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Abstract

This paper is devoted to providing a sufficient condition for the
maximality of the sum of subdifferential operators defined on reflexive
Banach spaces and proving the maximal monotonicity in Lp(Ω) ×
Lp′(Ω) of the nonlinear elliptic operator u 7→ −∆mu + β(u(·)) with a
maximal monotone graph β.
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1 Introduction

Let E and E∗ be a real reflexive Banach space and its dual space, respectively,
and let φ1, φ2 : E → (−∞,∞] be proper (i.e., φ1, φ2 6≡ ∞) lower semicontin-
uous convex functionals with the effective domains D(φi) := {u ∈ E; φi(u) <
∞} for i = 1, 2. Then the subdifferential operator ∂Eφi : E → 2E∗

of φi is
defined by

∂Eφi(u) := {ξ ∈ E∗; φi(v) − φi(u) ≥ 〈ξ, v − u〉E for all v ∈ D(φi)} ,
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where 〈·, ·〉E denotes the duality pairing between E and E∗, with the domain
D(∂Eφi) = {u ∈ D(φi); ∂Eφi(u) 6= ∅} for i = 1, 2. This paper provides a new
sufficient condition for the maximal monotonicity of the sum ∂Eφ1 + ∂Eφ2 in
E × E∗ and an application to nonlinear elliptic operators in Lp-spaces.

This paper is motivated by the question of whether the following operator
M is maximal monotone in Lp(Ω) × Lp′(Ω) with p ∈ [2,∞), p′ = p/(p − 1)
and a bounded domain Ω of RN :

M : D(M) ⊂ Lp(Ω) → Lp′(Ω); u 7→ −∆mu+ β(u(·)), (1.1)

where β is a maximal monotone graph in R such that β(0) 3 0, and ∆m is a
modified Laplacian given by

∆mu = ∇ ·
(
|∇u|m−2∇u

)
, 1 < m <∞

equipped with the homogeneous Dirichlet boundary condition, i.e., u|∂Ω = 0.
The operator M can be divided into two parts: u 7→ −∆mu and u 7→ β(u(·)),
and they are maximal monotone in Lp(Ω) × Lp′(Ω). Indeed, set E = Lp(Ω)
and put

φ1(u) :=


1

m

∫
Ω

|∇u(x)|mdx if u ∈ W 1,m
0 (Ω),

∞ otherwise,
(1.2)

φ2(u) :=


∫

Ω

j(u(x))dx if j(u(·)) ∈ L1(Ω),

∞ otherwise,
(1.3)

where j : R → (−∞,∞] is a proper lower semicontinuous convex function
such that ∂j = β. Then φ1 and φ2 are lower semicontinuous and convex in
E, and moreover, ∂Eφ1(u) and ∂Eφ2(u) coincide with −∆mu equipped with
u|∂Ω = 0 and β(u(·)), respectively. Although every subdifferential operator
is maximal monotone, the sum of two subdifferential operators might not
be maximal monotone. Hence it is not obvious whether the operator M =
∂Eφ1 + ∂Eφ2 is maximal monotone in E × E∗ or not.

The maximality for the sum of two maximal monotone operators was
well studied in Hilbert space settings (see [6] and [7]). These results were
combined with nonlinear semigroup theory founded by Yukio Kōmura [10]
in 1967 and developed later by Brézis and many people for the study of
nonlinear evolution equations. As for Banach space settings, a couple of suf-
ficient conditions are proposed by Brézis, Crandall and Pazy [8] (see also [9]
and [13]). Let A and B be maximal monotone operators from E into E∗.
Their results ensure the maximal monotonicity of A+B in E ×E∗ if one of
the following conditions is at least satisfied:
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(i) D(A) ∩ (IntD(B)) 6= ∅,

(ii) B is dominated by A, i.e., D(A) ⊂ D(B) and ‖B(u)‖E∗ ≤ k‖A(u)‖E∗ +
`(|u|E) for all u ∈ D(A) with k ∈ (0, 1) and a non-decreasing function
` in R.

