we claim

that FT0B
T0
R is precompact in Lp′(0, T0;V

∗). Indeed, let {hn} be a sequence in FT0B
T0
R .

Then (i) implies that {hn} is bounded in Lp′(0, T0;V
∗). We can take a sequence {gn}

in BT0
R such that hn ∈ FT0gn, i.e., hn(t) ∈ B(t, Jλun(t)) for a.e. t ∈ (0, T0), where

un := ST0gn. Since {gn} is bounded in Lp′(0, T0;V
∗), by Lemma 4.10, we can derive that

{Jλun(·)} and {ϕ(Jλun(·))} are bounded in W 1,p(0, T0;H) and L∞(0, T0), respectively,
for all n ∈ N, and that {Jλun(·)} is precompact in C([0, T0];V ). Moreover, by (CP)λ,gn

,
we find that {∂Hϕ̃λ(un(·))} is bounded in Lσ(0, T0;V

∗). Thus (B2) implies that {hn} is
precompact in Lp′(0, T0;V

∗), and so is FT0B
T0
R . Therefore by Mazur’s theorem (see, e.g,

(C.4) Theorem of [29, p. 603]), QT0
R becomes compact in Lp′(0, T0;V

∗).
Proof of (iii). Applying Lemma 4.11 with gn ≡ g and S = T0, we can deduce that the
set FT0g is closed in Lp′(0, T0;V

∗). Hence by virtue of Lemma 4.11 and the following
proposition (see Proposition 6.2 of [22, p. 77] for its proof), it follows from (ii) that FT0

is upper semicontinuous from QT0
R into 2Q

T0
R .

Proposition 4.13. Let K and K1 be two compact topological spaces, and let T be a
mapping from K into 2K1 such that T x is closed for each x ∈ K. Then T is upper-
semicontinuous from K into 2K1 if and only if the graph of T is a closed subset in
K ×K1.

Furthermore, since the topology of QT0
R is induced by Lp′(0, T0;V

∗), it also holds true

that FT0 is upper semicontinuous from QT0
R into 2Lp′ (0,T0;V ∗).

Now, let g ∈ QT0
R be fixed. Then for arbitrary h1, h2 ∈ FT0g and θ ∈ [0, 1], we have

(1 − θ)h1 + θ2h2 ∈ Lp′(0, T0;V
∗), and moreover, by (B3), we see (1 − θ)h1(t) + θh2(t) ∈

B(t, Jλ(ST0g)(t)) for a.e. t ∈ (0, T0). Hence it follows that (1− θ)h1 + θh2 ∈ FT0g, which
implies that the set FT0g is convex. Therefore by Lemma 4.12, we can apply Proposition
4.8 to the mapping FT0 restricted to QT0

R , so that there exists a fixed point g∗ ∈ QT0
R of

FT0 , i.e., g∗ ∈ FT0g∗. This completes our proof of Theorem 4.9.

5 Convergence of approximate solutions

In this section, the convergence of strong solutions uλ ∈ W 1,p(0, T0;V ) ∩W 1,2(0, T0;H)
for (CP)λ on [0, T0] is derived by establishing a priori estimates. Here we recall the fact
that T0 is independent of λ (see Lemma 4.12). By Theorem 4.9, for each λ ∈ (0, 1], there
exist gλ, ηλ ∈ Lp′(0, T0;V

∗) such that

λu′λ(t) + ηλ(t) + ∂Hϕ̃λ(uλ(t)) + gλ(t) = f(t) in V ∗,(5. 1)

ηλ(t) ∈ ∂V ψ
t(u′λ(t)), gλ(t) ∈ B(t, Jλuλ(t)) for a.e. t ∈ (0, T0).(5. 2)
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Throughout this section, every constant denoted by C will be independent of λ. Since
∂Hϕ̃λ(uλ(t)) ∈ ∂V ϕ(Jλuλ(t)) for a.e. t ∈ (0, T0), by (A2), (B1)′ε and (5. 1), it follows that

|gλ(t)|p
′

V ∗ ≤ ε|∂Hϕ̃λ(uλ(t))|σV ∗ + |mε
2(t)|`ε3 (ϕ̃λ(uλ(t)) + |Jλuλ(t)|H)

≤ εc3{|f(t)|p
′

V ∗ + |gλ(t)|p
′

V ∗ + λ2|u′λ(t)|2H + ψt(u′λ(t)) + |m1(t)| + 1}
+|mε

2(t)|`ε3 (ϕ̃λ(uλ(t)) + |Jλuλ(t)|H)

with some constant c3 = c3(p, C3, CH) depending only on p, C3 and CH . We can then
deduce that

(1 − εc3)|gλ(t)|p
′

V ∗(5. 3)

≤ εc3{|f(t)|p
′

V ∗ + λ2|u′λ(t)|2H + ψt(u′λ(t)) + |m1(t)| + 1}
+|mε

2(t)|`ε3 (ϕ̃λ(uλ(t)) + |Jλuλ(t)|H) .

Now multiplying (5. 1) by u′λ(t) and using (A2)′ with ζ = 1/2 and (A1), we observe
that

λ|u′λ(t)|2H +
1

2
ψt(u′λ(t)) +

d

dt
ϕ̃λ(uλ(t))

≤ N 1
2
(t) + |gλ(t)|V ∗|u′λ(t)|V + |f(t)|V ∗|u′λ(t)|V

≤ N 1
2
(t) + c4

(
|gλ(t)|p

′

V ∗ + |f(t)|p
′

V ∗

)
+

1

4
ψt(u′λ(t)) +

C2

4

with a constant c4 = c4(p, C1) depending only on p and C1. Moreover, fixing ε so small
that

(5. 4)
εc3c4

1 − εc3
≤ 1

8
,

we have

λ

2
|u′λ(t)|2H +

1

8
ψt(u′λ(t)) +

d

dt
ϕ̃λ(uλ(t))(5. 5)

≤ C
(
|f(t)|p

′

V ∗ + |N 1
2
(t)| + |m1(t)| + 1

)
+C|mε

2(t)|`ε3 (ϕ̃λ(uλ(t)) + |Jλuλ(t)|H)

for a.e. t ∈ (0, T0). Here by (A1), we note that

d

dt
|Jλuλ(t)|H ≤

∣∣∣∣ ddtJλuλ(t)

∣∣∣∣
H

≤ |u′λ(t)|H ≤ CH |u′λ(t)|V ≤ 1

8
ψt(u′λ(t)) + C.

