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Abstract

This paper is concerned with the Weighted Energy-Dissipation (WED) func-
tional approach to doubly nonlinear evolutionary problems. This approach consists
in minimizing (WED) functionals defined over entire trajectories. We present the
features of the WED variational formalism and analyze the related Euler-Lagrange
problems. Moreover, we check that minimizers of the WED functionals converge
to the corresponding limiting doubly nonlinear evolution. Finally, we present a dis-
cussion on the functional convergence of sequences of WED functionals and present
some application of the abstract theory to nonlinear PDEs.
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1 Introduction

This paper is concerned with the analysis of the Weighted Energy-Dissipation (WED)
functional Iε : Lp(0, T ;V ) → (−∞,∞] given by

Iε(u) :=

∫ T

0

e−t/ε

(
ψ(u′(t)) +

1

ε
φ(u(t))

)
dt.

Here, t ∈ [0, T ] 7→ u(t) ∈ V is a given trajectory in a uniformly convex Banach space V ,
u′ is the time derivative, p ∈ [2,∞), ψ, φ : V → (−∞,∞] are convex functionals, and ψ
has p-growth.

The WED functional arises as a new tool in order to possibly reformulate dissipative
evolution problems in a variational fashion. In particular, minimizers uε of the WED
functional Iε taking a given initial value uε(0) = u0 are expected to converge as ε→ 0 to
solutions of the doubly nonlinear Cauchy problem

∂ψ(u′(t)) + ∂φ(u(t)) 3 0, 0 < t < T, u(0) = u0 (1. 1)
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(here ∂ is the subdifferential, see §2.1). The differential problem (1. 1) expresses a balance
between the system of conservative actions modeled by the gradient ∂φ of the energy φ
and that of dissipative actions described by the gradient ∂ψ of the dissipation ψ. This in
particular motivates the terminology WED as the energy φ and dissipation ψ appear in
Iε along with the parameter 1/ε and the exponentially decaying weight t 7→ exp(−t/ε).

The doubly nonlinear dissipative relation (1. 1) is extremely general and stands as
a paradigm for dissipative evolution. Indeed, let us remark that the formulation (1. 1)
includes the case of gradient flows, which corresponds to the choice of a quadratic dis-
sipation ψ. Consequently, the interest in providing a variational approach to (1. 1) is
evident, for it would pave the way to the application of general methods of the Calculus
of Variations to a variety of nonlinear dissipative evolution problems.

This perspective has recently attracted attention and, particularly, the WED formal-
ism has already been matter of consideration. At first, the WED functional approach has
been addressed by Mielke & Ortiz [19] in the rate-independent case, namely for a posi-
tively 1-homogeneous dissipation ψ (p = 1). By requiring the compactness of sublevels for
φ, in [19] it is checked that the limit ε → 0 can be rigorously performed and minimizers
of the WED functionals converge to suitably weak solutions of the corresponding limiting
problem. These results are then extended and combined with time-discretization in [21].

Out of the rate-independent realm, the only available results for the WED functionals
are for the gradient flow case p = 2 (particularly ψ(·) = | · |2/2). In [10] Conti & Ortiz
provide two concrete examples of nontrivial relaxations of WED functionals connected
with applications in Mechanics. In particular, they show the possibility of tackling via
the WED functional approach some specific micro-structure evolution problem and the
respective scaling analysis. The general gradient flow case is addressed in [22] where the
limit ε → 0 is checked and the analysis is combined with time-discretization. In this
case, the convexity of φ plays a crucial role and no compactness is assumed. Finally, the
relaxation of the WED functional related to the evolution by mean curvature of cartesian
surfaces is addressed in [27].

Our focus here is on more general cases p ∈ [2,∞) instead. By assuming p-growth and
differentiability for ψ and some growth restriction and the compactness of the sublevels
for φ we are able to prove that minimizers uε of Iε converge to a solution of (1. 1) (paper
[2] contains another result in this direction under a different assumption frame).

The limit ε → 0 is clearly the crucial issue for the WED theory and it is usually
referred to as the causal limit. This name is suggested by the facts that the Euler-
Lagrange equation for Iε turns out to be elliptic-in-time (hence non-causal) and that the
causality of the limiting problem (1. 1) is restored as ε → 0. More precisely, let X be a
second reflexive Banach space which is densely and compactly embedded in V . Then, we
shall prove that the Euler-Lagrange equation for Iε under the constraint uε(0) = u0 reads

−ε d

dt
(dV ψ(u′ε(t))) + dV ψ(u′ε(t)) + ∂XφX(uε(t)) 3 0 in X∗, 0 < t < T, (1. 2)

uε(0) = u0, (1. 3)

dV ψ(u′ε(T )) = 0, (1. 4)

where φX : X → [0,∞] is the restriction of φ onto X, and dV ψ and ∂XφX are the Gâteaux
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differential of ψ and the subdifferential of φX , respectively (see §2.1 for definitions). Hence,
the Euler-Lagrange equation (1. 2) for Iε stands as an elliptic regularization in time of
(1. 1) (note the final condition (1. 4)). In particular, by formally taking the limit in the
Euler-Lagrange equation (1. 2)–(1. 4) as ε→ 0, the following causal problem is recovered

dV ψ(u′(t)) + ∂V φ(u(t)) 3 0 in V ∗, 0 < t < T, (1. 5)

u(0) = u0. (1. 6)

Note that the existence of global solutions for (1. 5)–(1. 6) was proved by Colli [9] in
our very functional setting and it is hence out of question here. Instead, we concentrate
on the possibility of recovering solutions to (1. 5)–(1. 6) via the minimization of the WED
functionals Iε and the causal limit ε→ 0. To this aim, we shall start from establishing the
existence of strong solutions to the Euler-Lagrange system (1. 2)–(1. 4) which, apparently,
was never considered before.

A second issue of this paper is the discussion of the functional convergence as h → 0
of a sequence of WED functionals Iε,h in the form

Iε,h(u) =

∫ T

0

e−t/ε
(
ψh(u

′(t)) +
1

ε
φh(u(t))

)
dt

with initial constraints u(0) = u0,h ∈ D(φh) and two sequences of convex functionals
ψh, φh : V → (−∞,∞] depending on the additional parameter h > 0. We shall provide
sufficient conditions under which Iε,h → Iε in the so-called Mosco sense (see Definition
6.1). In particular, our sufficient conditions consist of separate Γ-liminf conditions for ψh

and φh as well as a suitable joint recovery sequence condition in the same spirit of [20].
The present functional-convergence results are new even in the gradient flow case p = 2.

Before closing this section let us mention that elliptic-in-time regularizations of parabo-
lic problems are classical in the linear case and some results can be found in the monograph
by Lions & Magenes [18]. As for the nonlinear case, one has to recall the paper by
Ilmanen [16] where the WED is used in order to prove the existence and partial regularity
of the so-called Brakke mean curvature flow of varifolds.

Apart from the WED formalism, a number of alternative contributions to other vari-
ational formulations to nonlinear evolutionary problems, e.g., Brézis-Ekeland’s princi-
ple [7, 8], have been considered in order to characterize entire trajectories as critical
points of functionals (see also [5], [12, 13, 14], [15] for linear cases, and [24, 25], [32,
33], [11], [28, 29, 30] for nonlinear cases). The advantages of the WED formalism over
former variational approaches are that it relies on a true minimization procedure (plus
passage to the causal limit) and that it directly applies to doubly nonlinear evolution
equations.

This is the plan of the paper. Section 2 is devoted to enlist and comment assumptions
and present some preliminary facts to be used throughout. In Section 3, we prove the
existence of strong solutions of the Euler-Lagrange equation (1. 2)–(1. 4), whereas Section
4 brings to a proof of the coincidence between global minimizers for Iε and strong solutions
of the Euler-Lagrange equation. In Section 5, we check for the causal limit ε → 0 and
Section 6 is concerned with the functional convergence of the sequence of WED functionals
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Iε,h as h → 0. A typical example of a doubly nonlinear PDE fitting the current analysis
is

α(ut) −∇ · (|∇u|m−2∇u) = 0

with α monotone, non-degenerate, and polynomially growing at ∞. Details on the respec-
tive WED functional approach as well as its approximation by functional convergence are
presented in Section 7. Eventually, the appendix contains a proof of a technical lemma.

2 Assumptions and preliminary material

2.1 Notation, subdifferential, Gâteaux differential

Let us collect in the following some preliminary material along with relevant notation.

Let ϕ be a proper (i.e., ϕ 6≡ ∞), lower semicontinuous and convex functional from a
normed space E into (−∞,∞]. Then the subdifferential operator ∂Eϕ : E → E∗ of ϕ is
defined by

∂Eϕ(u) := {ξ ∈ E∗; ϕ(v) − ϕ(u) ≥ 〈ξ, v − u〉E for all v ∈ E}
with the domain D(∂Eϕ) := {u ∈ D(ϕ); ∂Eϕ(u) 6= ∅} and obvious notation for the
duality pairing. It is known that ∂Eϕ is maximal monotone in E × E∗ ([6], [4]).

The functional ϕ is said to be Gâteaux differentiable at u (resp., in E), if there exists
ξ ∈ E∗ such that

lim
h→0

ϕ(u+ he) − ϕ(u)

h
= 〈ξ, e〉E for any e ∈ E

at u (resp., for all u ∈ E). In this case, ξ is called a Gâteaux derivative of ϕ at u and
denoted by dEϕ(u). We can naturally define an operator dEϕ from E into E∗. If ϕ is
Gâteaux differentiable at u, then the set ∂Eϕ(u) consists of the single element dEϕ(u).

Throughout this paper, we denote by A the graph of a possibly multivalued operator
A : E → E∗. Hence [u, ξ] ∈ A means that u ∈ D(A) and ξ ∈ A(u).

2.2 Assumptions

Let V and V ∗ be a uniformly convex Banach space and its dual space with norms | · |V
and | · |V ∗ , respectively, and a duality pairing 〈·, ·〉V and let X be a reflexive Banach space
with a norm | · |X and a duality pairing 〈·, ·〉X such that

X ↪→ V and V ∗ ↪→ X∗

with densely defined compact canonical injections. Let ψ : V → [0,∞) be a Gâteaux
differentiable convex functional and let φ : V → [0,∞] be a proper lower semicontinuous
convex functional.

Let p ∈ [2,∞) and m ∈ (1,∞) be fixed, and introduce our basic assumptions:
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(A1) there exist constants C1, C2 > 0 such that C1|u|pV ≤ ψ(u) + C2 for all u ∈ V ;

(A2) there exist constants C3, C4 > 0 such that |dV ψ(u)|p
′

V ∗ ≤ C3|u|pV + C4 for all u ∈ V ;

(A3) there exists a non-decreasing function `1 in R such that

|u|mX ≤ `1(|u|V ) (φ(u) + 1) for all u ∈ D(φ);

(A4) there exists a non-decreasing function `2 in R such that

|η|m′

X∗ ≤ `2(|u|V ) (|u|mX + 1) for all [u, η] ∈ ∂XφX ,

where φX : X → [0,∞] denotes the restriction of φ on X.