Here we write ‖C‖E∗ := inf{|c|E∗ ; c ∈ C} for each non-empty subset C
of E∗. Furthermore, in case B is a subdifferential operator, the following
condition (iii) also ensures the maximal monotonicity of A+B, and this fact
is proved in [7] when E = E∗ = H is a Hilbert space; however, it can be
naturally extended to a Banach space setting.

(iii) B = ∂Eφ with a proper, lower semicontinuous convex function φ : E →
(−∞,+∞], and

φ(Jλu) ≤ φ(u) + Cλ for u ∈ D(φ) and λ > 0, (1.4)

where Jλ denotes the resolvent of A in E.

Here the resolvent Jλ : E → D(A) is given such that uλ := Jλu is a unique
solution of FE(uλ−u)+A(uλ) 3 0, where FE stands for the duality mapping
between E and E∗, for each u ∈ E.

However, these results could not be applicable directly to our setting for
(1.1). As for (i), neither D(∂Eφ1) nor D(∂Eφ2) might have any interior points
in E (= Lp(Ω)). Condition (ii) cannot be checked unless an appropriate
growth condition is imposed on β. Condition (iii) is available for the case
that p = 2, because the duality mapping FE of E = L2(Ω) is the identity
and the resolvent Jλ for ∂Eφ2 has a simple representation formula,

(Jλu)(x) = (1 + λβ)−1(u(x)) for a.e. x ∈ Ω, (1.5)

which enables us to check (1.4). However, it is somewhat difficult to check
(1.4) for the case that p 6= 2. Actually, the relation between the resolvents
of ∂Eφ2 and β is unclear, since the duality mapping FE is severely nonlinear
whenever p 6= 2 (see (3.2) below).

In this paper we propose a new sufficient condition for the maximality of
∂Eφ1 + ∂Eφ2 in E × E∗ such that the representation formula (1.5) in L2(Ω)
can be effectively used in applications to nonlinear elliptic operators such as
(1.1). More precisely, we introduce a Hilbert space H as a pivot space of the
triplet E ↪→ H ≡ H∗ ↪→ E∗ and an extension φH

2 of φ2 to H, and moreover,
we give a sufficient condition for the maximality in terms of the resolvent
and the Yosida approximation for ∂Hφ

H
2 .
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The treatment of the operator M in Lp(Ω) with p 6= 2 is required from
recent studies on severely nonlinear problems such as generalized Allen-Cahn
equations of the form

|ut|p−2ut − ∆mu+ β(u) + g(u) 3 f in Ω × (0,∞), (1.6)

u = 0 on ∂Ω × (0,∞), (1.7)

u(·, 0) = u0 in Ω (1.8)

with a non-monotone function g : R → R. The main difficulty of treating
(1.6) arises from the nonlinearity in ut. To avoid this, one often chooses
E = Lp(Ω) as a base space of analysis, since the mapping u 7→ |u|p−2u from
E into E∗ has fine properties. Moreover, (1.6)–(1.8) can be reduced into the
Cauchy problem for the following evolution equation in E∗ = Lp′(Ω):

∂Eψ(u′(t)) + ∂Eφ(u(t)) + g(u(·, t)) 3 f(t) in E∗,

by putting

ψ(u) =
1

p

∫
Ω

|u(x)|pdx

and by setting φ = φ1 + φ2 with φ1, φ2 defined by (1.2), (1.3), provided that
∂Eφ1 + ∂Eφ2 is maximal monotone in E × E∗. The existence and the large-
time behavior of global solutions for this abstract evolution equation have
been studied by the author (see [1]).