Hence it follows that

d

dt
{ϕ̃λ(uλ(t)) + |Jλuλ(t)|H}

≤ C
(
|f(t)|p

′

V ∗ + |N 1
2
(t)| + |m1(t)| + 1

)
+ C|mε

2(t)|`ε3 (ϕ̃λ(uλ(t)) + |Jλuλ(t)|H)

for a.e. t ∈ (0, T0).
Here we employ the following standard fact on an ordinary differential inequality:
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Proposition 5.1. Let T > 0, let ρ,m ∈ L1(0, T ) and let φ be an absolutely continuous
function from [0, T ] into R such that

dφ

dt
(t) ≤ ρ(t) + |m(t)|`(φ(t)) for a.e. t ∈ (0, T )(5. 6)

with some non-decreasing function ` on [0,∞). Then it follows that

sup
t∈[0,T∗]

φ(t) ≤ φ(0) + |ρ|L1(0,T ) + 1(5. 7)

with a constant T∗ ∈ (0, T ] satisfying∫ T∗

0

|m(t)|dt ≤ 1

1 + `(φ(0) + |ρ|L1(0,T ) + 1)
.(5. 8)

For the convenience of the reader, we briefly give a proof.

Proof. It’s sufficient to consider the case where there exists T0 ∈ (0, T ] such that φ(t) <
φ(0)+ |ρ|L1(0,T ) +1 for all t ∈ [0, T0) and φ(T0) = φ(0)+ |ρ|L1(0,T ) +1. Since m ∈ L1(0, T ),
we can take T∗ ∈ (0, T ] satisfying (5. 8). Set T1 := min{T0, T∗} ∈ (0, T ]. Then integrating
(5. 6) over (0, t), we see that

sup
t∈[0,T1]

φ(t) ≤ φ(0) + |ρ|L1(0,T ) +

(∫ T1

0

|m(t)|dt
)
`(φ(0) + |ρ|L1(0,T ) + 1)

< φ(0) + |ρ|L1(0,T ) + 1,

which implies T1 < T0. Therefore we can deduce that (5. 7) holds with T∗ satisfying
(5. 8).

Therefore by Propositions 2.2 and 5.1, we can take T∗ = T∗(ϕ(u0)+|u0|H+‖f‖Lp′ (0,T ;V ∗)) ∈
(0, T0] independent of λ such that

sup
t∈[0,T∗]

{ϕ̃λ(uλ(t)) + |Jλuλ(t)|H} ≤ C.(5. 9)

Furthermore, integrating (5. 5) over (0, T∗), we can obtain

λ

∫ T∗

0

|u′λ(t)|2Hdt+

∫ T∗

0

ψt(u′λ(t))dt ≤ C,(5. 10)

which together with (A1) and (A2) also implies∫ T∗

0

|u′λ(t)|
p
V dt ≤ C,

∫ T∗

0

|ηλ(t))|p
′

V ∗dt ≤ C.

Moreover, it follows from (5. 3) and (5. 1) that∫ T∗

0

|gλ(t)|p
′

V ∗dt ≤ C,

∫ T∗

0

|∂Hϕ̃λ(uλ(t))|σV ∗dt ≤ C
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with σ = min{2, p′}.
Therefore we can obtain the following convergences by taking a sequence {λn} in

(0, 1) such that λn → +0. There exist u ∈ W 1,p(0, T∗;V ), η, g ∈ Lp′(0, T∗;V
∗) and

ξ ∈ Lσ(0, T∗;V
∗) such that

uλn → u weakly in W 1,p(0, T∗;V ),

ηλn → η weakly in Lp′(0, T∗;V
∗),

gλn → g weakly in Lp′(0, T∗;V
∗),

∂Hϕ̃λn(uλn(·)) → ξ weakly in Lσ(0, T∗;V
∗),

λnu
′
λn

→ 0 strongly in L2(0, T∗;H).

Here we also find that ξ = f − η − g ∈ Lp′(0, T∗;V
∗). Furthermore, since {u′λn

} is
bounded in Lp(0, T∗;V ), it follows that

√
λnu

′
λn

→ 0 strongly in Lp(0, T∗;V ). Hence by
(5. 10), we can assert that√

λnu
′
λn

→ 0 weakly in L2(0, T∗;H).(5. 11)

Moreover, note that ∫ T∗

0

∣∣∣∣ ddtJλuλ(t)

∣∣∣∣p
H

dt ≤
∫ T∗

0

|u′λ(t)|
p
Hdt ≤ C.(5. 12)

Therefore by (5. 9) and (Φ1), Theorem 5 of [50] implies

Jλnuλn → v strongly in C([0, T∗];V )(5. 13)

for some v ∈ C([0, T∗];V ). Furthermore, we can also prove v = u by using the def-
inition of ∂Hϕ̃λ and the fact that {∂Hϕ̃λ(uλ(·))} is bounded in Lσ(0, T∗;V

∗). Since
∂Hϕ̃λn(uλn(t)) ∈ ∂V ϕ(Jλnuλn(t)) for a.e. t ∈ (0, T∗), by Proposition 1.1 of [32] and
Proposition 2.1, we assert that

ξ(t) ∈ ∂V ϕ(u(t)) for a.e. t ∈ (0, T∗),

which also yields that ϕ(u(·)) ∈ W 1,1(0, T∗) and dϕ(u(t))/dt = 〈ξ(t), u′(t)〉 for a.e. t ∈
(0, T∗). Moreover, we can also deduce from (B2) that

gλn → g strongly in Lp′(0, T∗;V
∗),

g(t) ∈ B(t, u(t)) for a.e. t ∈ (0, T∗).

Furthermore, we claim that η(t) ∈ ∂V ψ
t(u′(t)) for a.e. t ∈ (0, T∗). Indeed, we see that∫ T∗

0

〈ηλn(t), u′λn
(t)〉dt

=

∫ T∗

0

〈f(t), u′λn
(t)〉dt− λn

∫ T∗

0

|u′λn
(t)|2Hdt− ϕ̃λn(uλn(T∗)) + ϕ̃λn(u0)

−
∫ T∗

0

〈gλn(t), u′λn
(t)〉dt

≤
∫ T∗

0

〈f(t), u′λn
(t)〉dt−

∫ T∗

0

|
√
λnu

′
λn

(t)|2Hdt− ϕ(Jλnuλn(T∗)) + ϕ(u0)

−
∫ T∗

0

〈gλn(t), u′λn
(t)〉dt.
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Therefore we have

lim sup
n→∞

∫ T∗

0

〈ηλn(t), u′λn
(t)〉dt

≤ lim
n→∞

∫ T∗

0

〈f(t), u′λn
(t)〉dt− lim inf

n→∞

∫ T∗

0

|
√
λnu

′
λn

(t)|2Hdt

− lim inf
n→∞

ϕ(Jλnuλn(T∗)) + ϕ(u0) − lim
n→∞

∫ T∗

0

〈gλn(t), u′λn
(t)〉dt

≤
∫ T∗

0

〈f(t), u′(t)〉dt− ϕ(u(T∗)) + ϕ(u0) −
∫ T∗

0

〈g(t), u′(t)〉dt

≤
∫ T∗

0

〈f(t) − ξ(t) − g(t), u′(t)〉dt,

which implies η(t) = f(t) − ξ(t) − g(t) ∈ ∂V ψ
t(u′(t)) for a.e. t ∈ (0, T∗).