Note that, by (A2) and the definition of subdifferential, the continuity of ψ in V also
follows. Furthermore, we can also verify by (A3) and (A4) that φX is continuous in X
and D(∂XφX) = X. Moreover, from the definition of subdifferential and (A1), it also
holds that

(A1)′ C1|u|pV ≤ 〈dV ψ(u), u〉V + C ′
2 for all u ∈ V

with C ′
2 := C2 + ψ(0) ≥ 0. Let us manipulate (A2) in order to get

(A2)′ ψ(u) ≤ ψ(0) + 〈dV ψ(u), u〉V ≤ ψ(0) +
1

p′
|dV ψ(u)|p

′

V ∗ +
1

p
|u|pV ≤ C ′

3(|u|
p
V + 1)

for all u ∈ V with C ′
3 := ψ(0) + C4 + C3 + 1 ≥ 0. Similarly, by (A4), we can also obtain

φ(u) ≤ `3(|u|V ) (|u|mX + 1) for all u ∈ X

with a non-decreasing function `3 in R.

Finally, let us give a precise definition of WED functionals of our main interest.

Iε(u) =


∫ T

0

e−t/ε

(
ψ(u′(t)) +

1

ε
φ(u(t))

)
dt if u ∈ W 1,p(0, T ;V ), u(0) = u0

and ψ(u′(·)), φ(u(·)) ∈ L1(0, T ),

∞ else

with an initial data u0 ∈ V and a parameter ε > 0. Then we remark that

D(Iε) = {u ∈ Lm(0, T ;X) ∩W 1,p(0, T ;V ); u(0) = u0},

as the above remarks imply

e−T/ε

(
C1

∫ T

0

|u′(t)|pV dt+
1

ε`1(‖u‖L∞(0,T ;V ))

∫ T

0

|u(t)|mXdt− C2T − T

ε

)
≤

∫ T

0

e−t/ε

(
ψ(u′(t)) +

1

ε
φ(u(t))

)
dt

≤ C ′
3

(∫ T

0

|u′(t)|pV dt+ T

)
+
`3(‖u‖L∞(0,T ;V ))

ε

(∫ T

0

|u(t)|mXdt+ T

)
,

where ‖u‖L∞(0,T ;V ) := ess supt∈[0,T ] |u(t)|V , for all u ∈ Lm(0, T ;X) ∩W 1,p(0, T ;V ).
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2.3 Coincidence between ∂XφX and ∂V φ

The following proposition shows some relationship between ∂V φ and ∂XφX .

Proposition 2.1. Let V and X be normed spaces such that X ⊂ V with a continuous
canonical injection. Let φ be a proper, lower semicontinuous and convex functional from
V into (−∞,∞]. Moreover, let φX be the restriction of φ onto X. If D(φ) ⊂ X, then

D(∂V φ) = {w ∈ D(∂XφX); ∂XφX(w) ∩ V ∗ 6= ∅} , (2. 1)

and moreover,
∂V φ(u) = ∂XφX(u) ∩ V ∗ for u ∈ D(∂V φ). (2. 2)

Proof. We first note that V ∗ ⊂ X∗. Let u ∈ D(∂V φ) and f ∈ ∂V φ(u) be fixed. For any
v ∈ D(φX) ⊂ X, noting that D(∂V φ) ⊂ D(φ) ⊂ X by assumption, we find that

φX(v) − φX(u) = φ(v) − φ(u)

≥ 〈f, v − u〉V = 〈f, v − u〉X ,

which implies u ∈ D(∂XφX) and f ∈ ∂XφX(u) ∩ V ∗.

Conversely, let u ∈ {w ∈ D(∂XφX); ∂XφX(w) ∩ V ∗ 6= ∅} and f ∈ ∂XφX(u) ∩ V ∗ be
fixed. For v ∈ D(φ) ⊂ X, it follows that

φ(v) − φ(u) = φX(v) − φX(u)

≥ 〈f, v − u〉X = 〈f, v − u〉V ,

which gives u ∈ D(∂V φ) and f ∈ ∂V φ(u). Thus (2. 1) and (2. 2) hold.

2.4 Representation of subdifferentials in Lp(0, T ;V )

We provide here a result on the possible representation of the subdifferential of an integral
functional. This representation turns out to be useful later on. We set V := Lp(0, T ;V )
and define the two functionals I1

ε , I2
ε : V → [0,∞] by

I1
ε (u) :=


∫ T

0

e−t/εψ(u′(t))dt if u ∈ W 1,p(0, T ;V ), u(0) = u0,

∞ else

(note that ψ(u′(·)) ∈ L1(0, T ) for all u ∈ W 1,p(0, T ;V ) by (A2)′) and

I2
ε (u) :=


∫ T

0

1

ε
e−t/εφ(u(t))dt if u ∈ Lm(0, T ;X),

∞ else.

Then it is obvious that

Iε(u) = I1
ε (u) + I2

ε (u) for u ∈ D(Iε) = D(I1
ε ) ∩D(I2

ε ).
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Moreover, I1
ε and I2

ε are proper, (weakly) lower semicontinuous and convex in V .

Let us discuss the representation of the subdifferential operator ∂VI
1
ε . Define the

operator A : V → V∗ by

A(u)(t) = − d

dt

(
e−t/εdV ψ(u′(t))

)
for u ∈ D(A)

with the domain

D(A) =
{
u ∈ D(I1

ε ); dV ψ(u′(·)) ∈ W 1,p′(0, T ;V ∗), dV ψ(u′(T )) = 0
}
.

We have the following result.

Proposition 2.2 (Identification of A). It holds that A = ∂VI
1
ε .

Proof. It can be easily seen that A ⊂ ∂VI
1
ε . Hence it remains to prove the inverse inclusion.

Set W := W 1,p(0, T ;V ). Define two functionals J,K : W → [0,∞] by

J(u) :=

∫ T

0

e−t/εψ(u′(t))dt,

K(u) :=

{
0 if u(0) = u0,
∞ otherwise

and denote by I1
ε,W the restriction of I1

ε on W (hence I1
ε,W = J +K). Then, J is Gâteaux

differentiable in W . Indeed, let u, e ∈ W and let h ∈ R. Then,

J(u+ he) − J(u)

h
=

∫ T

0

e−t/εψ(u′(t) + he′(t)) − ψ(u′(t))

h
dt.

Since ψ is Gâteaux differentiable in V , the integrand of the right-hand side converges to
e−t/ε〈dV ψ(u′(t)), e′(t)〉V for almost every t ∈ (0, T ) as h → 0. Now, we easily compute
that

〈dV ψ(u′(t)), e′(t)〉V ≤ ψ(u′(t) + he′(t)) − ψ(u′(t))

h
≤ 〈dV ψ(u′(t) + he′(t)), e′(t)〉V

and, by means of (A2), we obtain∣∣∣∣ψ(u′(t) + he′(t)) − ψ(u′(t))

h

∣∣∣∣ ≤ (|dV ψ(u′(t))|V ∗ + |dV ψ(u′(t) + he′(t))|V ∗) |e′(t)|V

≤ C3

p′
|u′(t)|pV +

2C4

p′
+
C3

p′
|u′(t) + he′(t)|pV +

2

p
|e′(t)|pV ∈ L1(0, T ).

Hence, by dominated convergence we deduce that J is Gâteaux differentiable in W and

J(u+ he) − J(u)

h
→

∫ T

0

e−t/ε〈dV ψ(u′(t)), e′(t)〉V dt

=: 〈〈dWJ(u), e〉〉W , for all e ∈ W ,

where 〈〈·, ·〉〉W stands for the duality pairing between W and W∗.
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Moreover, K is proper, lower semicontinuous, and convex in W , and we have

〈〈f, e〉〉W = 0 for all [u, f ] ∈ ∂WK and e ∈ W with e(0) = 0.

Therefore, since D(J) = W , we find that

∂WI
1
ε,W = dWJ + ∂WK

with the domain
D(∂WI

1
ε,W) = {u ∈ W ; u(0) = u0}.

Now, from the fact that W ⊂ V and D(I1
ε ) ⊂ W , it follows that

∂VI
1
ε ⊂ ∂WI

1
ε,W .

Let [u, f ] ∈ ∂VI
1
ε (hence u(0) = u0). Then,∫ T

0

e−t/ε〈dV ψ(u′(t)), e′(t)〉V dt =

∫ T

0

〈f(t), e(t)〉V dt

for any e ∈ W with e(0) = 0. Hence the function t 7→ e−t/εdV ψ(u′(t)) belongs to
W 1,p′(0, T ;V ∗) and is such that

f(t) = − d

dt

(
e−t/εdV ψ(u′(t))

)
for a.a. t ∈ (0, T ).

Moreover, we can also observe that dV ψ(u′(T )) = 0 from the arbitrariness of e(T ) ∈ V .
Thus u ∈ D(A) and f = A(u). Consequently, A coincides with ∂VI

1
ε .

2.5 Integration by parts at Lebesgue points in vector spaces

For m, p ∈ (1,∞), let the space Lm(t1, t2;X) ∩W 1,p(t1, t2;V ) (t1, t2 ∈ [0, T ] with t1 < t2)
be endowed with the norm ‖ · ‖Lm

X∩W 1,p
V (t1,t2) given by

‖u‖Lm
X∩W 1,p

V (t1,t2) := ‖u‖Lm(t1,t2;X) + ‖u‖W 1,p(t1,t2;V )

and, classically,

‖u‖Lm(t1,t2;X) =

(∫ t2

t1

|u(t)|mXdt

)1/m

, ‖u‖W 1,p(t1,t2;V ) = ‖u‖Lp(t1,t2;V ) + ‖u′‖Lp(t1,t2;V ).

Moreover, the space Lm(t1, t2;X)∩Lp(t1, t2;V ) is analogously defined, and its dual space
can be identified with

Lm′
(t1, t2;X

∗) + Lp′(t1, t2;V
∗)

= {f1 + f2; f1 ∈ Lm′
(t1, t2;X

∗) and f2 ∈ Lp′(t1, t2;V
∗)}.

Furthermore, the duality pairing between Lm(t1, t2;X) ∩ Lp(t1, t2;V ) and its dual space
can be written by

〈〈f, u〉〉Lm
X∩Lp

V (t1,t2) =

∫ t1

t2

〈f1(t), u(t)〉Xdt+

∫ t1

t2

〈f2(t), u(t)〉V dt for f = f1 + f2.
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Then it follows immediately that

‖f‖
Lm′

X∗+Lp′
V ∗ (t1,t2)

≤ ‖f1‖Lm′
(t1,t2;X∗) + ‖f2‖Lp′ (t1,t2;V ∗) for f = f1 + f2. (2. 3)

In case (t1, t2) = (0, T ), we omit (0, T ) in the notation of the norms and the duality
pairing. We shall be needing an integration by parts formula in this functional space
setting.