Let us briefly discuss several related works. Condition (i), which had
been proposed by Rockafellar [13], was generalized by Attouch, Riahi and
Théra [3] (see, e.g., [14] for recent developments). Condition (ii) was gen-
eralized by [16]. Moreover, these problems have been also studied in gen-
eral Banach space settings (see, e.g., Borwein [5], Voisei [15] and references
therein). Furthermore, Attouch, Baillon and Théra [2] proposed the notion
of variational sum of maximal monotone operators in Hilbert spaces. On
the other hand, perturbation problems were also studied in the theory of
m-accretive operators in Banach spaces (see [11, 12] and references therein).

In §2, we first propose an abstract framework on the maximality for the
sum of two subdifferential operators in Banach spaces. Moreover, in §3, we
also establish an estimate for the nonlinear elliptic operator M in Lr(Ω) with
r ∈ (1,∞) to check a sufficient condition presented in §2. The final section
is devoted to an application to the nonlinear elliptic operator M.
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2 Maximality for the sum of subdifferential

operators

This section is devoted to our sufficient condition for the maximality of the
sum of two subdifferential operators in an abstract form.

Let us first briefly recall a couple of notion associated with maximal mono-
tone operators and subdifferential operators in Hilbert spaces (see, e.g., [6, 7]
for more details).

Let A : H → H be a maximal monotone operator with the domain
D(A) := {u ∈ H; A(u) 6= ∅}. The resolvent Jλ : H → D(A) of A is defined
by Jλ := (I + λA)−1 with the identity mapping I : H → H, and moreover,
the Yosida approximation Aλ : H → H of A is given by Aλ := (I − Jλ)/λ.
Then Aλ(u) ∈ A(Jλu) for all u ∈ H.

Let ϕ : H → (−∞,∞] be a proper lower semicontinuous convex func-
tional. The Moreau-Yosida regularization of ϕ is defined by

ϕλ(u) := inf
v∈H

{
1

2λ
|u− v|2H + ϕ(v)

}
=

1

2λ
|u− Jλu|2H + ϕ(Jλu) for u ∈ H,

where Jλ denotes the resolvent for ∂Hϕ. We note that the subdifferential
operator of ϕλ coincides with the Yosida approximation of ∂Hϕ, that is,
∂H(ϕλ) = (∂Hϕ)λ, so we simply write ∂Hϕλ. Moreover, ϕ(Jλu) ≤ ϕλ(u) ≤
ϕ(u) for all u ∈ H.

Now, our result reads,

Theorem 2.1. Let E be a strictly convex reflexive Banach space with a
strictly convex dual space E∗ and let H be a Hilbert space whose dual space
is identified with itself such that

E ↪→ H ≡ H∗ ↪→ E∗ (2.1)

with continuous and densely defined canonical injections. Let φ1 and φ2 be
proper, lower semicontinuous and convex functions from E into (−∞,∞]
such that D(φ1) ∩D(φ2) 6= ∅. Assume that

(A1) there exists an extension φH
2 of φ2 to H such that φH

2 is lower semicon-
tinuous and convex in H.

Let JH
λ stand for the resolvent of ∂Hφ

H
2 , and let φH

2,λ denote the Moreau-
Yosida regularization of φH

2 and AH
λ the Yosida approximation of ∂Hφ

H
2 .

Suppose that
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(A2) let [uλ, ξλ] ∈ ∂Eφ1 be such that |ξλ + AH
λ (uλ)|E∗, φ1(uλ), φ

H
2,λ(uλ) and

|uλ|E are bounded as λ→ +0. Then JH
λ uλ ∈ E, and moreover, |JH

λ uλ|E
and |AH

λ (uλ)|E∗ are also bounded.

Then ∂Eφ1 + ∂Eφ2 is maximal monotone in E × E∗.

Proof. Since E∗ is strictly convex, the duality mapping FE between E and
E∗ is single-valued and demicontinuous (i.e., strongly-weakly continuous).
Moreover, we can assume φ1, φ2 ≥ 0 without any loss of generality (see
Proposition 2.1 of [4, Chap. II]). The monotonicity of ∂Eφ1 + ∂Eφ2 follows
immediately. To prove the maximality in E×E∗, it suffices to show that the
range of FE + ∂Eφ1 + ∂Eφ2 coincides with E∗ (see, e.g., Theorem 1.2 of [4,
Chap. II]).