Finally, we check the initial condition, u(0) = u0. We observe that

|u(t) − u0|H ≤ |u(t) − Jλnuλn(t)|H + |Jλnuλn(t) − Jλnu0|H + |Jλnu0 − u0|H

≤ CH sup
t∈[0,T∗]

|u(t) − Jλnuλn(t)|V +

(∫ T

0

∣∣∣∣ ddτ Jλnuλn(τ)

∣∣∣∣p
H

dτ

)1/p

t1/p′

+|Jλnu0 − u0|H .

Hence passing to the limit as n→ ∞, we can deduce from (5. 12) and (5. 13) that

|u(t) − u0|H ≤ Ct1/p′ → 0 as t→ +0.

Thus from the fact that u ∈ C([0, T∗];V ), we also conclude that u(t) → u0 strongly in V
as t→ +0. Consequently, u becomes a strong solution of (CP) on [0, T∗], and our proof
of Theorem 3.6 is complete.

6 Global existence

In this section, we give proofs of Theorems 3.7 and 3.8.

6.1 Proof of Theorem 3.7

Let S ∈ (0, T ] and let u be a strong solution of (CP) on [0, S]. In this proof, every
constant denoted by C is independent of S. Multiplying (CP) by u′(t) and using (A1)
and (A2)′ with ζ = 1/2, we get

1

2
ψt(u′(t)) −N 1

2
(t) +

d

dt
ϕ(u(t)) ≤ c4

(
|f(t)|p

′

V ∗ + |g(t)|p
′

V ∗

)
+

1

4
ψt(u′(t)) +

C2

4
,

where g(t) denotes the section of B(t, u(t)) as in (3. 2), for a.e. t ∈ (0, S). Now, by
(B4)ε, we see that

|g(t)|p
′

V ∗ ≤ ε|ξ(t)|σV ∗ + |mε
3(t)| {ϕ(u(t)) + |u(t)|pV + 1} ,
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where ξ(t) denotes the section of ∂V ϕ(u(t)) as in (3. 2), and moreover, as in (5. 3),

(1 − εc5)|g(t)|p
′

V ∗ ≤ εc5{|f(t)|p
′

V ∗ + ψt(u′(t)) + |m1(t)| + 1}
+|mε

3(t)| {ϕ(u(t)) + |u(t)|pV + 1}

with some constant c5 = c5(p, C3) depending only on p and C3. Hence choosing ε > 0 so
small that

εc5
1 − εc5

≤ 1

8c4
,

we can derive

|g(t)|p
′

V ∗ ≤ C
(
|f(t)|p

′

V ∗ + |m1(t)| + |mε
3(t)| + 1

)
+C|mε

3(t)| {ϕ(u(t)) + |u(t)|pV } +
1

8c4
ψt(u′(t))

for a.e. t ∈ (0, S). Furthermore, by (A1), we observe that

d

dt
|u(t)|pV = p|u(t)|p−1

V

d

dt
|u(t)|V

≤ p|u(t)|p−1
V |u′(t)|V ≤ C|u(t)|pV +

1

8
ψt(u′(t)) +

C2

8
.

Thus

d

dt
{ϕ(u(t)) + |u(t)|pV } ≤ C

(
|f(t)|p

′

V ∗ + |m1(t)| + |mε
3(t)| + |N 1

2
(t)| + 1

)
+C (|mε

3(t)| + 1) {ϕ(u(t)) + |u(t)|pV }

for a.e. t ∈ (0, S). Hence integrating this over (0, t) and applying Gronwall’s inequality,
we can deduce that

sup
t∈[0,S]

{ϕ(u(t)) + |u(t)|pV } ≤ C(6. 1)

with some constant C independent of S.
We find that (B4)ε implies (B1)′ε with mε

2 replaced by mε
3. By virtue of Theorem 3.6,

there exists a strong solution u of (CP) on [0, T0] for some T0 ∈ (0, T ], and moreover,
(6. 1) holds with S = T0. In case T0 = T , we obtain our desired conclusion. In case
T0 < T , recall the proof of Theorem 3.6 (particularly, the choice of T0 and T∗) and note
that the function I ⊂ [0, T ] 7→

∫
I
|mε

3(t)|dt is absolutely continuous by mε
3 ∈ L1(0, T ).

Then due to (6. 1), we can extend u onto [0, T ] as a strong solution of (CP), by using
Theorem 3.6.

6.2 Proof of Theorem 3.8

We first prepare the following lemma (see Lemma 4.4 of [6] for its proof).
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Lemma 6.1. Let T > 0, let ρ ∈ L1(0, T ) and let φ be a non-negative absolutely continuous
function from [0, T ] into R such that

dφ

dt
(t) + αφq−1(t) ≤ K|ρ(t)| for a.e. t ∈ (0, T ),(6. 2)

where α > 0, K > 0 and q > 1. Let r > 0 and suppose that φ(0) ≤ r and ‖ρ‖ ≤ rq−1,
where ‖ρ‖ is given by

‖ρ‖ :=


sup

t∈[1,T ]

∫ t

t−1

|ρ(τ)|dτ if 1 ≤ T,∫ T

0

|ρ(τ)|dτ if 0 < T < 1.

Then there exists a non-decreasing function Mα,K,q(·) on [0,∞) depending only on α,K, q
such that

φ(t) ≤Mα,K,q(r)r for all t ∈ [0, T ].

Now, we proceed to prove Theorem 3.8. We first fix ε > 0 satisfying (6. 10), which
will be given later, and assume (A6)ε. Since lims→+0 `i(s) = 0 for each i = 4, 5 and
lims→+0 `

ε
6(s) = 0, we next choose δ0 > 0 satisfying (6. 5) and (6. 13), which will be

stated below.
Let S ∈ (0, T ] and let u be a strong solution of (CP) on [0, S] with u0 and f satisfying

ϕ(u0) +
∥∥∥|f(·)|p

′

V ∗

∥∥∥ < δ(6. 3)

for an enough small constant δ ∈ (0, δ0), which will be determined by (6. 14) and will
not depend on S and T . Then we shall prove that

sup
t∈[0,S]

ϕ(u(t)) ≤ δ0(6. 4)

by contradiction. Assume supt∈[0,S] ϕ(u(t)) > δ0, so that there exists T1 ∈ (0, S) such
that ϕ(u(T1)) = δ0 and ϕ(u(t)) < δ0 for all t ∈ [0, T1).