Proposition 2.3 (Integration by parts). Let m, p ∈ (1,∞) and let u ∈ Lm(0, T ;X) ∩
W 1,p(0, T ;V ) and ξ ∈ Lp′(0, T ;V ∗) be such that ξ′ ∈ Lm′

(0, T ;X∗) + Lp′(0, T ;V ∗). Let
t1, t2 ∈ (0, T ) be Lebesgue points of the function t 7→ 〈ξ(t), u(t)〉V . Then it holds that

〈〈ξ′, u〉〉Lm
X∩Lp

V (t1,t2) = 〈ξ(t2), u(t2)〉V − 〈ξ(t1), u(t1)〉V −
∫ t2

t1

〈ξ(t), u′(t)〉V dt. (2. 4)

Proof. There exist f1 ∈ Lm′
(0, T ;X∗) and f2 ∈ Lp′(0, T ;V ∗) such that ξ′ = f1 + f2. Put

Fi(t) :=

∫ t

0

fi(s)ds for i = 1, 2.

Then, F1 ∈ W 1,m′
(0, T ;X∗), F2 ∈ W 1,p′(0, T ;V ∗) and ξ(t) = F1(t) + F2(t) + ξ(0). We

observe that

lim
τ→0

∫ T−τ

0

∣∣∣∣F1(t+ τ) − F1(t)

τ
− f1(t)

∣∣∣∣m′

X∗
dt = 0

and the analogue holds for F2. Hence, we have

〈〈ξ′, u〉〉Lm
X∩Lp

V (t1,t2)

= lim
τ→0

∫ t2

t1

(〈
F1(t+ τ) − F1(t)

τ
, u(t)

〉
X

+

〈
F2(t+ τ) − F2(t)

τ
, u(t)

〉
V

)
dt

= lim
τ→0

∫ t2

t1

〈
ξ(t+ τ) − ξ(t)

τ
, u(t)

〉
V

dt.

Moreover, since t1, t2 are Lebesgue points of 〈ξ(·), u(·)〉V , it follows that∫ t2

t1

〈
ξ(t+ τ) − ξ(t)

τ
, u(t)

〉
V

dt

=
1

τ

∫ t2+τ

t2

〈ξ(t), u(t)〉V dt− 1

τ

∫ t1+τ

t1

〈ξ(t), u(t)〉V dt

−
∫ t2

t1

〈
ξ(t+ τ),

u(t+ τ) − u(t)

τ

〉
V

dt

→ 〈ξ(t2), u(t2)〉V − 〈ξ(t1), u(t1)〉V −
∫ t2

t1

〈ξ(t), u′(t)〉V dt

as τ → 0. Thus we obtain (2. 4).
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3 The Euler-Lagrange equation

This section brings to a proof of the existence of strong solutions for the Euler-Lagrange
equation (1. 2)–(1. 4) related to the WED functional Iε. Hence, the value of the parameter
ε is kept fixed throughout this section. We shall be concerned with the following precise
notion of solution.

Definition 3.1 (Strong solution). A function u : [0, T ] → V is said to be a strong solution
of (1. 2)–(1. 4) if the following conditions are satisfied :

u ∈ Lm(0, T ;X) ∩W 1,p(0, T ;V ), (3. 1)

ξ(·) := dV ψ(u′(·)) ∈ Lp′(0, T ;V ∗) and ξ′ ∈ Lm′
(0, T ;X∗) + Lp′(0, T ;V ∗), (3. 2)

there exists η ∈ Lm′
(0, T ;X∗) such that

η(t) ∈ ∂XφX(u(t)), −εξ′(t) + ξ(t) + η(t) = 0 in X∗ for a.a. t ∈ (0, T ), (3. 3)

u(0) = u0 and ξ(T ) = 0. (3. 4)

Remark 3.2. By definition, ξ belongs to W 1,σ(0, T ;X∗) with σ := min{m′, p′} > 1. We
particularly deduce that ξ ∈ C([0, T ];X∗), and hence ξ(t) lies in X∗ at every t ∈ [0, T ].

The main result of this section is the following.

Theorem 3.3 (Existence of strong solutions). Assume that (A1)–(A4) are all satisfied.
For every u0 ∈ D(φ), the Euler equation (1. 2)–(1. 4) admits a strong solution satisfying∫ T

0

|u′ε(t)|
p
V dt ≤ 1

C1

(φ(u0) + C ′
2T + εψ(0)) , (3. 5)∫ T

0

φ(uε(t))dt ≤ (φ(u0) + C ′
2T + εψ(0))T + ε

∫ T

0

〈ξε(t), u′ε(t)〉V dt, (3. 6)∫ T

0

〈ηε(t), uε(t)〉Xdt ≤ −〈εξε(0), u0〉X −
∫ T

0

〈εξε(t), u′ε(t)〉V dt

−
∫ T

0

〈ξε(t), uε(t)〉V dt, (3. 7)∫ T

0

〈ξε(t), u′ε(t)〉V dt ≤ −φ(uε(T )) + φ(u0) + εψ(0). (3. 8)

The rest of this section is devoted to a proof of Theorem 3.3. The strategy of the proof
is quite classical: we introduce suitable approximating problems by replacing φ with its
Yosida approximation φλ, establish a-priori estimates independently of λ, and finally pass
to the limit as λ→ 0. For the sake of clarity, we split this proof in subsequent subsections.
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3.1 Approximating problem

Let us start by introducing the following approximate problems for λ > 0:

−εξ′ε,λ(t) + ξε,λ(t) + ηε,λ(t) = 0 in V ∗, 0 < t < T, (3. 9)

ξε,λ(t) = dV ψ(u′ε,λ(t)), ηε,λ(t) = ∂V φλ(uε,λ(t)) in V ∗, 0 < t < T, (3. 10)

uε,λ(0) = u0, (3. 11)

ξε,λ(T ) = 0, (3. 12)

where ∂V φλ is the Yosida approximation of ∂V φ. Here we recall that ∂V φλ coincides with
the subdifferential operator of the Moreau-Yosida regularization φλ of φ given by

φλ(u) := inf
v∈V

(
1

2λ
|u− v|2V + φ(v)

)
=

1

2λ
|u− Jλu|2V + φ(Jλu),

where Jλ is the resolvent for ∂V φ (see [4] for more details). We also recall by definition
that

FV (Jλu− u) + λ∂V φλ(u) = 0 for all u ∈ V, (3. 13)

where FV : V → V ∗ denotes the duality mapping between V and V ∗. Then, a strong
solution uε,λ of (3. 9)–(3. 12) on [0, T ] will be obtained as a global minimizer for the
functional Iε,λ : V → [0,∞] given by

Iε,λ(u) =


∫ T

0

e−t/ε

(
ψ(u′(t)) +

1

ε
φλ(u(t))

)
dt if u ∈ W 1,p(0, T ;V ), u(0) = u0

and φλ(u(·)) ∈ L1(0, T ),

∞ otherwise.

More precisely, we have the following.

Lemma 3.4 ( Solvability of the approximating problem). For each ε, λ > 0, the functional
Iε,λ admits a global minimizer uε,λ on V. Moreover, uε,λ is a strong solution of (3. 9)–
(3. 12) and

ξε,λ ∈ W 1,p′(0, T ;V ∗) and ηε,λ ∈ Lp′(0, T ;V ∗). (3. 14)

Proof. We observe that Iε,λ is proper, lower semicontinuous and convex in V . Moreover,
Iε,λ is coercive in V by (A1), i.e.,

Iε,λ(u) → ∞ if ‖u‖V → ∞.

Hence, Iε,λ admits a (global) minimizer uε,λ for each λ > 0.

We now define the functional I2
ε,λ : V → [0,∞] as

I2
ε,λ(u) :=


∫ T

0

1

ε
e−t/εφλ(u(t))dt if φλ(u(·)) ∈ L1(0, T ),

∞ otherwise.
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Note that, as p ≥ 2, we have∫ T

0

φλ(u(t))dt ≤ 1

2λ

∫ T

0

|u(t) − v|2V dt+ φ(v)T

< ∞ for all u ∈ V

with any v ∈ D(φ). In particular, D(I2
ε,λ) = V . Thus, we can deduce that ∂VI

1
ε + ∂VI

2
ε,λ

is maximal monotone in V × V∗, and therefore

∂VIε,λ = ∂VI
1
ε + ∂VI

2
ε,λ.

By Proposition 2.2, ∂VI
1
ε coincides with the operator A. Moreover, we can verify in a

standard way (see, e.g., [17]) that, for [u, f ] ∈ V × V∗,

[u, f ] ∈ ∂VI
2
ε,λ if and only if [u(t), f(t)] ∈ 1

ε
e−t/ε∂V φλ for a.a. t ∈ (0, T ).

Therefore, the assertion follows from global minimality, namely ∂VIε,λ(uε,λ) 3 0.

Remark 3.5 (Need for the approximation). As for the Euler equation of Iε, the argument
of the proof of Lemma 3.4 does not apply, for it would not be clear how to check for the
coincidence between ∂VIε and the sum ∂VI

1
ε +∂VI

2
ε ; indeed D(∂VI

2
ε ) might have no interior

point in V . Such a difficulty is one of reasons why we handle a weak formulation (1. 2)–
(1. 4) of the Euler equation ∂VIε(u) 3 0 in this paper.

3.2 A priori estimates

From here on we simply write uλ, ξλ, ηλ instead of uε,λ, ξε,λ, ηε,λ, respectively. Testing
relation (3. 9) on u′λ(t) and integrating over (0, T ), we have

−ε
∫ T

0

〈ξ′λ(t), u′λ(t)〉V dt+

∫ T

0

〈ξλ(t), u′λ(t)〉V dt+ φλ(uλ(T )) − φλ(u0) = 0.

We now use the Neumann boundary condition (3. 12) in order to get∫ T

0

〈ξ′λ(t), u′λ(t)〉V dt = −〈ξλ(0), u′λ(0)〉V −
∫ T

0

〈ξλ(t), u′′λ(t)〉V dt

≤ ψ(0) − ψ(u′λ(0)) − ψ(u′λ(T )) + ψ(u′λ(0))

= ψ(0) − ψ(u′λ(T )) ≤ ψ(0). (3. 15)

Note that this calculation is presently just formal, for u need not to belong toW 2,p(0, T ;V ).
This procedure can however be rigorously justified and we have collected some detail in
Lemma 7.3. Moreover, the following holds as well∫ t

0

〈ξ′λ(s), u′λ(s)〉V ds ≤ 〈ξλ(t), u′λ(t)〉V + ψ(0) for all t ∈ Lλ, (3. 16)

where the set Lλ is defined by

Lλ :=
{
t ∈ (0, T ); uλ is differentiable in V at t

and t is a Lebesgue point of t 7→ 〈ξλ(t), u′λ(t)〉V
}
.
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By using relation (3. 15) we have∫ T

0

〈ξλ(t), u′λ(t)〉V dt+ φλ(uλ(T )) ≤ φλ(u0) + εψ(0). (3. 17)

Hence, by relation (A1)′, one obtains

C1

∫ T

0

|u′λ(t)|
p
V dt+ φλ(uλ(T )) ≤ φλ(u0) + C ′

2T + εψ(0) (3. 18)

and ∫ T

0

|u′λ(t)|
p
V dt ≤ 1

C1

(φ(u0) + C ′
2T + εψ(0)) , (3. 19)∫ T

0

|ξλ(t)|p
′

V ∗dt+ sup
t∈[0,T ]

|uλ(t)|V + sup
t∈[0,T ]

|Jλuλ(t)|V ≤ C. (3. 20)

Here, we have used assumption (A2) and the fact that |Jλu|V ≤ C(|u|V + 1) for all u ∈ V
and λ > 0 (see [6], [4]). Hence, by testing equation (3. 9) on u′λ(t) and integrating over
(0, t) we obtain by (3. 16)

C1

∫ t

0

|u′λ(τ)|
p
V dτ + φλ(uλ(t))

≤ φ(u0) + C ′
2T + ε〈ξλ(t), u′λ(t)〉V + εψ(0) for all t ∈ Lλ.