We note that AH
λ is Lipschitz continuous in H, in particular, bounded

and hemicontinuous from E into E∗. Hence ∂Eφ1 + AH
λ becomes maximal

monotone in E × E∗ (see Corollary 1.1 of [4, Chap. II]), and therefore, for
each f ∈ E∗, there exists uλ ∈ D(∂Eφ1) such that

FE(uλ) + ξλ + AH
λ (uλ) = f and ξλ ∈ ∂Eφ1(uλ). (2.2)

Let us take v ∈ D(φ1) ∩ D(φ2). Multiply (2.2) by uλ − v and note that
AH

λ = ∂H(φH
2,λ). It then follows that

1

2
|uλ|2E − 1

2
|v|2E + φ1(uλ) − φ1(v) + φH

2,λ(uλ) − φH
2,λ(v) ≤ 〈f, uλ − v〉. (2.3)

Since φH
2,λ(v) ≤ φH

2 (v) = φ2(v), we have

|FE(uλ)|E∗ = |uλ|E ≤ C, φ1(uλ) ≤ C and φH
2,λ(uλ) ≤ C, (2.4)

and hence,
|ξλ + AH

λ (uλ)|E∗ ≤ C.

Furthermore, by (A2),

|JH
λ uλ|E ≤ C and |AH

λ (uλ)|E∗ ≤ C,

which also implies
|ξλ|E∗ ≤ C.

Therefore since E and E∗ are reflexive, we can take a sequence λn → +0
such that

uλn → u weakly in E, (2.5)

FE(uλn) → u∗ weakly in E∗, (2.6)

JH
λn
uλn → û weakly in E, (2.7)

AH
λn

(uλn) → η weakly in E∗, (2.8)

ξλn → ξ weakly in E∗ (2.9)
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with some u, û ∈ E and u∗, η, ξ ∈ E∗. Hence u∗ + ξ + η = f . Moreover,

|uλ − JH
λ uλ|E∗ = λ|AH

λ (uλ)|E∗ ≤ λC → 0.

Thus we obtain u = û. By (2.4) and the (weak) lower semicontinuity of φ1

and φ2, we observe u ∈ D(φ1) ∩D(φ2).
Multiply (2.2) with λ = λn by uλn − u and pass to the limit as λn → 0.

Then

lim sup
λn→0

〈FE(uλn), uλn〉 + lim inf
λn→0

φ1(uλn) + lim inf
λn→0

φ2(J
H
λn
uλn)

≤ 〈u∗, u〉 + φ1(u) + φ2(u).

Hence by the weak lower semicontinuity of φ1 and φ2 in E, it follows from
(2.5) and (2.7) that

lim sup
λn→0

〈FE(uλn), uλn〉 ≤ 〈u∗, u〉.

Therefore, since FE is maximal monotone in E ×E∗, by Lemma 1.2 of [8] it
also follows that

u∗ = FE(u) and 〈FE(uλn), uλn〉 → 〈u∗, u〉.

Furthermore, we can similarly obtain

ξ ∈ ∂Eφ1(u) and 〈ξλn , uλn〉 → 〈ξ, u〉.

Now it remains to prove η ∈ ∂Eφ2(u). Note that

〈AH
λn

(uλn), JH
λn
uλn〉 ≤ 〈AH

λn
(uλn), uλn〉

= 〈f, uλn〉 − 〈FE(uλn), uλn〉 − 〈ξλn , uλn〉
→ 〈f − u∗ − ξ, u〉 = 〈η, u〉.