Set δ0 > 0 such that

`4(δ0) <
C4

2
, `5(δ0) <

C4p

8
.(6. 5)

By (B5), it then follows that

C4

2
ϕ(u(t)) ≤ 〈ξ(t) + g(t), u(t)〉,(6. 6)

|u(t)|pV ≤ C4p

8
ϕ(u(t)),(6. 7)

where ξ(t) and g(t) stand for the sections of ∂V ϕ(u(t)) and B(t, u(t)), respectively, as in
(3. 2), for a.e. t ∈ (0, T1). Hence we have

C4

2
ϕ(u(t)) ≤ 〈f(t) − η(t), u(t)〉

≤ 1

p′

(
|f(t)|p

′

V ∗ + |η(t)|p
′

V ∗

)
+

2

p
|u(t)|pV

≤ 1

p′

(
|f(t)|p

′

V ∗ + |η(t)|p
′

V ∗

)
+
C4

4
ϕ(u(t)),
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where η(t) denotes the section of ∂V ψ
t(u′(t)) as in (3. 2). Thus (A2) with m1 ≡ 0 gives

C4

4
ϕ(u(t)) ≤ 1

p′

{
|f(t)|p

′

V ∗ + C3ψ
t(u′(t))

}
for a.e. t ∈ (0, T1).(6. 8)

On the other hand, since ψt(0) ≡ 0 and m1 ≡ 0, we can take Nζ ≡ 0 in (A2)′. Hence
multiplying (CP) by u′(t) and using (A2)′ with ζ = 0 and (A1) with C2 = 0, we get

ψt(u′(t)) +
d

dt
ϕ(u(t)) ≤ c6

(
|f(t)|p

′

V ∗ + |g(t)|p
′

V ∗

)
+

1

2
ψt(u′(t)),(6. 9)

where c6 = c6(p, C1) is a constant depending only on p and C1. Moreover, we get, by
(3. 8) and (A2) with m1 ≡ 0,

(1 − εc7)|g(t)|p
′

V ∗ ≤ εc7

(
|f(t)|p

′

V ∗ + C3ψ
t(u′(t))

)
+ `ε6(δ0)ϕ(u(t)),

where c7 = 3p′−1, for a.e. t ∈ (0, T1). Now, fixing ε so small that

(6. 10) 0 <
εc7

1 − εc7
≤ 1

4c6C3

(hence, the smallness of ε depends only on p, C1 and C3), we have

|g(t)|p
′

V ∗ ≤
1

4c6C3

|f(t)|p
′

V ∗ +
1

4c6
ψt(u′(t)) +

1

1 − εc7
`ε6(δ0)ϕ(u(t))(6. 11)

for a.e. t ∈ (0, T1). Hence (6. 9) yields

1

2
ψt(u′(t)) +

d

dt
ϕ(u(t))(6. 12)

≤
(
c6 +

1

4C3

)
|f(t)|p

′

V ∗ +
1

4
ψt(u′(t)) +

c6
1 − εc7

`ε6(δ0)ϕ(u(t))

for a.e. t ∈ (0, T1).
Therefore adding (6. 8) multiplied by p′/(4C3) to (6. 12), we can obtain

1

4
ψt(u′(t)) +

d

dt
ϕ(u(t)) + 2αϕ(u(t))

≤ K|f(t)|p
′

V ∗ +
c6

1 − εc7
`ε6(δ0)ϕ(u(t)) +

1

4
ψt(u′(t)),

where

α :=
p′C4

32C3

, K :=

(
c6 +

1

2C3

)
for a.e. t ∈ (0, T1). Hence we can deduce that

d

dt
ϕ(u(t)) + αϕ(u(t)) ≤ K|f(t)|p

′

V ∗ for a.e. t ∈ (0, T1),
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since δ0 > 0 satisfies

`ε6(δ0) < α
1 − εc7
c6

.(6. 13)

Thus by Lemma 6.1, since u0 and f satisfies (6. 3) with an enough small constant
δ ∈ (0, δ0) determined by

Mα,K,2 (δ) δ <
δ0
2
,(6. 14)

it follows that

ϕ(u(t)) <
δ0
2

for all t ∈ [0, T1],

which contradicts the fact that ϕ(u(T1)) = δ0. Hence (6. 4) follows.
Thus since δ0 and δ are independent of S, as in the proof of Theorem 3.7, we can

prove the existence of strong solutions of (CP) on [0, T ].

7 Applications to nonlinear PDEs

In this section, we apply the preceding abstract theory to doubly nonlinear parabolic
equations.

7.1 Doubly nonlinear parabolic equations of degenerate type

In this subsection, we treat doubly nonlinear parabolic equations of degenerate type,
for which (1. 7) is a typical example, and we finally provide sufficient conditions for the
existence of local and global (in time) solutions of the initial-boundary value problems.
Let T > 0 and let Ω be a bounded domain in RN with boundary ∂Ω. We first deal with
the following initial-boundary value problem,

α(x, t, ut(x, t)) − div a(x,∇u(x, t)) + g(x, t, u(x, t)) 3 f(x, t),(7. 1)

(x, t) ∈ Ω × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),(7. 2)

u(x, 0) = u0(x), x ∈ Ω(7. 3)

with functions α : Ω × (0, T ) × R → 2R, a : Ω × RN → RN , g : Ω × (0, T ) × R → R,
u0 : Ω → R and f : Ω × (0, T ) → R. To discuss the existence of solutions for the above
initial-boundary value problem, we introduce the following assumptions for p ∈ [2,∞).

(H1) (i) There exists a function j : Ω × [0, T ] × R → [0,∞) such that

• j(x, t, ·) ∈ Φ(R) for a.e. x ∈ Ω and all t ∈ [0, T ],

• ∂Rj(x, t, ·) = α(x, t, ·) for a.e. (x, t) ∈ Ω × (0, T ),

• j(·, t, r) is continuous in Ω for a.e. t ∈ (0, T ) and all r ∈ R.
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(ii) For each v ∈ Lp(Ω), the function j(·, t, v(·)) is measurable in Ω for all t ∈ [0, T ],
and there exists a function η : Ω × (0, T ) → R such that η(·, t) ∈ α(·, t, v(·))
and η(·, t) is measurable in Ω for a.e. t ∈ (0, T ). Furthermore, for all t ∈ [0, T ],
there exists v0 ∈ Lp(Ω) such that j(·, t, v0(·)) ∈ L1(Ω).

(iii) There exist ρ, σ ∈ W 1,1(0, T ), b1 ∈ L1(Ω) and a constant δ > 0 with the
following property: for all t0 ∈ [0, T ] and r0 ∈ R, there exists a function
π : Iδ(t0) × Ω × R → R, where Iδ(t0) := [t0 − δ, t0 + δ] ∩ [0, T ], such that

|π(t; x, r0) − r0| ≤ |ρ(t) − ρ(t0)|{j(x, t0, r0) + b1(x)}1/p,

j(x, t, π(t; x, r0)) ≤ j(x, t0, r0) + |σ(t) − σ(t0)|{j(x, t0, r0) + b1(x)}

for a.e. x ∈ Ω and all t ∈ Iδ(t0), and π(t; ·, v(·)) is measurable in Ω for all
t ∈ [0, T ] and v ∈ Lp(Ω).