As the set Lλ has full Lebesgue measure, i.e., the measure of (0, T ) \ Lλ is zero, by
integrating both sides over (0, T ) again, we deduce that∫ T

0

φλ(uλ(t))dt ≤ (φ(u0) + C ′
2T + εψ(0))T + ε

∫ T

0

〈ξλ(t), u′λ(t)〉V dt. (3. 21)

Finally, from the above estimates we obtain∫ T

0

φλ(uλ(t))dt ≤ C. (3. 22)

Since φ(Jλuλ(t)) ≤ φλ(uλ(t)) and ηλ(t) ∈ ∂V φ(Jλuλ(t)) ⊂ ∂XφX(Jλuλ(t)), it follows from
assumptions (A3) and (A4) that∫ T

0

|Jλuλ(t)|mXdt+

∫ T

0

|ηλ(t)|m
′

X∗dt ≤ C. (3. 23)

Eventually, a comparison in equation (3. 9) yields

‖εξ′λ‖Lm′
X∗+Lp′

V ∗
≤ C, (3. 24)

which, in particular, implies
sup

t∈[0,T ]

|εξλ(t)|X∗ ≤ C. (3. 25)
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3.3 Passage to the limit

From the a priori estimates of Subsection 3.2, we have, for some not relabelled subse-
quences,

uλ → u weakly in W 1,p(0, T ;V ), (3. 26)

Jλuλ → v weakly in Lm(0, T ;X), (3. 27)

ξλ → ξ weakly in Lp′(0, T ;V ∗), (3. 28)

ηλ → η weakly in Lm′
(0, T ;X∗), (3. 29)

ξ′λ → ξ′ weakly in Lm′
(0, T ;X∗) + Lp′(0, T ;V ∗). (3. 30)

That is
−εξ′ + ξ + η = 0 (3. 31)

and the estimate (3. 5) follows directly from the bound (3. 19).

Note that uλ is equicontinuous in C([0, T ];V ) with respect to λ from the bound (3. 19)
and put vλ(t) := Jλuλ(t) − uλ(t). By (3. 13) and the monotonicity of ∂V φ, we have

〈FV (vλ(t+ h)) − FV (vλ(t)), Jλuλ(t+ h) − Jλuλ(t)〉V ≤ 0,

which, together with estimate (3. 20), implies

〈FV (vλ(t+ h)) − FV (vλ(t)), vλ(t+ h) − vλ(t)〉V ≤ C|uλ(t+ h) − uλ(t)|V .

Hence, the right-hand side goes to zero as h→ 0 uniformly for λ > 0. Since V is uniformly
convex, thanks to [31], for each R > 0 there exists a strictly increasing function mR on
[0,∞) such that mR(0) = 0 and

mR(|u− v|V ) ≤ 〈FV (u) − FV (v), u− v〉V for u, v ∈ BR := {u ∈ V ; |u|V ≤ R}.

Namely, vλ(·) is equicontinuous in C([0, T ];V ) for λ > 0, and so is Jλuλ(·). Recalling that
X is compactly embedded in V , by Theorem 3 of [26], we deduce from estimate (3. 23)
that

Jλuλ → v strongly in C([0, T ];V ). (3. 32)

By the integral estimate (3. 22), we have∫ T

0

|uλ(t) − Jλuλ(t)|2V dt ≤ 2λ

∫ T

0

φλ(uλ(t))dt ≤ 2λC → 0.

Therefore, we have u = v and the bound in (3. 20) entails that

uλ → u strongly in Lq(0, T ;V ) (3. 33)

with an arbitrary q ∈ [1,∞). Hence, the strong convergences (3. 32) and (3. 33) yield

Jλuλ(t) → u(t) strongly in V for all t ∈ [0, T ], (3. 34)

uλ(t) → u(t) strongly in V for a.a. t ∈ (0, T ). (3. 35)
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Since V ∗ is compactly embedded in X∗, estimates (3. 20) and (3. 24) entail

ξλ → ξ strongly in C([0, T ];X∗), (3. 36)

which also implies ξ(T ) = 0.

Put now p(t) := lim infλ→0 |ξλ(t)|p
′

V ∗ , and note that p ∈ L1(0, T ) by Fatou’s Lemma
and (3. 20). Then p(t) < ∞ for a.a. t ∈ (0, T ), and for such t ∈ (0, T ) we can take a
subsequence λt

n → 0 (possibly depending on t) such that

ξλt
n
(t) → ξ(t) weakly in V ∗. (3. 37)

We shall now check for the almost everywhere relations

η(t) ∈ ∂XφX(u(t)), ξ(t) = dV ψ(u′(t)).

Let us start from the former. Define the subset L ⊂ (0, T ) by

L :=
{
t ∈ (0, T ); t is a Lebesgue point of the function t 7→ 〈ξ(t), u(t)〉V , and

for any sequence λn → 0, there exists a subsequence

λn′ → 0 such that 〈ξλn′ (t), uλn′ (t)〉V → 〈ξ(t), u(t)〉V
}
.

Note that the convergences (3. 35) and (3. 37) entail that L has full Lebesgue measure.
For arbitrary t1, t2 ∈ L with t1 ≤ t2, we have∫ t2

t1

〈ηλ(t), Jλuλ(t)〉Xdt =

∫ t2

t1

〈ηλ(t), uλ(t)〉V dt− λ

∫ t2

t1

|ηλ(t)|2V ∗dt

≤
∫ t2

t1

〈ηλ(t), uλ(t)〉V dt. (3. 38)

On the other hand, from equation (3. 9) it follows that∫ t2

t1

〈ηλ(t), uλ(t)〉V dt =

∫ t2

t1

〈εξ′λ(t), uλ(t)〉V dt−
∫ t2

t1

〈ξλ(t), uλ(t)〉V dt. (3. 39)

Moreover, since uλ ∈ W 1,p(0, T ;V ) and ξλ ∈ W 1,p′(0, T ;V ∗) (hence the function t 7→
〈ξλ(t), uλ(t)〉V is differentiable-in-time for almost all t ∈ (0, T )), we note that∫ t2

t1

〈εξ′λ(t), uλ(t)〉V dt

= ε〈ξλ(t2), uλ(t2)〉V − ε〈ξλ(t1), uλ(t1)〉V −
∫ t2

t1

〈εξλ(t), u′λ(t)〉V dt (3. 40)

(note that (3. 38)–(3. 40) also hold for any t1, t2 ∈ [0, T ] with t1 ≤ t2).

By the definition of L,

〈ξλn(ti), uλn(ti)〉V → 〈ξ(ti), u(ti)〉V for i = 1, 2 (3. 41)
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with a subsequence λn → 0 (possibly depending on t1, t2). By a standard argument for
monotone operators, it follows from the weak convergences (3. 26) and (3. 28) that

lim inf
λ→0

∫ t2

t1

〈ξλ(t), u′λ(t)〉V dt ≥
∫ t2

t1

〈ξ(t), u′(t)〉V dt (3. 42)

(it also follows for any t1, t2 ∈ [0, T ] with t1 ≤ t2).

Combining these facts and using Proposition 2.3, we deduce that

lim sup
λn→0

∫ t2

t1

〈ηλn(t), Jλnuλn(t)〉Xdt

≤ ε〈ξ(t2), u(t2)〉V − ε〈ξ(t1), u(t1)〉V

−
∫ t2

t1

〈εξ(t), u′(t)〉V dt−
∫ t2

t1

〈ξ(t), u(t)〉V dt

= 〈〈εξ′, u〉〉Lm
X∩Lp

V (t1,t2) −
∫ t2

t1

〈ξ(t), u(t)〉V dt

=

∫ t2

t1

〈η(t), u(t)〉Xdt.

By exploiting the maximal monotonicity of ∂XφX in X×X∗ (see also Lemma 1.2 of [6] and
Proposition 1.1 of [17]), we conclude that η(t) belongs to ∂XφX(u(t)) for a.a. t ∈ (t1, t2).
It also follows that

lim
λn→0

∫ t2

t1

〈ηλn(t), Jλnuλn(t)〉Xdt =

∫ t2

t1

〈η(t), u(t)〉Xdt. (3. 43)

Moreover, from the arbitrariness of t1, t2 ∈ L and the fact that (0, T ) \ L is negligible, we
also conclude that η(t) ∈ ∂XφX(u(t)) for a.a. t ∈ (0, T ).

Here let us prove the energy inequality (3. 7). Test ηλ(t) on uλ(t) and integrate over
(0, T ). We have∫ T

0

〈ηλ(t), uλ(t)〉V dt =

∫ T

0

〈εξ′λ(t), uλ(t)〉V dt−
∫ T

0

〈ξλ(t), uλ(t)〉V dt

= −〈εξλ(0), u0〉V −
∫ T

0

〈εξλ(t), u′λ(t)〉V dt

−
∫ T

0

〈ξλ(t), uλ(t)〉V dt.
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Therefore, we obtain∫ T

0

〈η(t), u(t)〉Xdt ≤ lim inf
λn→0

∫ T

0

〈ηλn(t), Jλnuλn(t)〉Xdt

(3. 38)

≤ lim sup
λn→0

∫ T

0

〈ηλn(t), uλn(t)〉V dt

= − lim
λn→0

〈εξλn(0), u0〉V − lim inf
λn→0

∫ T

0

〈εξλn(t), u′λn
(t)〉V dt

− lim
λn→0

∫ T

0

〈ξλn(t), uλn(t)〉V dt

(3. 42)

≤ −〈εξ(0), u0〉X −
∫ T

0

〈εξ(t), u′(t)〉V dt

−
∫ T

0

〈ξ(t), u(t)〉V dt,

which leads us to estimate (3. 7).

