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Abstract

We discuss the existence of periodic solution for the doubly non-
linear evolution equation A(u′(t)) + ∂φ(u(t)) 3 f(t) governed by a
maximal monotone operator A and a subdifferential operator ∂φ in
a Hilbert space H. As the corresponding Cauchy problem cannot be
expected to be uniquely solvable, the standard approach based on the
Poincaré map may genuinely fail. In order to overcome this difficulty,
we firstly address some approximate problems relying on a specific
approximate periodicity condition. Then, periodic solutions for the
original problem are obtained by establishing energy estimates and by
performing a limiting procedure. As a by-product, a structural stabil-
ity analysis is presented for the periodic problem and an application
to nonlinear PDEs is provided.
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1 Introduction

This paper is concerned with the existence of periodic solutions for the ab-
stract doubly nonlinear equation

A(u′(t)) + ∂φ(u(t)) 3 f(t). (1. 1)
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Here, u : t ∈ [0, T ] 7→ H is a trajectory in the Hilbert spaceH and u′ = du/dt,
A is a maximal monotone operator in H, ∂φ denotes the subdifferential of
a proper, lower-semicontinuous, and convex functional φ : H → [0,∞], and
f ∈ L2(0, T ;H).

The abstract equation (1. 1) stems as a suitable variational formulation
of doubly nonlinear PDEs of the form

γ

(
∂u

∂t

)
−∇ ·

(
|∇u|p−2∇u

)
= f (1. 2)

where γ is maximal monotone in R, p > 1 and f is given. In case γ is
linearly growing and p is sufficiently apart from 1, our analysis entails in
particular the existence of periodic solutions to the latter. The Reader finds
some details in this concern in Section 6.

Equation (1. 1) is well studied from the point of view of existence for the
related Cauchy problem. Indeed, results in this direction can be traced back
at least to Senba [37] and Arai [7]. Later on the problem has been considered
also by Colli & Visintin [20] in Hilbert spaces and Colli [18] in Banach spaces.
Besides existence, the Cauchy problem has also been considered from the
point of view of structural stability [2], perturbations and long-time behavior
[3, 4, 8, 34, 35, 36], and variational characterization of solutions [6, 5, 38,
32, 40]. The interest in the study of periodic solutions is in particular to be
considered as a further step toward the comprehension of long-time dynamics
and bifurcation phenomena.

The aim of this paper is to address equation (1. 1) under the periodic
boundary condition

u(0) = u(T ).

To the best of our knowledge, this periodic problem has never been solved
before. Moreover, it is clearly quite more delicate with respect to the cor-
respondent Cauchy problem. Consider for instance the ordinary differential
equation

u′(t) + ∂I[1,2](u
′(t)) + u(t) 3 f(t) in R

where I[1,2] is the classical indicator function of the interval [1, 2] (namely
I[1,2](x) = 0 if x ∈ [1, 2] and I[1,2] = ∞ elsewhere). This equation is reduced
to the abstract form of (1. 1) in H = R, and then, one can check all the
assumptions for A and ∂φ of this paper except only a linear boundedness of
A (see (A2) later). As u′ is constrained to be greater than 1 for all times, no
periodic solution may exist. On the other hand, the Cauchy problem admits
a unique solution for any given initial datum.
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A second difficulty arises as, being given the solvability of the Cauchy
problem with initial datum u0, the standard approach to periodicity based
on finding a fixed point for the Poincaré map P : u0 7→ u(T ) seems here of
little use as equation (1. 1) is known to show genuine non-uniqueness. Even
by resorting to fixed point tools for multivalued applications, one has to be
confronted with the fact that Pu0 cannot be generally expected to be convex.

Our strategy in order to prove existence of periodic solutions to equa-
tion (1. 1) is that of tackling an approximating equation possessing a unique
Cauchy solution. This is obtained by replacing A with the strongly monotone
operator εId +A (Id being the identity in H) and φ with its Moreau-Yosida
regularization φε. In particular, the latter approximating problem features
an approximate periodicity condition of the form u(0) = Jεu(T ) where Jε is
the classical resolvent of ∂φ at level ε. Then, periodic solutions for equation
(1. 1) are obtained by passing to the limit as ε → 0. Let us note that we
move in the exact same assumption frame as in the existence theory for the
Cauchy problem from [20] plus an extra coercivity assumption for φ (usually
harmless with respect to applications).