(H2) There exist a constant C5 ≥ 0, a1 ∈ L1(Ω) and a2 ∈ L1(Ω × (0, T )) such that the
following (i), (ii) hold.

(i) |r|p ≤ C5j(x, t, r) + a1(x) for a.e. x ∈ Ω and all (t, r) ∈ [0, T ] × R.

(ii) |η|p′ ≤ C5j(x, t, r) + a2(x, t) for a.e. (x, t) ∈ Ω × (0, T ) and all r ∈ R,
η ∈ α(x, t, r).

(H3) (i) There exists a function φ = φ(x,p) : Ω × RN → R such that φ(·,p) is
measurable in Ω for all p ∈ RN , φ(x, ·) is convex and Fréchet differentiable in
RN and its derivative ∂RNφ(x, ·) coincides with a(x, ·) for a.e. x ∈ Ω.

(ii) For all v ∈ Lp(Ω; RN), the function a(·,v(·)) is measurable in Ω. Moreover,
there exists v0 ∈ Lp(Ω; RN) such that φ(·,v0(·)) ∈ L1(Ω).

There exist constants m > 1, C6 ≥ 0 and a3, b2 ∈ L1(Ω) such that

(iii) |p|m ≤ C6φ(x,p) + a3(x) for a.e. x ∈ Ω and all p ∈ RN ;

(iv) |a(x,p)|m′ ≤ C6φ(x,p) + b2(x) for a.e. x ∈ Ω and all p ∈ RN .

(H4) (i) There exist constants q > 1 + 1/p′, C7 ≥ 0 and a4 ∈ L1(Ω× (0, T )) such that
|g(x, t, r)|p′ ≤ C7|r|p

′(q−1) +a4(x, t) for a.e. (x, t) ∈ Ω× (0, T ) and all r ∈ R.

(ii) The function g = g(x, t, r) is a Carathéodory function in Ω× (0, T )× R (i.e.,
measurable in (x, t) and continuous in r).

Remark 7.1. (i) By (i) of (H3), we can deduce that φ(x, ·) is continuous in RN for
a.e. x ∈ Ω. Hence φ(·,v(·)) becomes measurable in Ω for each measurable function
v : Ω → RN .

(ii) Let us give simple examples of functions α which satisfy (H1) and (H2) with p ≥ 2.
The following is concerned with the case where α is single-valued:

α(x, t, r) = k(x, t)|r|p−2r,

where k is an absolutely continuous function from [0, T ] into C(Ω) such that
k(x, t) ≥ k0 > 0 for all (x, t) ∈ Ω × [0, T ] with a positive number k0.
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As for the case where α is multi-valued, we give

α(x, t, r) =


{|r − c(t)|p−2(r − c(t))} if 1 < |r − c(t)|,{

r−c(t)
|r−c(t)|

}
if 0 < |r − c(t)| ≤ 1,

[−1, 1] if r = c(t)

with c ∈ W 1,1(0, T ).

(iii) Typical examples of a(x,p) and g(x, t, r) satisfying (H3) and (H4) are a(x,p) =
|p|m−2p and g(x, t, r) = λ(x, t)|r|q−2r with λ ∈ L∞(Ω × (0, T )) respectively. Then
div a(x,∇u(x)) coincides with ∆mu(x) := div (|∇u(x)|m−2∇u(x)), where ∆m is
the so-called m-Laplacian.

We are concerned with solutions of the initial-boundary value problem (7. 1)–(7. 3)
defined as follows:

Definition 7.2. For each T > 0, a function u : Ω × (0, T ) → R is said to be a solution
of the initial-boundary value problem (7. 1)–(7. 3) on [0, T ] if the following conditions
are all satisfied :

• u ∈ W 1,p(0, T ;Lp(Ω)) ∩ C([0, T ];W 1,m
0 (Ω));

• there exists a function η ∈ Lp′(0, T ;Lp′(Ω)) such that η(x, t) ∈ α(x, t, ut(x, t)) for
a.e. (x, t) ∈ Ω × (0, T );

• it holds that div a(·,∇u(·, t)), g(·, t, u(·, t)) ∈ Lp′(Ω) and

η(x, t) − div a(x,∇u(x, t)) + g(x, t, u(x, t)) = f(x, t)

for a.e. (x, t) ∈ Ω × (0, T );

• u(·, t) → u0 strongly in Lp(Ω) as t→ +0.

To apply the preceding abstract theory to (7. 1)–(7. 3), we suppose that

2 ≤ p < m∗ :=


Nm

N −m
if m < N,

+∞ if m ≥ N
and q <

m∗

p′
+ 1.(7. 4)

Moreover, set X := W 1,m
0 (Ω) with the norm | · |X := |∇ · |Lm(Ω) and set V := Lp(Ω)

and H := L2(Ω). Then V is continuously and densely embedded in H, and by the
Rellich-Kondrachov compact embedding theorem, X is compactly embedded in V .

Define the operator B : (0, T ) × V → V ∗ by

B(t, u) := g(·, t, u(·)) for all t ∈ (0, T ) and u ∈ D(B(t, ·))

with the domain D(B(t, ·)) := {u ∈ V ; g(·, t, u(·)) ∈ V ∗}. By (H4) and (7. 4), we then
infer that X ⊂ Lp′(q−1)(Ω) ∩ V ⊂ D(B(t, ·)) for each t ∈ (0, T ). Furthermore, we also
define the functions ψt, ϕ : V → (−∞,+∞] by

ψt(u) :=


∫

Ω

j(x, t, u(x))dx if j(·, t, u(·)) ∈ L1(Ω),

+∞ otherwise
(7. 5)
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for every t ∈ [0, T ], and

ϕ(u) :=


∫

Ω

φ(x,∇u(x))dx if u ∈ X and φ(·,∇u(·)) ∈ L1(Ω),

+∞ otherwise.
(7. 6)

Then, by (H1), it follows that ψt ∈ Φ(V ) for all t ∈ [0, T ]; by (H1) and (H2), D(ψt) = V
for a.e. t ∈ (0, T ). Since j(·, t, r) is upper semicontinuous in Ω for each (t, r) ∈ (0, T )×Ω,
we can prove ∂V ψ

t(u) = α(·, t, u(·)) for a.e. t ∈ (0, T ) and all u ∈ D(∂V ψ
t) by modifying

the proof of Proposition 1.1 of [32], and moreover, D(∂V ψ
t) = V for a.e. t ∈ (0, T ).

By (H3), we have ϕ ∈ Φ(V ) and D(ϕ) = X, and moreover, the restriction ϕ|X of ϕ
to X becomes Gâteaux differentiable in X and its derivative ∂X(ϕ|X)(u) at u coincides
with −div a(·,∇u(·)) in the sense of distributions. Hence since ∂V ϕ(u) = ∂X(ϕ|X)(u)
for each u ∈ D(∂V ϕ), the subdifferential ∂V ϕ(u) of ϕ at u ∈ D(∂V ϕ) also coincides
with −div a(·,∇u(·)). Therefore the initial-boundary value problem (7. 1)–(7. 3) is
transcribed into the Cauchy problem (CP).