Recalling by (A1) that AH
λn

(uλn) ∈ ∂Hφ
H
2 (JH

λn
uλn) ⊂ ∂Eφ2(J

H
λn
uλn) and em-

ploying Lemma 1.2 of [8], we conclude by (2.7) and (2.8) that η ∈ ∂Eφ2(u).
Consequently, FE(u) + ∂Eφ1(u) + ∂Eφ2(u) 3 f , and therefore ∂Eφ1 + ∂Eφ2 is
maximal monotone in E × E∗.

Remark 2.2. (i) One can replace (A2) of Theorem 2.1 by

(A2)′ Let f ∈ E∗ and let uλ be solutions of approximate problems
(2.2). Then JH

λ uλ ∈ E, and moreover, |JH
λ uλ|E and |AH

λ (uλ)|E∗

are bounded as λ→ 0.
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(ii) Brézis, Crandall and Pazy [8] also presented a sufficient and necessary
condition for the maximality of the sum A+B of two maximal mono-
tone operators in E × E∗ with D(A) ∩D(B) 6= ∅. More precisely, let
uλ be a solution of

FE(uλ) + ξλ +Bλ(uλ) = f and ξλ ∈ A(uλ), (2.10)

where Jλ : E → D(A) and Bλ : E → E∗ are the resolvent and the
Yosida approximation, i.e., Bλ(u) = FE(u − Jλu)/λ, respectively, of
B : E → E∗. Then A+B is maximal monotone if and only if for each
f ∈ E∗, |Bλ(uλ)|E∗ is bounded as λ → 0 (it also yields the sufficient
conditions (i)–(iii) in Section 1). Here we also note that the bounded-
ness of |Jλuλ|E automatically follows from that of |uλ|E as λ→ 0, since
Jλ : E → D(A) is bounded.

(iii) The extension of Theorem 2.1 to the sum of maximal monotone oper-
ators A,B : E → E∗ is still open and seems to be not obvious. Indeed,
the derivations of u∗ = FE(u), ξ ∈ ∂Eφ1(u) and η ∈ ∂Eφ2(u) in our
proof essentially rely on the structure of subdifferential operators, and
moreover, a technique used in [8], where the maximality of A + B is
treated, could not be applied directly to our approximation (2.2).

3 An estimate for maximal monotone graphs

in Lr(Ω)

In order to check (A2) of Theorem 2.1 for the case that E = Lp(Ω) and φ1, φ2

are given by (1.2), (1.3) respectively, we shall establish an estimate in Lr(Ω)
for the nonlinear elliptic operator

u 7→ −∆mu+ β(u(·))

with a maximal monotone graph β in R. It will be used to derive the bound-
edness for |AH

λ (uλ)|E∗ as λ→ 0 for solutions uλ of (2.2).

Theorem 3.1. Let Ω be a domain in RN and let m, r ∈ (1,∞). Let β : R →
2R be a maximal monotone operator in R such that β(0) 3 0, and let β◦(s)
denote the minimal section of β(s), i.e., |β◦(s)| = min{|ξ|; ξ ∈ β(s)}. Let
u ∈ W 1,m

0 (Ω) and η ∈ Lr(Ω) be such that ∆mu ∈ Lr(Ω) and η(x) ∈ β(u(x))
for a.e. x ∈ Ω. Then it follows that

|β◦(u(·))|Lr(Ω) ≤ | − ∆mu+ η|Lr(Ω). (3.1)
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In case r = 2, Estimate (3.1) has already been established in an abstract
formulation (see, e.g., [7]), and its proof relies on a structure intrinsic to
Hilbert spaces. However, for r 6= 2, it seems to be unknown. We prove (3.1)
for general r ∈ (1,∞) by finding a necessary and sufficient condition for the
maximal monotonicity of the composition of two monotone operators in R
and by exploiting an explicit formula of a duality mapping between Lr(Ω)
and Lr′(Ω).

Let us define a mapping Fr : Lr(Ω) → Lr′(Ω) by

Fr(v) :=


|v|r−2v(·)
|v|r−2

Lr(Ω)

if v ∈ Lr(Ω) \ {0},

0 if v = 0.