As a by-product of our existence analysis, we devise a structural stability
result for the periodic problem. More precisely, by letting φn and An be
sequences of convex functionals and maximal monotone operators, respec-
tively, such that φn and An are convergent as n→ ∞ in some suitable sense,
we prove that the periodic solutions for equation (1. 1) with (A, φ) replaced
by (An, φn) converge to a periodic solution for (A, φ) as n→ ∞.

Before moving on, we shall remark that the second type of abstract doubly
nonlinear equation, namely,

(A(u))′ + ∂φ(u) 3 f, (1. 3)

has been already considered by from the point of view of the existence of
periodic solutions in [1, 25]. See also [26, 27, 33, 41] for A = id in the per-
turbation case f = f(t, u). In [1, 25] the authors cannot exploit directly the
Poincaré map within a fixed point procedure and resort in proving the exis-
tence of periodic solutions for suitably regularized problems. Their argument
is then completed by means of a limit passage.

This is the plan of the paper. Section 2 is devoted to the statement of the
main existence result for periodic solutions. The mentioned ε-approximating
problem is discussed in Section 3 and a first passage to the limit for ε → 0
under a stronger coercivity assumption on φ is provided in Section 4. Then,
Section 5 brings to a general structural stability result from which one can
eventually conclude the proof of the existence of periodic solutions in the
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most general setting. The application of our abstract result to the nonlinear
PDE (1. 2) is given in Section 6. Finally, the Appendix contains a techni-
cal (Gronwall-like) lemma on differential inequalities which is used for the
estimates.

2 Main result and preliminary facts

2.1 Main result

Let H be a real Hilbert space with norm | · |H and inner product (·, ·)H . Let
A be a maximal monotone operator in H and let φ be a proper (i.e., φ 6≡ ∞)
lower semicontinuous convex functional from H into [0,∞] with the effective
domain D(φ) := {u ∈ H; φ(u) < ∞}. The graph of a maximal monotone
operator will always be tacitly identified with the operator itself so that, for
instance, the positions [u, ξ] ∈ A and u ∈ D(A), ξ ∈ A(u) are equivalent.
The reader shall be referred to the classical monographs [10, 16, 42] as well to
the recent [11] for a comprehensive discussion on maximal monotone operator
techniques and applications.

Let us consider the periodic problem (P) given by

A(u′(t)) + ∂φ(u(t)) 3 f(t) in H, 0 < t < T, (2. 1)

u(0) = u(T ), (2. 2)

where ∂φ denotes the subdifferential of φ (see §2.2 below for the definition)
and f is a given function from (0, T ) into H. We are concerned with solutions
of (P) given in the following sense:

Definition 2.1 (Strong solutions). A function u ∈ C([0, T ];H) is said to be
a (strong) solution of (P) if the following conditions are all satisfied :

(i) u ∈ W 1,2(0, T ;H) and u(0) = u(T );

(ii) u(t) ∈ D(∂φ) and u′(t) ∈ D(A) for a.e. t ∈ (0, T );

(iii) there exist η, ξ ∈ L2(0, T ;H) such that

η(t) ∈ A(u′(t)), ξ(t) ∈ ∂φ(u(t)),

η(t) + ξ(t) = f(t) for a.e. t ∈ (0, T ). (2. 3)

In order to discuss the existence of solutions for (P), let us set up our
assumptions.
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(A1) There exist constants C1 > 0 and C2 ≥ 0 such that

C1|u|2H ≤ (η, u)H + C2 for all [u, η] ∈ A.

(A2) There exists a constant C3 ≥ 0 such that

|η|H ≤ C3(|u|H + 1) for all [u, η] ∈ A.

(A3) For any λ ∈ R, the set {u ∈ D(φ); φ(u) + |u|H ≤ λ} is compact in H.

(A4) ∂φ is coercive in the following sense: there exists z0 ∈ D(φ) such that

lim inf
|u|H→∞
[u,ξ]∈∂φ

(ξ, u− z0)H

|u|H
= ∞. (2. 4)

(A5) f ∈ L2(0, T ;H).

Our main result reads,

Theorem 2.2 (Existence of periodic solutions). Assume that (A1)–(A5) are
satisfied. Then (P) admits at least one solution.

Let us provide some remarks on the coercivity condition (A4). At first,
note that the condition (A4) can be equivalently rewritten as the following:
there exists z0 ∈ D(φ) such that for any δ > 0 it follows that

|u|H ≤ δ(ξ, u− z0)H + Cδ for all [u, ξ] ∈ ∂φ (2. 5)

with some constant Cδ ≥ 0 (see Proposition B.1). Moreover, let us stress
that assumption (A4) follows when there exist p > 1 and C4 > 0 such that

C4|u|pH ≤ φ(u) + 1 for all u ∈ D(φ). (2. 6)

Indeed, let z0 ∈ D(φ) and [u, ξ] ∈ ∂φ. Then by the definition of subdifferen-
tials, we observe that

(ξ, u− z0)H ≥ φ(u) − φ(z0) ≥ C4|u|pH − φ(z0) − 1,

which implies (A4).