Furthermore, we prepare the following lemma.

Lemma 7.3. Let T > 0 and let Ω be a bounded domain in RN with C1 boundary ∂Ω.

(i) If (H1) and (H2) are satisfied for some p ∈ [2,∞), then (A1)–(A3) hold.

(ii) If (H3), (H4) and (7. 4) are satisfied for some p ∈ [2,∞), then (Φ1) and (B1)ε–(B3)
hold for any ε > 0.

Proof. Proof of (i). Both (A1) and (A2) are immediately derived from (H2). Let
t0 ∈ [0, T ] and v0 ∈ D(ψt0) be fixed. Define a function v : Ω × Iδ(t0) → R by v(x, t) :=
π(t; x, v0(x)). Then v(·, t) is measurable in Ω for each t ∈ Iδ(t0), and

|v(x, t) − v0(x)| ≤ |ρ(t) − ρ(t0)| {j(x, t0, v0(x)) + b1(x)}1/p ,

j(x, t, v(x, t)) ≤ j(x, t0, v0(x)) + |σ(t) − σ(t0)| {j(x, t0, v0(x)) + b1(x)}

for all a.e. x ∈ Ω and t ∈ Iδ(t0). Hence v(·, t) ∈ V for all t ∈ Iδ(t0), and j(·, t, v(·, t)) is
measurable in Ω by (H1), and moreover,

|v(·, t) − v0|V ≤ |ρ(t) − ρ(t0)|
{
ψt0(v0) + |b1|L1(Ω)

}1/p
,

ψt(v(·, t)) ≤ ψt0(v0) + |σ(t) − σ(t0)|
{
ψt0(v0) + |b1|L1(Ω)

}
,

which implies (A3).
Proof of (ii). By (iii) of (H3), we can derive

|∇u|mLm(Ω) ≤ C6ϕ(u) + |a3|L1(Ω) for all u ∈ X.(7. 7)

Hence (Φ1) follows since X is compactly embedded in V by (7. 4). As for (B1)ε, we
obtain, by (H4)

|B(t, u)|p
′

V ∗ = |g(·, t, u(·))|p
′

V ∗ ≤ C7|u|p
′(q−1)

Lp′(q−1)(Ω)
+ |a4(·, t)|L1(Ω)(7. 8)

for a.e. t ∈ (0, T ) and all u ∈ D(B(t, ·)).
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By (7. 4) and (7. 7),

|B(t, u)|p
′

V ∗ ≤ C
{
ϕ(u)p′(q−1)/m + |a3|p

′(q−1)/m

L1(Ω)

}
+ |a4(·, t)|L1(Ω)(7. 9)

for a.e. t ∈ (0, T ) and all u ∈ D(ϕ),

which implies (B1)ε for any ε > 0.
By virtue of Theorem 1.27 of [45], the mapping

u 7→ g(·, t, u(·)); Lp′(q−1)(Ω) → V ∗

becomes continuous for a.e. t ∈ (0, T ). Moreover, the mapping

t 7→ g(·, t, u(·)); (0, T ) → V ∗

is strongly measurable in (0, T ) for any fixed u ∈ Lp′(q−1)(Ω). Indeed, by (ii) of (H4), the
function (x, t) 7→ g(x, t, u(x)) is measurable in Ω × (0, T ), so Fubini’s theorem ensures
that the mapping t 7→

∫
Ω
g(x, t, u(x))v(x)dx is also measurable in (0, T ) whenever v is

measurable in Ω. Hence the mapping t 7→ g(·, t, u(·)) becomes weakly measurable in
(0, T ) with values in V ∗. Thus since V ∗ is separable, by Pettis’s theorem, we can deduce
that it also becomes strongly measurable in (0, T ).

Let S ∈ (0, T ] be fixed and define the operator B : Lp′(q−1)(0, S;Lp′(q−1)(Ω)) →
Lp′(0, S;V ∗) by

(Bu)(t) := g(·, t, u(t)(·))
for all u ∈ Lp′(q−1)(0, S;Lp′(q−1)(Ω)) and a.e. t ∈ (0, S).

Then recalling (7. 8) and employing Theorem 1.43 of [45], we can deduce that

B is continuous from Lp′(q−1)(0, S;Lp′(q−1)(Ω)) into Lp′(0, S;V ∗).(7. 10)

Since X ⊂ Lp′(q−1)(Ω), this particularly yields (B3).
We finally prove (B2). Let {un} be a sequence in C([0, S];V ) such that un → u

strongly in C([0, S];V ) and

sup
t∈[0,S]

ϕ(un(t)) +

∫ S

0

|u′n(t)|pHdt is bounded for all n ∈ N.(7. 11)

Hence since (7. 4) implies that X is compactly embedded in Lp′(q−1)(Ω), by Theorem 5
of [50], we can take a subsequence {n′} of {n} such that

un′ → u strongly in C([0, S];Lp′(q−1)(Ω)).

Therefore we can deduce from (7. 10) that

Bun′ → Bu strongly in Lp′(0, S;V ∗).

Thus (B2) is proved.
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The existence of local (in time) solutions for the initial-boundary value problem
(7. 1)–(7. 3) follows immediately from Lemma 7.3 and Theorem 3.6.

Theorem 7.4. Let T > 0 and let Ω be a bounded domain in RN with C1 boundary
∂Ω. Suppose that (H1)–(H4) and (7. 4) are satisfied for some p ∈ [2,∞). Then, for
all f ∈ Lp′(0, T ;Lp′(Ω)) and u0 ∈ W 1,m

0 (Ω), there exists T∗ = T∗(
∫
Ω
φ(x,∇u0(x))dx +

|u0|L2(Ω) + ‖f‖Lp′ (0,T ;Lp′ (Ω))) ∈ (0, T ] such that the initial-boundary value problem (7. 1)–
(7. 3) admits at least one solution u on [0, T∗].

As for the global existence, our result is stated as follows.

Theorem 7.5. Let T > 0 and let Ω be a bounded domain in RN with C1 boundary ∂Ω.
Suppose that (H1)–(H4) and (7. 4) are satisfied for some p ∈ [2,∞). In addition, assume
that

q ≤ max

{
p,
m

p′
+ 1

}
.(7. 12)

Then, for all f ∈ Lp′(0, T ;Lp′(Ω)) and u0 ∈ W 1,m
0 (Ω), the initial-boundary value problem

(7. 1)–(7. 3) admits at least one solution u on [0, T ].