Let us next check that ξ(·) = dV ψ(u′(·)) almost everywhere. Let t1, t2 ∈ L be again
fixed and consider the same sequence λn as before. For notational simplicity, λn will be
denoted by λ. We have∫ t2

t1

〈εξλ(t), u′λ(t)〉V dt

(3. 40)
= ε〈ξλ(t2), uλ(t2)〉V − ε〈ξλ(t1), uλ(t1)〉V −

∫ t2

t1

〈εξ′λ(t), uλ(t)〉V dt

(3. 9)
= ε〈ξλ(t2), uλ(t2)〉V − ε〈ξλ(t1), uλ(t1)〉V −

∫ t2

t1

〈ξλ(t), uλ(t)〉V dt

−
∫ t2

t1

〈ηλ(t), uλ(t)〉V dt

(3. 38)

≤ ε〈ξλ(t2), uλ(t2)〉V − ε〈ξλ(t1), uλ(t1)〉V −
∫ t2

t1

〈ξλ(t), uλ(t)〉V dt

−
∫ t2

t1

〈ηλ(t), Jλuλ(t)〉Xdt =: RHS.

Hence by convergences (3. 41), (3. 43), and Proposition 2.3, for λn → 0 we have

RHS → ε〈ξ(t2), u(t2)〉V − ε〈ξ(t1), u(t1)〉V

−
∫ t2

t1

〈ξ(t), u(t)〉V dt−
∫ t2

t1

〈η(t), u(t)〉Xdt

= 〈〈εξ′, u〉〉Lm
X∩Lp

V (t1,t2) +

∫ t2

t1

〈εξ(t), u′(t)〉V dt

−
∫ t2

t1

〈ξ(t), u(t)〉V dt−
∫ t2

t1

〈η(t), u(t)〉Xdt

(3. 9)
=

∫ t2

t1

〈εξ(t), u′(t)〉V dt.
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Therefore

lim sup
λ→0

∫ t2

t1

〈ξλ(t), u′λ(t)〉V dt ≤
∫ t2

t1

〈ξ(t), u′(t)〉V dt. (3. 44)

Thanks to the demiclosedness of the maximal monotone operator u 7→ dV ψ(u(·)) in
Lp(0, T ;V ) × Lp′(0, T ;V ∗) and Proposition 1.1 of [17], ξ(t) coincides with dV ψ(u′(t)) for
a.a. t ∈ (0, T ), and moreover,

lim
λ→0

∫ t2

t1

〈ξλ(t), u′λ(t)〉V dt =

∫ t2

t1

〈ξ(t), u′(t)〉V dt for all t1, t2 ∈ L. (3. 45)

As in (3. 21), we can derive by (3. 32) and (3. 45) that∫ t2

t1

φ(u(t))dt ≤ (φ(u0) + C ′
2T + εψ(0)) (t2 − t1) + ε

∫ t2

t1

〈ξ(t), u′(t)〉V dt

for all t1, t2 ∈ L with t1 ≤ t2 Letting (t1, t2) → (0, T ), we obtain (3. 6).

By the weak lower semicontinuity of φ in V , it follows from convergence (3. 34) that

lim inf
λ→0

φλ(uλ(T )) ≥ lim inf
λ→0

φ(Jλuλ(T )) ≥ φ(u(T )).

Hence combining (3. 17) with (3. 42), we can derive (3. 8). This completes a proof of
Theorem 3.3.

4 Minimizers of WED functionals

In this short section, we are concerned with the existence and characterization of min-
imizers of the WED functional Iε in V := Lp(0, T ;V ). Our aim is to prove that every
minimizer uε of Iε coincides with a strong solution of (1. 2)–(1. 4) which is a limit of
global minimizers uε,λ for Iε,λ as λ→ 0, provided that either ψ or φ is strictly convex.

Let us start by defining the minimizers of Iε as follows.

Definition 4.1 (Minimizer). A function u ∈ V is said to be a minimizer of Iε in V if
∂VIε(u) 3 0.

The main result of this section is the following.

Theorem 4.2 (Existence and characterization of minimizers). Assume (A1)–(A4). For
each u0 ∈ D(φ), the strong solution of (1. 2)–(1. 4) obtained in Theorem 3.3 is a minimizer
of Iε in V. Moreover, if either ψ or φ is strictly convex, then the minimizer is unique.

Our proof of this theorem is divided into the following two lemmas.

Lemma 4.3 (Strong solutions are minimizers). Let uε be a strong solution of (1. 2)–(1. 4)
obtained in Theorem 3.3. Then, uε is a minimizer of Iε in V.
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Proof. By Lemma 3.4, we have obtained a global minimizer uε,λ ∈ V of Iε,λ, namely,

Iε,λ(v) ≥ Iε,λ(uε,λ) for all v ∈ D(Iε).

By passing to the limit as λ→ 0 and using dominated convergence, we get

Iε,λ(v) → Iε(v).

Moreover, by the weak lower semicontinuity of I1
ε , I

2
ε in V , we also deduce from the

convergences (3. 26) and (3. 32) that

lim inf
λ→0

Iε,λ(uε,λ) = lim inf
λ→0

∫ T

0

e−t/ε

(
ψ(u′ε,λ(t)) +

1

ε
φλ(uε,λ(t))

)
dt

≥ lim inf
λ→0

(
I1
ε (uε,λ) + I2

ε (Jλuε,λ)
)

≥ I1
ε (uε) + I2

ε (uε) = Iε(uε).

Therefore Iε(v) ≥ Iε(uε) for all v ∈ D(Iε), namely 0 ∈ ∂VIε(uε).

Lemma 4.4 (Minimizers are unique). Suppose that either ψ or φ is strictly convex in V .
Then, for each ε > 0, Iε admits a unique minimizer.

Proof. In both cases the functional Iε turns out to be strictly convex in V and the assertion
follows.

5 The causal limit

In this section we ascertain the fundamental issue of the WED approach. Namely, we
prove that the minimizers uε of the WED functionals Iε converge as ε → 0. Our main
result is the following.

Theorem 5.1 (Causal limit). Assume (A1)–(A4) and that either ψ or φ is strictly convex.
Let u0 ∈ D(φ) and let uε be a minimizer of Iε on V := Lp(0, T ;V ). Then, there exist a
sequence εn → 0 and a limit u such that

uεn → u strongly in C([0, T ];V ),

weakly in W 1,p(0, T ;V ) ∩ Lm(0, T ;X),

and u is a strong solution of (1. 5)–(1. 6).

Proof. For each ε > 0, let uε be the unique minimizer of Iε on V . By Theorem 4.2, uε is
a strong solution of (1. 2)–(1. 4) satisfying estimates (3. 5)–(3. 8).

Since uε(0) = u0, it follows from estimate (3. 5) that

sup
t∈[0,T ]

|uε(t)|V ≤ C. (5. 1)
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Furthermore, by assumption (A2),∫ T

0

|ξε(t)|p
′

V ∗dt ≤ C. (5. 2)

Hence, by taking a suitable (non relabelled) sequence ε→ 0,

uε → u weakly in W 1,p(0, T ;V ), (5. 3)

ξε → ξ weakly in Lp′(0, T ;V ∗). (5. 4)

Combining the bounds (3. 6), (3. 5), and (5. 2), we deduce from assumption (A3) that∫ T

0

|uε(t)|mXdt ≤ C. (5. 5)

Hence, one has
uε → u weakly in Lm(0, T ;X).

Moreover, it classically follows from estimates (3. 5) and (5. 5) that

uε → u strongly in C([0, T ];V ),

which also implies

uε(t) → u(t) strongly in V for all t ∈ [0, T ] (5. 6)

and u(0) = u0.

By assumption (A4) together with the bounds in (5. 1) and (5. 5), we have∫ T

0

|ηε(t)|m
′

X∗dt ≤ C, (5. 7)

which implies
ηε → η weakly in Lm′

(0, T ;X∗). (5. 8)

By using the equation (1. 2) along with the estimates (5. 2) and (5. 7), we find that

‖εξ′ε‖Lm′
X∗+Lp′

V ∗
≤ C. (5. 9)

Thus
εξ′ε → 0 weakly in Lm′

(0, T ;X∗) + Lp′(0, T ;V ∗). (5. 10)

Hence
ξ + η = 0. (5. 11)

Moreover, for each v ∈ X, it follows from the final condition (1. 4) and the latter conver-
gence that

〈εξε(t), v〉X =

〈∫ t

T

εξ′ε(t)dt, v

〉
X

=

∫ t

T

〈εξ′ε(t), v〉Xdt→ 0,

which leads us to

εξε(t) → 0 weakly in X∗ for each t ∈ [0, T ]. (5. 12)
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We next claim that η(t) ∈ ∂XφX(u(t)) for almost all t ∈ (0, T ). Indeed, by estimate
(3. 7), ∫ T

0

〈ηε(t), uε(t)〉Xdt ≤ −〈εξε(0), u0〉X −
∫ T

0

〈εξε(t), u′ε(t)〉V dt

−
∫ T

0

〈ξε(t), uε(t)〉V dt

→ −
∫ T

0

〈ξ(t), u(t)〉V dt.

Hence, we have

lim sup
ε→0

∫ T

0

〈ηε(t), uε(t)〉Xdt ≤ −
∫ T

0

〈ξ(t), u(t)〉Xdt =

∫ T

0

〈η(t), u(t)〉Xdt.

Therefore, by using the demiclosedness of the maximal monotone operator ∂XφX in
Lm(0, T ;X)×Lm′

(0, T ;X∗) and applying Proposition 1.1 of [17], we conclude that η(t) ∈
∂XφX(u(t)) for almost all t ∈ (0, T ). Furthermore, since ξ ∈ Lp′(0, T ;V ∗), by Proposition
2.1, we have η(t) ∈ ∂V φ(u(t)) for almost every t ∈ (0, T ).

Let us now check that ξ(t) = dV ψ(u′(t)) for almost every t ∈ (0, T ). By passing to
the lim sup as ε→ 0 into estimate (3. 8) with the aid of the strong convergence (5. 6) and
the lower semicontinuity of φ in the weak topology of V , we obtain

lim sup
ε→0

∫ T

0

〈ξε(t), u′ε(t)〉V dt ≤ − lim inf
ε→0

φ(uε(T )) + φ(u0) ≤ −φ(u(T )) + φ(u0)

=

∫ T

0

〈−η(t), u′(t)〉V dt
(5. 11)
=

∫ T

0

〈ξ(t), u′(t)〉V dt.

Thus, we have ξ(t) = dV ψ(u′(t)) for almost every t ∈ (0, T ). Consequently, u solves the
limiting problem (1. 5)–(1. 6) on [0, T ].

Remark 5.2. If one is interested in proving the convergence of strong solutions uε of
(1. 2)–(1. 4) satisfying energy inequalities (3. 5)–(3. 8) as ε → 0 to a strong solution of
(1. 5)–(1. 6), the strict convexity of φ and ψ need not be assumed

6 Mosco-convergence of WED functionals

We shall prepare here some convergence result for sequences of WED functionals at fixed
level ε. In particular, we present sufficient conditions for the convergence as h → ∞ of
the sequence of WED functionals Iε,h given by

Iε,h(u) =


∫ T

0

e−t/ε
(
ψh(u

′(t)) +
1

ε
φh(u(t))

)
dt if u ∈ W 1,p(0, T ;V ) ∩ Lm(0, T ;X),

and u(0) = u0,h,

∞ otherwise
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with initial data u0,h ∈ X, a Gâteaux differentiable convex functional ψh : V → [0,∞)
and a proper, lower semicontinuous convex functional φh : V → [0,∞] for h ∈ N.