The Cauchy problem for equation (2. 1) was studied by Colli-Visintin [20],
and the existence of solutions was proved for any initial datum u0 ∈ D(φ)
under (A1)–(A3) and (A5).

5



Note that the (simpler) equation

u′(t) + ∂φ(u(t)) 3 f(t) in H, 0 < t < T,

(which corresponds to equation (2. 1) in case A is the identity mapping)
has been proved to admit periodic solutions under (A4) and (A5) in [16].
Moreover, no periodic solution may exist when the coercivity (A4) does not
hold (e.g., the ODE given by H = R, ∂φ(u) ≡ 0, f(t) = t).

We close this subsection by a proposition on the uniqueness of periodic
solutions in a special case.

Proposition 2.3 (Uniqueness of periodic solutions). Assume that ∂φ is lin-
ear and A is strictly monotone. Then any two solutions u1, u2 of (P) satisfy

u1(t) = u2(t) + v for all t ∈ [0, T ]

with some v ∈ D(∂φ) satisfying ∂φ(v) 3 0.

Proof. Let u1 and u2 be solutions for (P). Then, by taking the difference of
the equations and testing it by u′1(t) − u′2(t) in H, we see that

(η1(t) − η2(t), u
′
1(t) − u′2(t))H +

d

dt
φ(u1(t) − u2(t)) = 0,

where ηi ∈ L2(0, T ;H) belongs to A(u′i(·)) for i = 1, 2, almost everywhere in
time. The integration of both sides over (0, T ) and the periodicity condition
(2. 2) yield ∫ T

0

(η1(t) − η2(t), u
′
1(t) − u′2(t))H dt = 0,

which implies

(η1(t) − η2(t), u
′
1(t) − u′2(t))H = 0 for a.e. t ∈ (0, T ).

Since A is strictly monotone, we deduce that u′1(t) = u′2(t) for a.e. t ∈ (0, T ).
Hence one can write u1(t) = u2(t) + v with some constant v ∈ D(∂φ). By
taking the difference between equations (2. 1) for u1 and u2 and using the
fact that ∂φ is linear, we obtain ∂φ(v) 3 0.

The assumptions frame of Proposition 2.3 basically corresponds to the
uniqueness proof for the Cauchy problem for relation (2. 1) from [18]. Some
alternative set of sufficient conditions for uniqueness for (2. 1) are presented
in [34, §11.1.3] and [35]. The latter conditions seem however not to be directly
applicable to the periodic problem.
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As concerns doubly nonlinear equations of the type of (1. 3), uniqueness
for the Cauchy problem is already discussed in [17, 21]. Moreover, uniqueness
of periodic solutions is proved by [27] in a specific setting, where periodic
solutions satisfy an order property.

Henceforth, we shall use the same symbol C in order to denote any non-
negative constant depending on data and, in particular, independent of ε.
The value of the constant C may change from line to line.

2.2 Preliminaries

We refer the reader to [16] for the definition and fundamental properties of
maximal monotone operators in Hilbert spaces. Here let us give some pre-
liminary materials on subdifferentials, their resolvents, and Yosida approxi-
mations and Moreau-Yosida regularizations of convex functionals (proofs can
be found in [16] as well).

Let φ be a proper lower semicontinuous convex functional from H into
[0,∞] with D(φ) := {u ∈ H; φ(u) < ∞}. Then the subdifferential operator
∂φ : H → 2H for φ is defined as follows:

∂φ(u) := {ξ ∈ H; φ(v) − φ(u) ≥ (ξ, v − u)H for all v ∈ D(φ)}

with the domain D(∂φ) := {u ∈ D(φ); ∂φ(u) 6= ∅}. Since ∂φ is maximal
monotone in H, for ε > 0, one can define the resolvent Jε : H → D(∂φ) and
the Yosida approximation (∂φ)ε : H → H of ∂φ by

Jε := (Id + ε∂φ)−1, (∂φ)ε := (Id − Jε)/ε,

where Id stands for the identity mapping of H. Furthermore, for ε > 0, the
Moreau-Yosida regularization φε : H → [0,∞) of φ is given by

φε(u) := inf
v∈H

{
1

2ε
|u− v|2H + φ(v)

}
for all u ∈ H. (2. 7)

The following proposition provides some classical properties of φε.