Proof. In order to prove this theorem, it suffices to check (B4)ε (see also Theorem 3.7
and Lemma 7.3). Noting that (7. 12) yields

|u|p
′(q−1)

Lp′(q−1)(Ω)
≤ C (ϕ(u) + |u|pV + 1) for all u ∈ X,

we can derive (B4)ε for any ε > 0 from (7. 8).

Furthermore, the following theorem is concerned with the existence of global (in time)
solutions for small data u0 and f .

Theorem 7.6. Let T > 0 and let Ω be a bounded domain in RN with C1 boundary ∂Ω.
Suppose that (H1)–(H4) and (7. 4) are satisfied with p ∈ [2,∞), a1 ≡ 0, a2 ≡ 0, a3 ≡ 0,
a4 ≡ 0, j(·, ·, 0) ≡ 0 and φ(·,0) ≡ 0. In addition, assume that

m < p and
m

p′
+ 1 < q.(7. 13)

Then there exists δ > 0 independent of T such that for all f ∈ Lp′(0, T ;Lp′(Ω)) and
u0 ∈ W 1,m

0 (Ω) satisfying ‖f‖? +
∫
Ω
φ(x, u0(x))dx < δ, where ‖f‖? is given as in (3. 9),

the initial-boundary value problem (7. 1)–(7. 3) admits at least one solution u on [0, T ].

Proof. It follows that ψt(0) =
∫

Ω
j(x, t, 0)dx = 0 for all t ∈ [0, T ]. Since a1 ≡ 0 and

a2 ≡ 0, we obtain C2 = 0 and m1 ≡ 0 in (A1) and (A2) respectively. Hence due to
Theorem 3.8 and Lemma 7.3, it suffices to prove (3. 6)–(3. 8).

By (H3) with a3 ≡ 0, it follows that

ϕ(u) =

∫
Ω

φ(x,∇u(x))dx ≥ C−1
6

∫
Ω

|∇u(x)|mdx = C−1
6 |u|mX
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for all u ∈ D(ϕ). Hence we have

|u|pV ≤ Cϕ(u)p/m for all u ∈ D(ϕ).(7. 14)

Therefore (3. 7) follows with a non-decreasing function `5(s) = O(s
p
m
−1) from the fact

that m < p. Moreover, combining (7. 9) with a3 = a4 ≡ 0 and noting that p′(q−1) > m,

we can obtain (3. 8) with `ε6(s) = O(s
p′(q−1)

m
−1) for any ε > 0.

Finally, we shall derive (3. 7). Let t ∈ (0, T ) and let u ∈ D(∂V ϕ) be arbitrary given.
We can then derive

〈∂V ϕ(u) +B(t, u), u〉 ≥ ϕ(u) − ϕ(0) − |B(t, u)|V ∗|u|V
≥ ϕ(u) − Cϕ(u)

q
m

from the fact that ϕ(0) =
∫
Ω
φ(x,0)dx = 0. Hence since (7. 13) implies

σ :=
q

m
>

1

m

(
m

p′
+ 1

)
>

1

m

(m
m′ + 1

)
= 1,

we conclude that (3. 6) holds with a non-decreasing function `4(s) = O(sσ−1). This
completes our proof.

7.2 Semilinear parabolic equations with gradient nonlinearities

We next deal with the following inclusion instead of (7. 1),

α(x, t, ut(x, t)) −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

(x)

)
+ h(x, t, u(x, t),∇u(x, t)) 3 f(x, t)(7. 15)

with functions aij : Ω → R (i, j = 1, 2, . . . , N) and h : Ω × (0, T ) × R × RN → R. Then
(1. 8) is reduced to (7. 15) as a special case. To state our existence result, we introduce
the following (H3)′ and (H4)′.

(H3)′ (i) aij ∈ W 1,∞(Ω) and aij = aji for each i, j = 1, 2, . . . , N .

(ii) There exists a constant λ0 > 0 such that

λ0|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj for a.e. x ∈ Ω and all ξ = (ξ1, ξ2, . . . , ξN) ∈ RN .

(H4)′ (i) There exist constants q1, q2 > 1 + 1/p′, C8 ≥ 0 and a5 ∈ L1(Ω × (0, T )) such
that

|h(x, t, r,p)|p′ ≤ C8(|r|p
′(q1−1) + |p|p′(q2−1)) + a5(x, t)

for a.e. (x, t) ∈ Ω × (0, T ) and all (r,p) ∈ R × RN .

(ii) The function h = h(x, t, r,p) is a Carathéodory function in Ω×(0, T )×R×RN

(i.e., measurable in (x, t) and continuous in (r,p)).
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Then we have:

Theorem 7.7. Let T > 0 and let Ω be a bounded domain in RN with C2 boundary ∂Ω.
Suppose that (H1), (H2), (H3)′, (H4)′ and the following (7. 16) are satisfied for some
p ∈ [2,∞).

2 ≤ p < 2∗ :=


2N

N − 2
if 2 < N,

+∞ if 2 ≥ N,
q1 < 2∗ and q2 < 2 +

2

N
.(7. 16)

Then, for all f ∈ Lp′(0, T ;Lp′(Ω)) and u0 ∈ H1
0 (Ω), there exists T∗ = T∗(|u0|H1

0 (Ω) +
‖f‖Lp′ (0,T ;Lp′ (Ω))) ∈ (0, T ] such that the initial-boundary value problem {(7. 15), (7. 2),
(7. 3)} admits at least one solution u on [0, T∗].

Proof. We set V = Lp(Ω), H = L2(Ω) and set X = H1
0 (Ω) with the norm | · |X := |∇·|L2 .

Then X is compactly embedded in V by (7. 16). Moreover, we define the functional
ϕ : V → [0,∞] by

ϕ(u) :=


1

2

N∑
i,j=1

∫
Ω

aij(x)
∂u

∂xi

(x)
∂u

∂xj

(x)dx if u ∈ X,

+∞ otherwise.

(7. 17)

Then by (H3)′, it follows that

1

2
λ0|u|2X ≤ ϕ(u) ≤ Cmax

i,j
|aij|L∞(Ω)|u|2X for all u ∈ X,

which implies D(ϕ) = X and (Φ1). Moreover, ϕ|X becomes Gâteaux differentiable in X
and its derivative ∂X(ϕ|X)(u) at u ∈ X coincides with

−
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

(x)

)
(7. 18)

in the sense of distribution. Hence ∂V ϕ(u) also coincides with (7. 18) in V ∗ for each
u ∈ D(∂V ϕ). Furthermore, thanks to Theorem 9.15 and Lemma 9.17 of [28], we can
derive that D(∂V ϕ) = W 2,p′(Ω) ∩H1

0 (Ω) and

|u|W 2,p′ (Ω) ≤ C|∂V ϕ(u)|V ∗ for all u ∈ D(∂V ϕ).(7. 19)

Let us check the assumptions of Theorem 3.6. By (i) of Lemma 7.3, (A1)–(A3) hold
with ψt given by (7. 5). Define the operator B : (0, T ) × V → V ∗ by