(3.2)

Then Fr satisfies

|Fr(v)|Lr′ (Ω) = |v|Lr(Ω) and 〈Fr(v), v〉Lr(Ω) = |v|2Lr(Ω) for all v ∈ Lr(Ω).

Hence Fr works as a duality mapping between Lr(Ω) and Lr′(Ω).
We next discuss a necessary and sufficient condition for the maximal

monotonicity of the composition of two monotone operators in R.

Lemma 3.2. Let α, β : R → 2R be monotone operators in R and define a
mapping γ : R → 2R by

γ(s) = α ◦ β(s) := {η ∈ α(ξ); ξ ∈ β(s) ∩D(α)}

with the domain D(γ) = {s ∈ D(β); β(s) ∩D(α) 6= ∅}. Then γ is maximal
monotone in R if and only if β−1 + α is surjective in R.

Proof. We first prove the monotonicity of γ. Let s1, s2 ∈ D(γ) be such that
s1 ≤ s2. For all η1 ∈ γ(s1) and η2 ∈ γ(s2), by the definition of γ, there exist
ξ1, ξ2 ∈ D(α) such that ηi ∈ α(ξi) and ξi ∈ β(si) for i = 1, 2. Since s1 ≤ s2

and β is monotone, we have ξ1 ≤ ξ2, which together with the monotonicity
of α implies η1 ≤ η2. Thus γ is monotone in R.

Assume that β−1 +α is surjective in R. To prove the maximality, for each
f ∈ R, it suffices to find s ∈ D(γ) such that s+ γ(s) 3 f . From assumption,
we can take ξ ∈ D(α) ∩D(β−1) such that β−1(ξ) + α(ξ) 3 f . Then we can
take s ∈ D(β) such that ξ ∈ β(s) and s + α(ξ) 3 f , that is, s + γ(s) 3 f .
Thus γ is maximal monotone in R.

Conversely, assume that γ is maximal monotone, that is, for any f ∈ R,
there is [s, η] ∈ γ such that s+ η = f . From the definition of γ, we can take
ξ ∈ D(α) such that η ∈ α(ξ) and ξ ∈ β(s). Hence since s ∈ β−1(ξ), we have
β−1(ξ) + α(ξ) 3 f , which implies the surjectivity of β−1 + α.
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We further prepare the following lemma.

Lemma 3.3. Let m, r ∈ (1,∞) and let γ : R → 2R be a maximal monotone
operator in R such that γ(0) 3 0. Then it follows that∫

Ω

−∆mu(x)γ
◦(u(x))dx ≥ 0

for all u ∈ W 1,m
0 (Ω) satisfying ∆mu ∈ Lr(Ω) and γ◦(u(·)) ∈ Lr′(Ω).

Proof. Let γλ and ρλ be the Yosida approximation and the resolvent of γ
respectively. Let u ∈ W 1,m

0 (Ω) be such that ∆mu ∈ Lr(Ω) and γ◦(u(·)) ∈
Lr′(Ω). Then we find that |ρλ(u(x+ h)) − ρλ(u(x))| ≤ |u(x+ h) − u(x)| for
x ∈ Ω and h ∈ RN satisfying x+h ∈ Ω, since ρλ is non-expansive. Moreover,
we see ρλ(0) = 0, because γ(0) 3 0. Hence we have

|∇ρλ(u(x))| ≤ |∇u(x)| for a.e. x ∈ Ω (3.3)

and ρλ(u(·)) ∈ W 1,m
0 (Ω). Furthermore, we can deduce that γλ(u(·)) ∈ Lr′(Ω)

from the fact that |γλ(u(x))| ≤ |γ◦(u(x))| and γ◦(u(·)) ∈ Lr′(Ω).
Multiplying −∆mu by γλ(u(·)) and integrating this over Ω, we obtain∫

Ω

−∆mu(x)γλ(u(x))dx =

∫
Ω

−∆mu(x)
u(x) − ρλ(u(x))

λ
dx

≥ φ1(u) − φ1(ρλ(u(·)))
λ

,

where φ1(u) = (1/m)
∫
Ω
|∇u(x)|mdx. Therefore since (3.3) yields φ1(u) ≥

φ1(ρλ(u(·))), we deduce that∫
Ω

−∆mu(x)γλ(u(x))dx ≥ 0.