Proposition 2.4 (Moreau-Yosida regularization). The Moreau-Yosida reg-
ularization φε is a Fréchet differentiable convex functional from H into R.
Moreover, the infimum in (2. 7) is attained by Jεu, where Jε denotes the
resolvent of ∂φ, i.e.,

φε(u) =
1

2ε
|u− Jεu|2H + φ(Jεu) =

ε

2
|(∂φ)ε(u)|2H + φ(Jεu).

Furthermore, the following holds.
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(i) ∂(φε) = (∂φ)ε, where ∂(φε) is the subdifferential (Fréchet derivative) of
φε.

(ii) φ(Jεu) ≤ φε(u) ≤ φ(u) for all u ∈ H and ε > 0.

(iii) φε(u) → φ(u) as ε→ 0+ for all u ∈ H.

Finally, let us recall the chain rule for subdifferentials.

Proposition 2.5 (Chain rule for subdifferentials). Let u ∈ W 1,2(0, T ;H)
be such that u(t) ∈ D(∂φ) for a.e. t ∈ (0, T ). Assume that there exists
ξ ∈ L2(0, T ;H) such that ξ(t) ∈ ∂φ(u(t)) for a.e. t ∈ (0, T ). Then the
function t 7→ φ(u(t)) is absolutely continuous on [0, T ]. Moreover, the set

I := {t ∈ [0, T ]; u(t) ∈ D(∂φ), u and φ(u(·)) are differentiable at t}

has full Lebesgue measure and

d

dt
φ(u(t)) = (h, u′(t))H for every h ∈ ∂φ(u(t)) and t ∈ I.

3 Approximate problems

We shall firstly focus on the case that φ satisfies a stronger coercivity re-
quirement, specifically

(A6) There exists a constant ρ > 0 such that ρ|u|2H ≤ φ(u) for all u ∈ D(φ).

Note that the latter is stronger than (A4). Moreover, (A6) entails

ρ

2ρε+ 1
|u|2H ≤ φε(u) for all u ∈ H and ε > 0, (3. 1)

where φε denotes the Moreau-Yosida regularization of φ. In this section we
construct solutions for the following approximate problems (P)ε for ε > 0:

εu′(t) + A(u′(t)) + ∂φε(u(t)) 3 fε(t) in H, 0 < t < T, (3. 2)

u(0) = Jεu(T ), (3. 3)

where ∂φε := ∂(φε) = (∂φ)ε, Jε stands for the resolvent of ∂φ and (fε) is an
approximate sequence in L∞(0, T ;H) such that

fε → f strongly in L2(0, T ;H). (3. 4)
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To this end, we also introduce the corresponding Cauchy problem (C)ε, i.e.,
(3. 2) with the initial condition,

u(0) = u0 ∈ H. (3. 5)

The existence and the uniqueness of solutions for (C)ε can be proved, since
(3. 2) is equivalently rewritten by

u′(t) = Lε(t, u(t)) := (εId + A)−1 (fε(t) − ∂φε(u(t))) in H, 0 < t < T

and Lε(t, ·) is Lipschitz continuous inH. Hence one can define a single-valued
mapping Pε : H → H by

Pε : u0 7→ Jεu(T ),

where u is the unique solution of (C)ε with the initial data u0.

The main result of this section is the following.

Theorem 3.1 (Existence of approximate solutions). Assume that (A1)–(A3)
and (A6) are satisfied. Then for each ε > 0, problem (P)ε admits a solution
uε.

In order to prove this theorem, it suffices to find a fixed point u∗0 of the
mapping Pε. Indeed, let u∗0 = Pεu

∗
0 and u∗ be the unique solution for the

Cauchy problem (C)ε with u0 = u∗0. Then, by the definition of Pε, we observe
that

Jεu
∗(T ) = Pεu

∗
0 = u∗0 = u∗(0).

In order to find a fixed point of Pε, we shall prove the following two lemmas
and employ Schauder’s fixed point theorem.

Lemma 3.2 (Pε is a self-mapping). There exists a constant R > 0 such that
Pε is a self-mapping on the set

BR := {u ∈ D(φ); φ(u) ≤ R},

that is, Pε(BR) ⊂ BR.