B(t, u) := h(·, t, u(·),∇u(·)) for all t ∈ (0, T ) and u ∈ D(B(t, ·))

with the domain D(B(t, ·)) := {u ∈ V ; h(·, t, u(·),∇u(·)) ∈ V ∗}. By (H4)′, we then
obtain

|B(t, u)|p
′

V ∗ ≤ C8

(
|u|p

′(q1−1)

Lp′(q1−1)(Ω)
+ |∇u|p

′(q2−1)

Lp′(q2−1)(Ω)

)
+ |a5(·, t)|L1(Ω)

for a.e. t ∈ (0, T ) and all u ∈ D(B(t, ·)).
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Here for the case where p′(q1 − 1) > 2∗, Gagliardo-Nirenberg’s inequality and (7. 16)
yield

|u|Lp′(q1−1)(Ω) ≤ C|u|θ1

W 2,p′ (Ω)
|∇u|1−θ1

H for all u ∈ D(∂V ϕ)(7. 20)

with some θ1 ∈ (0, 1) satisfying θ1(q1−1) < 1; for the case where p′(q1−1) ≤ 2∗, it follows
that |u|Lp′(q1−1)(Ω) ≤ C|∇u|H for all u ∈ X. Moreover, for the case where p′(q2 − 1) > 2,
we also have

|∇u|Lp′(q2−1)(Ω) ≤ C|u|θ2

W 2,p′ (Ω)
|∇u|1−θ2

H for all u ∈ D(∂V ϕ)(7. 21)

with some θ2 ∈ (0, 1) satisfying θ2(q2 − 1) < 1; for the case where p′(q2 − 1) ≤ 2, we get
|∇u|Lp′(q2−1)(Ω) ≤ C|∇u|H for all u ∈ X. Therefore by (7. 19), for all ε > 0, there exists
Cε ≥ 0 such that

|B(t, u)|p
′

V ′ ≤ ε|∂V ϕ(u)|p
′

V ∗ + Cε`7(ϕ(u)) for all u ∈ D(∂V ϕ) and a.e. t ∈ (0, T )

with some non-decreasing function `7 on [0,∞), which implies (B1)ε for any ε > 0.
By Theorem 1.27 of [45], the Nemytskii mapping

[u,v] 7→ h(·, t, u(·),v(·)); Lp′(q1−1)(Ω) × Lp′(q2−1)(Ω; RN) → V ∗

is continuous for a.e. t ∈ (0, T ), and moreover, the function t 7→ h(·, t, u(·),v(·)) becomes
strongly measurable in (0, T ) with values in V ∗ for any fixed u ∈ Lp′(q1−1)(Ω) and v ∈
Lp′(q2−1)(Ω; RN). Let S ∈ (0, T ] be fixed. Then by Theorem 1.43 of [45], the mapping
N : Lp′(q1−1)(0, S;Lp′(q1−1)(Ω))×Lp′(q2−1)(0, S;Lp′(q2−1)(Ω; RN)) → Lp′(0, S;V ∗) given by

(N (u,v))(t) := h(·, t, u(t)(·),v(t)(·)) for a.e. t ∈ (0, S)

for all [u,v] ∈ Lp′(q1−1)(0, S;Lp′(q1−1)(Ω)) × Lp′(q2−1)(0, S;Lp′(q2−1)(Ω; RN))

also becomes continuous; particularly, (B3) follows from (7. 19), (7. 20) and (7. 21).
We next check (B2). Let {un} be a sequence such that

sup
t∈[0,S]

ϕ(un(t)) +

∫ S

0

|u′n(t)|pHdt+

∫ S

0

|∂V ϕ(un(t))|p
′

V ∗dt is bounded(7. 22)

for all n ∈ N. Then {un} is bounded in Lp′(0, S;W 2,p′(Ω))∩L∞(0, S;H1
0 (Ω))∩W 1,p(0, S;H)

(see (7. 19)). Moreover, it follows from (7. 16) that W 2,p′(Ω) is compactly embedded
in Lp′(q1−1)(Ω) and also in W 1,p′(q2−1)(Ω). Hence Theorem 5 of [50] implies that {un}
is precompact in Lp′(0, S;Lp′(q1−1)(Ω)) and also in Lp′(0, S;W 1,p′(q2−1)(Ω)). Therefore
extracting a subsequence {n′} of {n} if necessary, and recalling (7. 20) and (7. 21), we
can deduce that

un′ → u strongly in Lp′(q1−1)(0, S;Lp′(q1−1)(Ω)),

∇un′ → ∇u strongly in Lp′(q2−1)(0, S;Lp′(q2−1)(Ω; RN)).

Hence the continuity of N yields that

B(·, un′(·)) → B(·, u(·)) strongly in Lp′(0, S;V ∗),

which implies (B2). Thus by Theorem 3.6, we can obtain our desired conclusion.
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We can also prove the existence of global (in time) solutions of the initial-boundary
value problem for (7. 15) as in Theorem 7.5.

Theorem 7.8. Let T > 0 and let Ω be a bounded domain in RN with C2 boundary ∂Ω.
Suppose that (H1), (H2), (H3)′, (H4)′ and (7. 16) are satisfied for some p ∈ [2,∞). In
addition, assume that

(7. 23) q1 ≤ p and q2 ≤
2

p′
+ 1.

Then, for all f ∈ Lp′(0, T ;Lp′(Ω)) and u0 ∈ H1
0 (Ω), the initial-boundary value problem

{(7. 15), (7. 2), (7. 3)} admits at least one solution u on [0, T ].
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[46] Schimperna, G., Segatti, A. and Stefanelli, U., Well-posedness and long-time be-
havior for a class of doubly nonlinear equations, Discrete Contin. Dyn. Syst. 18
(2007), 15–38.

[47] Segatti, A., Global attractor for a class of doubly nonlinear abstract evolution
equations, Discrete Contin. Dyn. Syst. 14 (2006), 801–820.

[48] Senba, T., On some nonlinear evolution equation, Funkcial Ekvac. 29 (1986),
243–257.

[49] Shirakawa, K., Large time behavior for doubly nonlinear systems generated by
subdifferentials, Adv. Math. Sci. Appl. 10 (2000), 417–442.

[50] Simon, J., Compact sets in the space Lp(0, T ;B). Ann. Mat. Pura. Appl. (4) 146
(1987), 65–96.

[51] Tsutsumi, M., On solutions of some doubly nonlinear degenerate parabolic equations
with absorption, J. Math. Anal. Appl. 132 (1988) 187–212.

[52] Yamada, Y., On evolution equations generated by subdifferential operators,
J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), 491–515.

[53] Yamazaki, N., Doubly nonlinear evolution equations associated with elliptic-
parabolic free boundary problems, Discrete Contin. Dyn. Syst. 2005, suppl., 920–
929.

42