Letting λ→ +0 and noting that

γλ(u(x)) → γ◦(u(x)), |γλ(u(x))| ≤ |γ◦(u(x))| for a.e. x ∈ Ω

and γ◦(u(·)) ∈ Lr′(Ω), we infer that γλ(u(·)) → γ◦(u(·)) strongly in Lr′(Ω).
Thus we conclude that ∫

Ω

−∆mu(x)γ
◦(u(x))dx ≥ 0.

This completes our proof.
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Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let u ∈ W 1,m
0 (Ω) and η ∈ Lr(Ω) be such that ∆mu ∈

Lr(Ω) and η(x) ∈ β(u(x)) for a.e. x ∈ Ω. Then β◦(u(·)) also belongs to
Lr(Ω). Put v = β◦(u(·)) and multiply −∆mu + η by Fr(v). Here we note
that

〈Fr(v),−∆mu〉Lr(Ω) =
1

|v|r−2
Lr(Ω)

∫
Ω

−∆mu(x)|v|r−2v(x)dx.

Put α(s) := |s|r−2s. Then α is continuous and coercive in R. Moreover, since
β−1 is maximal monotone, β−1 + α becomes surjective. Hence by Lemma
3.2, the composite mapping γ = α ◦ β is maximal monotone in R. Therefore
Lemma 3.3 yields ∫

Ω

−∆mu(x)γ
◦(u(x))dx ≥ 0.

Here the minimal section γ◦(s) of γ(s) coincides with α(β◦(s)) for all s ∈
D(γ). Thus by Lemma 3.3 it follows that 〈Fr(v),−∆mu〉Lr(Ω) ≥ 0. Further-
more, we observe

〈Fr(v), η〉Lr(Ω) =
1

|v|r−2
Lr(Ω)

∫
Ω

|v|r−2v(x)η(x)dx ≥ |v|2Lr(Ω),

because v(x)η(x) ≥ |v(x)|2 for a.e. x ∈ Ω. Hence we have

〈Fr(v),−∆mu+ η〉Lr(Ω) ≥ |v|2Lr(Ω),

which implies (3.1).

4 Application to nonlinear elliptic operators

In this section, we apply the preceding results to investigate the maximality
of the operator M defined by (1.1).

Theorem 4.1. Let Ω be a bounded domain of RN with smooth boundary ∂Ω.
Let β : R → 2R be a maximal monotone graph satisfying β(0) 3 0 and let
j : R → (−∞,∞] be a primitive function of β, i.e., β = ∂j. Suppose that

1 < m <∞ and 2 ≤ p <∞. (4.1)

Let E = Lp(Ω) and let φ1, φ2 : E → (−∞,∞] be defined by (1.2), (1.3)
respectively. Then M = ∂Eφ1 + ∂Eφ2 is maximal monotone in E × E∗. In
addition, if β is single-valued, then it holds that

|∂Eφ2(u)|E∗ ≤ |∂E(φ1 + φ2)(u)|E∗ for all u ∈ D(∂Eφ1) ∩D(∂Eφ2).
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Remark 4.2. By this theorem, M = ∂Eφ1 +∂Eφ2 coincides with ∂Eφ, where
φ = φ1 +φ2. Indeed, one can easily check that ∂Eφ1 +∂Eφ2 ⊂ ∂E(φ1 +φ2) in
terms of their graphs. Hence if ∂Eφ1 +∂Eφ2 is maximal monotone in E×E∗,
then ∂Eφ1 + ∂Eφ2 = ∂E(φ1 + φ2).