Throughout this section, we assume with no further specific mention that the func-
tionals ψh and φh fulfill the general assumptions (A1)–(A4) with constants independent
of h. In particular, by letting

Z := Lm(0, T ;X) ∩W 1,p(0, T ;V ),

we easily check that Iε,h are bounded from below in Z uniformly for h ∈ N. Hence, the
global minimizers uh of Iε,h are bounded in Z for all h ∈ N.

Let us now make precise our notion of functional convergence in the following.

Definition 6.1 (Mosco-convergence in Z). The functional Iε,h is said to Mosco-converge
to Iε in Z as h→ ∞ if the following two conditions hold :

(i) (Liminf condition) Let uh → u weakly in Z as h→ ∞. Then

lim inf
h→∞

Iε,h(uh) ≥ Iε(u).

(ii) (Existence of recovery sequences) For every u ∈ Z and sequence kh → ∞ in N,
there exist a subsequence (k′h) of (kh) and a recovery sequence (uh) in Z such that

uh → u strongly in Z and Iε,k′
h
(uh) → Iε(u) as h→ ∞.

Note that Mosco-convergence is classical (see [3], [23]), and corresponds to the usual
notion of Γ-convergence with respect to both the strong and the weak topology in Z.
Mosco-convergence of the driving functionals arises as the natural requirement in order to
deduce the convergence of the related differential problems (see [3, Thm. 3.74(2), p. 388]
for gradient flows and [28, Lemma 7.1] for doubly nonlinear evolutions).

Our sufficient conditions for Mosco-convergence are stated in the following.

(H0) ( Separability of spaces) V and X are separable.

(H1) ( Liminf condition for φh in X) Let (uh) be a sequence in X such that uh → u
weakly in X. Then

lim inf
h→∞

φh(uh) ≥ φ(u).

(H2) ( Liminf condition for ψh in V ) Let (uh) be a sequence in V such that uh → u
weakly in V . Then

lim inf
h→∞

ψh(uh) ≥ ψ(u).

(H3) (Existence of joint recovery sequences for φh and ψh in X) Let (kh) be a sequence
in N such that kh → ∞. Let (uh) be a sequence in X such that

uh → u strongly in X and φkh
(uh) → φ(u) as h→ ∞.
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Then, for every v ∈ X, τ > 0, there exists a sequence (vτ,h) in X such that

vτ,h → v strongly in X,

ψkh

(
vτ,h − uh

τ

)
→ ψ

(
v − u

τ

)
, φkh

(vτ,h) → φ(v) as h→ ∞.

(H4) (Convergence of initial data) u0,h ∈ X, u0,h → u0 strongly in X and φh(u0,h) →
φ(u0) as h→ ∞.

The reader should notice that we are not requiring for the separate functional conver-
gence φh → ψ and φh → φ here (Γ- or Mosco-). In particular, our proof makes a crucial
use of the possibility of finding a joint recovery sequence as of assumption (H3). Let us
comment that the occurrence of such joint condition is not at all unexpected. Indeed, a
similar joint recovery condition has been proved to be necessary and sufficient for passing
to the limit in sequences of rate-independent evolution problems in an energetic form in
[20], namely for p = 1. Moreover, let us note that in case p = 2, the concrete construction
of an analogous joint recovery sequence is at the basis of the relaxation proof in [10].

The main result of this section is stated as follows.

Theorem 6.2 (Mosco-convergence of Iε,h). Assume (H0)–(H4). Then, the functionals
Iε,h Mosco-converge in Z to Iε as h→ ∞.

We shall provide a proof of this theorem in the next subsection. Still, let us first point
out a corollary, whose immediate proof is omitted.

Corollary 6.3 (Minimizers converge to a minimizer). Under the assumptions of Theorem
6.2, let uh be a global minimizer of Iε,h for h ∈ N such that ukh

→ u weakly in Z as h→ ∞
along with some sequence kh → ∞ in N. Then u minimizes Iε.

6.1 Proof of Theorem 6.2

We provide here a proof of Theorem 6.2 by establishing conditions (i) and (ii) of Definition
6.1. Condition (ii) of Definition 6.1 is proved in a smooth case first and then generalized.

6.1.1 Liminf inequality

By using Corollary 4.4 of [28], we can derive from (H0)–(H2) that

lim inf
h→∞

∫ T

0

e−t/εφh(uh(t))dt ≥
∫ T

0

e−t/εφ(u(t))dt

if uh → u weakly in Lm(0, T ;X);

lim inf
h→∞

∫ T

0

e−t/εψh(u
′
h(t))dt ≥

∫ T

0

e−t/εψ(u′(t))dt
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if u′h → u′ weakly in Lp(0, T ;V ). Let (uh) be a sequence in D(Iε,h) such that uh → u
weakly in Z. Then we can take a subsequence (kh) of (h) such that ukh

→ u strongly in
C([0, T ];V ) by the compact embedding X ↪→ V , and therefore, u(0) = u0 by (H4). It
follows that

lim inf
h→∞

Iε,h(uh) ≥ Iε(u).

Thus the Liminf condition (i) follows.

6.1.2 Recovery sequence for u ∈ C1([0, T ];X)

Let us next prove the existence of recovery sequences of u ∈ D(Iε) for Iε,h. We first treat
the case that u ∈ C1([0, T ];X) and u(0) = u0, which also leads us to u ∈ D(Iε). Our
recovery sequence will be constructed from an approximation of u. Let N ∈ N be fixed
and set τ := T/N , ui

τ := u(iτ) and ti := τi for i = 0, 1, . . . , N (i.e., t0 = 0 and tN = T ).
Define the piecewise linear interpolant ûτ ∈ D(Iε) by

ûτ (t) = αi
τ (t)u

i
τ + (1 − αi

τ (t))u
i+1
τ for t ∈ [ti, ti+1),

where αi
τ (t) := (ti+1−t)/τ , and a piecewise forward constant interpolant ūτ ∈ L∞(0, T ;X)

by
ūτ (t) = ui+1

τ for t ∈ [ti, ti+1).

As u ∈ C1([0, T ];X), it follows that

ûτ → u strongly in W 1,∞(0, T ;X), (6. 1)

ūτ → u strongly in L∞(0, T ;X). (6. 2)

Now, we find that

Iε(u) =

∫ T

0

e−t/ε

(
ψ(u′(t)) +

1

ε
φ(u(t))

)
dt

=

∫ T

0

e−t/ε

(
ψ(û′τ (t)) +

1

ε
φ(ūτ (t))

)
dt

+

∫ T

0

e−t/ε

ε

(
φ(u(t)) − φ(ūτ (t))

)
dt+

∫ T

0

e−t/ε
(
ψ(u′(t)) − ψ(û′τ (t))

)
dt

=: I1,τ + I2,τ + I3,τ .

Since φ is convex, letting η(t) ∈ ∂XφX(u(t)) and η̄τ (t) ∈ ∂XφX(ūτ (t)), we can exploit
(A4) and convergence (6. 2) in order to check that

I2,τ ≤
∫ T

0

e−t/ε

ε
〈η(t), u(t) − ūτ (t)〉X dt

≤ C

ε

(∫ T

0

|u(t)|mXdt+ T

)1/m′

‖u− ūτ‖Lm(0,T ;X) → 0 as τ → 0
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with C = supt∈[0,T ] `2(|u(t)|V )1/m′
and

I2,τ ≥
∫ T

0

e−t/ε

ε
〈η̄τ (t), u(t) − ūτ (t)〉X dt

≥ −Cτ

ε

(∫ T

0

|ūτ (t)|mXdt+ T

)1/m′

‖u− ūτ‖Lm(0,T ;X) → 0 as τ → 0

with Cτ = supt∈[0,T ] `2(|ūτ (t)|V )1/m′
, which is bounded as τ → 0 by (6. 2). Hence

I2,τ = o(1; τ → 0), where we wrote o(1; τ → 0) instead of o(1) in order to enforce
which parameter is supposed to be infinitesimal.

Moreover, by letting ξ(t) = dV ψ(u′(t)) and ξ̄τ (t) = dV ψ(û′τ (t)), we use (A2) and
convergence (6. 1) in such a way that

I3,τ ≤
∫ T

0

e−t/ε 〈ξ(t), u′(t) − û′τ (t)〉V dt

≤
(
C3

∫ T

0

|u′(t)|pV dt+ C4T

)1/p′

‖u′ − û′τ‖Lp(0,T ;V ) → 0 as τ → 0

and

I3,τ ≥
∫ T

0

e−t/ε
〈
ξ̄τ (t), u

′(t) − û′τ (t)
〉

V
dt

≥ −
(
C3

∫ T

0

|û′τ (t)|
p
V dt+ C4T

)1/p′

‖u′ − û′τ‖Lp(0,T ;V ) → 0 as τ → 0.

Thus, we observe that I3,τ = o(1; τ → 0), and therefore

Iε(u) = I1,τ + o(1; τ → 0). (6. 3)

For τ > 0, let us define a difference operator δτ by

δτχ
i+1 :=

χi+1 − χi

τ
for a vector {χi}i=0,1,...,N .

Then I1,τ can be written as follows:

I1,τ =
N−1∑
i=0

∫ ti+1

ti
e−t/ε

(
ψ(û′τ (t)) +

1

ε
φ(ūτ (t))

)
dt

=
N−1∑
i=0

(∫ ti+1

ti
e−t/εdt

)(
ψ(δτu

i+1
τ ) +

1

ε
φ(ui+1

τ )

)
. (6. 4)

Let (kh) be a sequence in N such that kh → ∞. Set u0
τ,h := u0,kh

. Then by (H3) and
(H4), we can take a sequence (u1

τ,h) in X such that

u1
τ,h → u1

τ strongly in X,

ψkh

(
u1

τ,h − u0
τ,h

τ

)
→ ψ

(
u1

τ − u0
τ

τ

)
, φkh

(u1
τ,h) → φ(u1

τ ).
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Hence iterating this process (N − 1) times, we can further obtain (ui
τ,h) in X for i =

2, 3, . . . , N such that

ui
τ,h → ui

τ strongly in X, (6. 5)

ψkh

(
ui

τ,h − ui−1
τ,h

τ

)
→ ψ

(
ui

τ − ui−1
τ

τ

)
, φkh

(ui
τ,h) → φ(ui

τ ). (6. 6)

Define the piecewise linear interpolant ûτ,h ∈ D(Iε,h) and the piecewise forward constant
interpolant ūτ,h ∈ L∞(0, T ;X) as above and, by convergence (6. 5), we get

ûτ,h → ûτ strongly in W 1,∞(0, T ;X) as h→ ∞. (6. 7)

Therefore, for each τ > 0 we can choose hτ ∈ N such that

‖ûτ,hτ − ûτ‖Lm
X∩W 1,p

V
< τ and hτ > τ−1.