Remark 4.3. Before proceeding to a proof of Theorem 4.1, let us check
the convexity and the lower semicontinuity of φ1, φ2 in E. The convexity
is obvious, so let us prove the lower semicontinuity. Since φ1 is convex and
continuous in W 1,m

0 (Ω), φ1 is weakly lower semicontinuous in W 1,m
0 (Ω). The

lower semicontinuity in E of φ1 is equivalent to the closedness in E of sublevel
sets [φ1 ≤ λ] := {u ∈ E; φ1(u) ≤ λ} for any λ ∈ R. Let (un) be a sequence
in [φ1 ≤ λ] with an arbitrary λ ∈ R such that un → u strongly in E. Then
from the definition of φ1, un is bounded in W 1,m

0 (Ω). Hence one can take a
subsequence (n′) of (n) such that un′ → u weakly in W 1,m

0 (Ω). Then since
φ1 is weakly lower semicontinuous in W 1,m

0 (Ω), we have

φ1(u) ≤ lim inf
n′→∞

φ1(un′) ≤ λ,

which implies u ∈ [φ1 ≤ λ]. Hence φ1 is lower semicontinuous in E. The
lower semicontinuity of φ2 in E can be proved by Fatou’s lemma as in the
case of p = 2 (see Example 3, p. 61 of [4]).

Proof of Theorem 4.1. Put H = L2(Ω) and notice by (4.1) that (2.1) holds.
Define an extension φH

2 : H → (−∞,∞] of φ2 by

φH
2 (u) :=


∫

Ω

j(u(x))dx if j(u(·)) ∈ L1(Ω),

∞ otherwise
for u ∈ H.

Then φH
2 = φ2 on E and φH

2 is convex and lower semicontinuous in H by
the convexity and the lower semicontinuity of j in R (see Example 3, p. 61
of [4]), so (A1) holds.

We next check (A2). Let [uλ, ξλ] ∈ ∂Eφ1 be such that |ξλ + AH
λ (uλ)|E∗ ,

φ1(uλ), φ
H
2,λ(uλ) and |uλ|E are bounded as λ → +0, where AH

λ denotes the
Yosida approximation of ∂Hφ

H
2 . Then we notice by (1.5) that

[u, f ] ∈ AH
λ if and only if f(x) = βλ(u(x)) for a.e. x ∈ Ω

for all u, f ∈ L2(Ω), where βλ stands for the Yosida approximation of β.
Since βλ is maximal monotone in R and βλ(0) = 0, Theorem 3.1 ensures that

|AH
λ (u)|E∗ ≤ |∂Eφ1(u) + AH

λ (u)|E∗ for all u ∈ D(∂Eφ1).
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Thus |AH
λ (uλ)|E∗ is bounded as λ→ +0.

As for the boundedness of JH
λ uλ in E, we note that

(JH
λ u)(x) = (1 + λβ)−1(u(x)) for a.e. x ∈ Ω,

where JH
λ is the resolvent for ∂Hφ

H
2 , i.e., JH

λ = (I + λ∂Hφ
H
2 )−1. Since

(1 + λβ)−1 is non-expansive in R and (1 + λβ)−1(0) = 0, it follows that
|(JH

λ u)(x)| ≤ |u(x)| for a.e. x ∈ Ω. Hence

JH
λ u ∈ E and |JH

λ u|E ≤ |u|E for all u ∈ E.

Therefore JH
λ uλ belongs to E and JH

λ uλ is bounded in E if |uλ|E is bounded
as λ → 0. Thus (A2) holds true. Consequently, by Theorem 2.1, we assure
that ∂Eφ1 + ∂Eφ2 is maximal monotone in E × E∗.

In case β is single-valued, i.e., β = (β)◦, Theorem 3.1 also implies

|∂Eφ2(u)|E∗ ≤ |∂E(φ1 + φ2)(u)|E∗ for all u ∈ D(∂Eφ1) ∩D(∂Eφ2).

We have completed our proof.
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