Combining this fact with convergence (6. 1), we also deduce that

‖ûτ,hτ − u‖Lm
X∩W 1,p

V
≤ ‖ûτ,hτ − ûτ‖Lm

X∩W 1,p
V

+ o(1; τ → 0)

≤ τ + o(1; τ → 0),

which implies
ûτ,hτ → u strongly in Z as τ → 0.

As for the convergence of Iε,kh
(ûτ,h), we calculate

Iε,kh
(ûτ,h) =

∫ T

0

e−t/ε

(
ψkh

(û′τ,h(t)) +
1

ε
φkh

(ūτ,h(t))

)
dt

+

∫ T

0

e−t/ε

ε

(
φkh

(ûτ,h(t)) − φkh
(ūτ,h(t))

)
dt

=
N−1∑
i=0

(∫ ti+1

ti
e−t/εdt

)(
ψkh

(δτu
i+1
τ,h ) +

1

ε
φkh

(ui+1
τ,h )

)
+

∫ T

0

e−t/ε

ε

(
φkh

(ûτ,h(t)) − φkh
(ūτ,h(t))

)
dt

= I1,τ,h + I2,τ,h. (6. 8)

Then, by the above-stated convergences (6. 6) and (6. 4),

I1,τ,h →
N−1∑
i=0

(∫ ti+1

ti
e−t/εdt

)(
ψ(δτu

i+1
τ ) +

1

ε
φ(ui+1

τ )

)
= I1,τ as h→ ∞. (6. 9)

Hence, it remains to handle I2,τ,h.
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From the convexity of φh,

I2,τ,h =
N−1∑
i=0

∫ ti+1

ti

e−t/ε

ε

(
φkh

(
αi

τ (t)u
i
τ,h + (1 − αi

τ (t))u
i+1
τ,h

)
− φkh

(ui+1
τ,h )
)
dt

≤
N−1∑
i=0

∫ ti+1

ti

e−t/ε

ε

(
αi

τ (t)φkh
(ui

τ,h) + (1 − αi
τ (t))φkh

(ui+1
τ,h ) − φkh

(ui+1
τ,h )
)
dt

=
N−1∑
i=0

(∫ ti+1

ti

e−t/ε

ε
αi

τ (t)dt

)(
φkh

(ui
τ,h) − φkh

(ui+1
τ,h )
)
.

Here, again by (6. 6), we get

N−1∑
i=0

(∫ ti+1

ti

e−t/ε

ε
αi

τ (t)dt

)(
φkh

(ui
τ,h) − φkh

(ui+1
τ,h )
)

= oτ (1;h→ ∞) +
N−1∑
i=0

(∫ ti+1

ti

e−t/ε

ε
αi

τ (t)dt

)(
φ(ui

τ ) − φ(ui+1
τ )
)
.

Set ηi
τ ∈ ∂XφX(ui

τ ) for i = 0, 1, . . . , N . Then, noticing that

φ(ui
τ ) − φ(ui+1

τ ) ≤
〈
ηi

τ , u
i
τ − ui+1

τ

〉
X
≤ |ηi

τ |X∗|ui
τ − ui+1

τ |X ,

by assumption (A4) and the strong convergence (6. 2), we obtain

N−1∑
i=0

(∫ ti+1

ti

e−t/ε

ε
αi

τ (t)dt

)(
φ(ui

τ ) − φ(ui+1
τ )
)

≤ 1

ε

N−1∑
i=0

τ

2
|ηi

τ |X∗|ui
τ − ui+1

τ |X

≤ C

(∫ T

τ

|ūτ (t) − ūτ (t− τ)|Xdt+ τ |u1
τ − u0

τ |X
)

→ 0 as τ → 0.

Along these very same lines, it is possible to deduce an analogous estimate from below
and we conclude that

I2,τ,h ≤ oτ (1;h→ ∞) + o(1; τ → 0).

Combining now the latter with the convergence (6. 9) and the decomposition (6. 8),
we deduce that

Iε,kh
(ûτ,h) = I1,τ,h + I2,τ,h ≤ Iε(u) + oτ (1;h→ ∞) + o(1; τ → 0).

Hence, for each τ > 0 we can extract a sequence hτ ∈ N such that

Iε,khτ
(ûτ,hτ ) ≤ Iε(u) + τ + o(1; τ → 0) and hτ > τ−1.

Thus, one has
lim sup

τ→0
Iε,khτ

(ûτ,hτ ) ≤ Iε(u).
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6.1.3 Recovery sequence for general u

Let us now discuss the general case u ∈ D(Iε), i.e., u ∈ Z and u(0) = u0. Let v(t) :=
u(t) − u0 for t ∈ [0, T ]. By using a standard mollification argument, we can construct
vn ∈ C1([0, T ];X) for all n ∈ N such that

vn → v strongly in Z as n→ ∞ and vn(0) = 0.

Now let wn(t) := vn(t) + u0 for t ∈ [0, T ]. Then wn ∈ C1([0, T ];X) satisfies

wn → u strongly in Z and wn(0) = u0.

By virtue of assumptions (A2) and (A4), the functions u 7→ J(u) and u 7→ I2
ε (u) are

continuous in W 1,p(0, T ;V ) and Lm(0, T ;X), respectively ( see Subsection 2.4). Hence,
by relabeling the sequence (wn) and using the continuity of φX and ψ in X and V ,
respectively, we can say

‖wn − u‖Lm
X∩W 1,p

V
<

1

n
and |Iε(wn) − Iε(u)| <

1

n
.

Now, by the above-proved existence of a recovery sequence in the smooth case, for
each n ∈ N, we can take a subsequence (kn

h) of (kh) and a sequence (un
h) in Z such that

un
h → wn strongly in Z and Iε,kn

h
(un

h) → Iε(wn) as h→ ∞

at each n ∈ N. Finally, by using a diagonal argument, we can choose a sequence (un) in
Z and subsequence (k′n) of (kh) such that

un → u strongly in Z and Iε,k′
n
(un) → Iε(u) as n→ ∞.

Consequently, the recovery sequence condition (ii) of Definition 6.1 holds.

7 Applications

In this section, we present doubly nonlinear problems and apply the above-detailed ab-
stract theory to them. Let Ω be a bounded domain of RN with smooth boundary ∂Ω.
We start with the following doubly nonlinear parabolic equation (DNP):

α(ut) − ∆a
mu = 0 in Ω × (0, T ), (7. 1)

u = 0 on ∂Ω × (0, T ), (7. 2)

u(·, 0) = u0 in Ω, (7. 3)

where α : R → R and ∆a
m is the so-called m-Laplace operator with a coefficient function

a : Ω → R given by

∆a
mu = ∇ ·

(
a(x)|∇u|m−2∇u

)
, 1 < m <∞.

Here we assume that
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(a1) u0 ∈ W 1,m
0 (Ω), a ∈ L∞(Ω) and a1 ≤ a(x) ≤ a2 for a.e. x ∈ Ω with some a1, a2 > 0.

(a2) α is maximal monotone in R. Moreover, there exist p ∈ [2,∞) and constants
C5, C6 > 0 such that

C5|s|p −
1

C5

≤ A(s) and |α(s)|p′ ≤ C6(|s|p + 1) for all s ∈ R,

where A(s) :=
∫ s

0
α(σ)dσ for s ∈ R.

Note that α is continuous in R by (a2).

In order to recast (DNP) into an abstract Cauchy problem, we set

V = Lp(Ω) and X = W 1,m
0 (Ω)

and define two functionals ψ, φ : V → [0,∞] by

ψ(u) =

∫
Ω

A(u(x))dx,

φ(u) =


1

m

∫
Ω

a(x)|∇u(x)|mdx if u ∈ W 1,m
0 (Ω),

∞ otherwise.

Assume

(a3) p < m∗ := Nm/(N −m)+.

Then, by the Rellich-Kondrachov compact embedding theorem, we observe that X ↪→ V
compactly. We find that ψ is of class C1 in V and dV ψ(u) = α(u). In particular, the
bounds in (A1) and (A2) immediately follow from (a2). Furthermore, φX is of class
C1 in X, and ∂XφX(u) = −∆a

mu equipped with the boundary condition u|∂Ω = 0, and
conditions (A3) and (A4) hold. Thus, (DNP) is reduced into the abstract doubly nonlinear
problem (1. 5)–(1. 6). The existence of strong solutions of such a problem has been already
discussed in [9].

Our current interest lies in the elliptic regularizations (ER)ε of (DNP) of the form:

−εα(ut)t + α(ut) − ∆a
mu = 0 in Ω × (0, T ), (7. 4)

u = 0 on ∂Ω × (0, T ), (7. 5)

u(·, 0) = u0 in Ω, (7. 6)

α(u(·, T )) = 0 in Ω (7. 7)

for ε > 0. By applying our abstract theory, in particular, Theorems 3.3, 4.2 and 5.1, we
have

Theorem 7.1 (WED approach to (DNP)). Under (a1)–(a3), (ER)ε admits a strong so-
lution uε ∈ Lm(0, T ;W 1,m

0 (Ω))∩W 1,p(0, T ;Lp(Ω)). Moreover, uε is the unique minimizer
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of the WED functional Iε : Lp(0, T ;Lp(Ω)) → [0,∞] given by

Iε(u) =


∫ T

0

e−t/ε

(∫
Ω

A(ut(x, t))dx+
1

εm

∫
Ω

a(x)|∇u(x, t)|mdx

)
dt

if u(·, 0) = u0 in Ω and u ∈ Lm(0, T ;W 1,m
0 (Ω)) ∩W 1,p(0, T ;Lp(Ω)),

∞ otherwise.

Furthermore, uεn converges to a strong solution u of (DNP) in the following sense:

uεn → u strongly in C([0, T ];Lp(Ω)),

weakly in Lm(0, T ;W 1,m
0 (Ω)) ∩W 1,p(0, T ;Lp(Ω))

along with some sequence εn → 0.

We next consider the following sequence of doubly nonlinear problems (DNP)h for
h ∈ N:

αh(ut) − ∆ah
m u = 0 in Ω × (0, T ), (7. 8)

u = 0 on ∂Ω × (0, T ), (7. 9)

u(·, 0) = u0,h in Ω (7. 10)

with functions u0,h : Ω → R, ah : Ω → R and αh : R → R. Aizicovici & Yan [1] proved
the convergence theorem for (DNP)h under appropriate conditions on the convergences of
u0,h, ah and αh as h → ∞. As in (DNP), let us introduce elliptic regularizations (ER)ε,h

of (DNP)h given by

−εαh(ut)t + αh(ut) − ∆ah
m u = 0 in Ω × (0, T ), (7. 11)

u = 0 on ∂Ω × (0, T ), (7. 12)

u(·, 0) = u0,h in Ω, (7. 13)

αh(u(·, T )) = 0 in Ω. (7. 14)

Then, the same conclusions as in Theorem 7.1 hold also for (DNP)h and (ER)ε,h and the
corresponding WED functionals given by

Iε,h(u) =


∫ T

0

e−t/ε

(∫
Ω

Ah(ut(x, t))dx+
1

εm

∫
Ω

ah(x)|∇u(x, t)|mdx

)
dt

if u(·, 0) = u0,h in Ω and u ∈ Lm(0, T ;W 1,m
0 (Ω)) ∩W 1,p(0, T ;Lp(Ω)),

∞ otherwise

with Ah(s) =
∫ s

0
αh(σ)dσ for s ∈ R.

Finally, let us discuss the Mosco-convergence of Iε,h under the following assumptions.

(h1) Condition (a1) holds with functions a and u0 replaced by ah and u0,h, respectively,
and the respective constants independent of h. Moreover, ah(x) → a(x) for a.e. x ∈
Ω and u0,h → u0 strongly in W 1,m

0 (Ω) as h→ ∞.
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(h2) Condition (a2) holds with α replaced by αh and respective constants independent

of h. Moreover, Ah
Γ→ A as h→ ∞, i.e., the following (i) and (ii) hold:

(i) for every sequence sh → s as h→ ∞, A(s) ≤ lim infh→∞Ah(sh),

(ii) for every s ∈ R, there exists a sequence sh → s such that Ah(sh) → A(s).

More precisely, we can prove

Theorem 7.2 (Mosco-convergence of Iε,h). Assume (a1)–(a2), (h1)–(h2). Then, Iε,h
Mosco-converges to Iε on Z := Lm(0, T ;X) ∩W 1,p(0, T ;V ) as h→ ∞.

Let (uh) be the sequence of unique global minimizers for Iε,h. Then, there exists a
sequence kh → ∞ in N such that

ukh
→ u weakly in Z as h→ ∞,

where u minimizes Iε, i.e., u solves (ER)ε.

Proof. Let us check (H0)–(H4) for Iε,h as h→ ∞. As in [1], by using standard facts in [3],
one can check (H1), (H2) and (H4) from (h1) and (h2). So it remains to prove (H3). Let
(kh) be a sequence in N such that kh → ∞. Let u ∈ X and uh ∈ X be such that uh → u
strongly in X and φkh

(uh) → φ(u) as h→ ∞. Let v ∈ X and τ > 0 be fixed. Set

vh := uh + v − u ∈ X.

Here we claim that Akh
(s) → A(s) as h → ∞ for all s ∈ R. Indeed, by (ii) of (h2), for

any s ∈ R we can take a sequence sh → s such that Akh
(sh) → A(s) as h → ∞. Hence

by (a2) for αh with C6 independent of h, we have

Akh
(s) − A(s) = Akh

(s) − Akh
(sh) + Akh

(sh) − A(s)

≤ C|s− sh| + Akh
(sh) − A(s) → 0 as h→ ∞,

and obtain a similar estimate from below as well. Thus Akh
(s) → A(s) as h → ∞.

Furthermore, we can derive

ψkh
(w) → ψ(w) as h→ ∞ for any w ∈ V.

Indeed, for any w ∈ V , it follows that Akh
(w(x)) → A(w(x)) for a.e. x ∈ Ω, and moreover,

by (a2) for αh with C6 independent of h, dominated convergence yields ψkh
(w) → ψ(w)

as h→ ∞. Thus

ψkh

(
vh − uh

τ

)
= ψkh

(
v − u

τ

)
→ ψ

(
v − u

τ

)
as h→ ∞.

Moreover, since vh → v strongly in X, it follows from (h1) that

φkh
(vh) =

1

m

∫
Ω

akh
(x)|∇vh(x)|mdx→ 1

m

∫
Ω

a(x)|∇v(x)|mdx = φ(v) as h→ ∞.

Thus, (H3) holds. Consequently, by Theorem 6.2 and Corollary 6.3, we obtain the desired.
Note that the precompactness of global minimizers (uh) is immediate.
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Appendix

We report here the details of a result used in Subsection 3.2. At first, let us recall some
useful properties of the Legendre-Fenchel transform ϕ∗ of a proper, lower semicontinuous
and convex functional ϕ from a normed space E into → (−∞,∞] given by ϕ∗(f) :=
supv∈E

{
〈f, v〉E − ϕ(v)

}
, for f ∈ E∗ (see, e.g., [4]):

(i) ϕ∗ is proper, lower semicontinuous and convex in E∗;

(ii) ϕ∗(f) = 〈f, u〉E − ϕ(u) for all [u, f ] ∈ ∂Eϕ;

(iii) u ∈ ∂E∗ϕ∗(f) if and only if f ∈ ∂Eϕ(u).

Moreover, we observe that, whenever ϕ : E → [0,∞], one has ϕ∗(0) = − infv∈E ϕ(v) ≤ 0
and ϕ∗(f) ≥ −ϕ(0) for all f ∈ E∗.

Now, our claim reads,

Lemma 7.3. The inequalities (3. 15) and (3. 16) can be rigorously justified within the
frame of Subsection 3.2.

Proof. Fix an arbitrary constant τ > 0 and define a backward difference operator δ−τ by

δ−τ χ(t) =
χ(t) − χ(t− τ)

τ

for functions χ defined on [0, T ] with values in a vector space and t ≥ τ . Test ξ′λ(t) by
u′λ(t) and integrate over (t0, T ) with an arbitrary t0 ∈ Lλ. Since uλ ∈ W 1,p(0, T ;V ) and
ξλ ∈ W 1,p′(0, T ;V ∗), we have∫ T

t0

〈ξ′λ(s), u′λ(s)〉V ds = lim
τ→0

∫ T

t0+τ

〈
ξ′λ(s), δ

−
τ uλ(s)

〉
V

ds.

Moreover, it follows from (3. 12) that∫ T

t0+τ

〈
ξ′λ(s), δ

−
τ uλ(s)

〉
V

ds

= 〈ξλ(T ), δ−τ uλ(T )〉V − 〈ξλ(t0 + τ), δ−τ uλ(t0 + τ)〉V −
∫ T

t0+τ

〈
ξλ(s), δ

−
τ u

′
λ(s)

〉
V

ds

= −〈ξλ(t0 + τ), δ−τ uλ(t0 + τ)〉V − 1

τ

∫ T

t0+τ

〈ξλ(s), u′λ(s) − u′λ(s− τ)〉V ds. (7. 15)

Next, we observe that

1

τ

∫ T

t0+τ

〈ξλ(s), u′λ(s) − u′λ(s− τ)〉V ds

=
1

τ

∫ T

t0+τ

〈ξλ(s), u′λ(s)〉V ds− 1

τ

∫ T−τ

t0

〈ξλ(s+ τ), u′λ(s)〉V ds

=
1

τ

∫ T−τ

t0

〈ξλ(s) − ξλ(s+ τ), u′λ(s)〉V ds− 1

τ

∫ t0+τ

t0

〈ξλ(s), u′λ(s)〉V ds

+
1

τ

∫ T

T−τ

〈ξλ(s), u′λ(s)〉V ds. (7. 16)
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Using the fact that u′λ(s) ∈ ∂V ∗ψ∗(ξλ(s)), where ψ∗ denotes the Legendre-Fenchel trans-
form of ψ, and the definition of subdifferentials, we obtain

1

τ

∫ T−τ

t0

〈ξλ(s) − ξλ(s+ τ), u′λ(s)〉V ds ≥ 1

τ

∫ T−τ

t0

(
ψ∗(ξλ(s)) − ψ∗(ξλ(s+ τ))

)
ds,

and, moreover,

1

τ

∫ T

T−τ

〈ξλ(s), u′λ(s)〉V ds ≥ 1

τ

∫ T

T−τ

(
ψ∗(ξλ(s)) − ψ∗(0)

)
ds.

Then, going back to equation (7. 16), one has

1

τ

∫ T

t0+τ

〈ξλ(s), u′λ(s) − u′λ(s− τ)〉V ds

≥ 1

τ

∫ t0+τ

t0

ψ∗(ξλ(s))ds−
1

τ

∫ t0+τ

t0

〈ξλ(s), u′λ(s)〉V ds− ψ∗(0).

Hence, from equation (7. 15) we can compute that∫ T

t0+τ

〈
ξ′λ(s), δ

−
τ uλ(s)

〉
V

ds

≤ −〈ξλ(t0 + τ), δ−τ uλ(t0 + τ)〉V − 1

τ

∫ t0+τ

t0

ψ∗(ξλ(s))ds

+
1

τ

∫ t0+τ

t0

〈ξλ(s), u′λ(s)〉V ds+ ψ∗(0)

→ −〈ξλ(t0), u′λ(t0)〉V − ψ∗(ξλ(t0)) + 〈ξλ(t0), u′λ(t0)〉V + ψ∗(0)

= −ψ∗(ξλ(t0)) + ψ∗(0) ≤ ψ(0).

Here we used the facts that t0 ∈ Lλ, ψ
∗ ≥ −ψ(0), ψ∗(0) ≤ 0 and the function t 7→ ψ∗(ξλ(t))

is (absolutely) continuous on [0, T ] since u′λ(t) ∈ ∂V ∗ψ∗(ξλ(t)), u
′
λ ∈ Lp(0, T ;V ) and

ξλ ∈ W 1,p′(0, T ;V ∗). Consequently,∫ T

t0

〈ξ′λ(s), u′λ(s)〉V ds ≤ ψ(0) for all t0 ∈ Lλ

and (3. 15) follows from the density of Lλ.

Let now t ∈ Lλ be fixed. Arguing as above starting again from equation (7. 15) with
t instead of T , we can also verify that∫ t

t0+τ

〈
ξ′λ(s), δ

−
τ uλ(s)

〉
V

ds

≤ 〈ξλ(t), δ−τ uλ(t)〉V − 〈ξλ(t0 + τ), δ−τ uλ(t0 + τ)〉V − 1

τ

∫ t0+τ

t0

ψ∗(ξλ(s))ds

+
1

τ

∫ t0+τ

t0

〈ξλ(s), u′λ(s)〉V ds+ ψ∗(0)

→ 〈ξλ(t), u′λ(t)〉V − ψ∗(ξλ(t0)) + ψ∗(0)

≤ 〈ξλ(t), u′λ(t)〉V + ψ(0) as τ → 0,

and the inequality (3. 16) follows.
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[15] Hlaváček, I., Variational principles for parabolic equations, Apl. Mat., 14 (1969),
278–297.

[16] Ilmanen, T., Elliptic regularization and partial regularity for motion by mean cur-
vature, Mem. Amer. Math. Soc., 108 (1994), 520:x+90.

[17] Kenmochi, N., Some nonlinear parabolic variational inequalities, Israel J. Math. 22
(1975), 304–331.
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C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), Aiv, A1035–A1038.
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