Proof. By testing (3. 2) by u′(t) and using (A1) and Proposition 2.5, we have

ε|u′(t)|2H + C1|u′(t)|2H − C2 +
d

dt
φε(u(t)) ≤ (fε(t), u

′(t))H

≤ C|fε(t)|2H +
C1

2
|u′(t)|2H ,
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which implies

ε|u′(t)|2H +
C1

2
|u′(t)|2H +

d

dt
φε(u(t)) ≤ C(|fε(t)|2H + 1) (3. 6)

for a.e. t ∈ (0, T ). Moreover, we test (3. 2) by u(t) and exploit (A2) and
(3. 1) in order to get

φε(u(t)) ≤ φε(0) + (∂φε(u(t)), u(t))H

= φε(0) + (fε(t), u(t))H − (εu′(t), u(t))H − (η(t), u(t))H

≤ Cε

(
|fε(t)|2H + |u′(t)|2H + 1

)
+

1

2
φε(u(t)),

where η := fε − εu′ − ∂φε(u(·)) ∈ A(u′(·)) almost everywhere in time and Cε

is a constant depending on ε. Thus we obtain

φε(u(t)) ≤ 2Cε

(
|fε(t)|2H + |u′(t)|2H + 1

)
(3. 7)

for a.e. t ∈ (0, T ). Hence, by multiplying (3. 7) by some suitably small
constant and adding it to (3. 6), we deduce that

d

dt
φε(u(t)) + αεφε(u(t)) ≤ βε

where the two constants αε, βε > 0 possibly depend on ε, provided fε ∈
L∞(0, T ;H). Therefore, by virtue of Proposition A.1 one can take a constant
R ≥ βε/αε > 0 such that

φε(u(T )) ≤ R if φε(u0) ≤ R,

which together with the fact that φ(Jεu) ≤ φε(u) ≤ φ(u), (see Proposition
2.4) also implies

φ(Jεu(T )) ≤ R if φ(u0) ≤ R.

Consequently, we deduce that Pε maps the set BR into itself.

Lemma 3.3 (Continuity of Pε in H). The mapping Pε is continuous in H.

Proof. Let u0,n, u0 ∈ H be such that u0,n → u0 strongly in H and let un and
u be the unique solutions for (C)ε with initial data u0,n and u0, respectively.
Subtract (3. 2) for un from that for u and put wn := u− un. We have

εw′
n(t) + A(u′(t)) − A(u′n(t)) 3 −∂φε(u(t)) + ∂φε(un(t)).
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By testing the latter by w′
n(t) and exploiting the 1/ε-Lipschitz continuity

of Yosida approximations (see [16]), we obtain

ε|w′
n(t)|2H ≤ (−∂φε(u(t)) + ∂φε(un(t)), w′

n(t))H ≤ 1

ε
|wn(t)|H |w′

n(t)|H

for a.e. t ∈ (0, T ). Noting that (d/dt)|wn(t)|H ≤ |w′
n(t)|H , we deduce that

d

dt
|wn(t)|H ≤ 1

ε2
|wn(t)|H for a.e. t ∈ (0, T ),

which together with Gronwall’s inequality yields

|wn(T )|H ≤ |u0 − u0,n|HeT/ε2 → 0.

Therefore un(T ) → u(T ) strongly in H as n→ ∞, and hence, Pε is continu-
ous in H, since Jε is non-expansive in H.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We note by (A3) and (A6) that the set BR is compact
in H. Moreover, BR is convex because of the convexity of φ. Therefore
combining Lemmas 3.2 and 3.3 and applying Schauder’s fixed point theorem
to Pε : BR → BR, we can take a fixed point u∗0 ∈ BR such that Pεu

∗
0 = u∗0.

This completes the proof of Theorem 3.1.

4 Estimates and limiting procedure

In this section we establish a priori estimates for solutions uε of (P)ε and
finally derive the convergence of uε to a solution u of (P) as ε→ 0 under the
stronger coercivity condition (A6).

Theorem 4.1 (Existence of periodic solutions under (A6)). Assume that
(A1)–(A3), (A5)–(A6) are satisfied. Then problem (P) admits at least one
solution.

Let uε be a solution of (P)ε. We shall firstly present a useful inequality
stemming from the fact that uε(0) = Jεuε(T ).

Lemma 4.2. It holds that φε(uε(0)) ≤ φε(uε(T )).
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Proof. By (ii) of Proposition 2.4, since uε(0) = Jεuε(T ), it follows that

φε(uε(0)) ≤ φ(uε(0)) = φ(Jεuε(T )) ≤ φε(uε(T )).

Next, we are in the position of establishing the following estimate.

Lemma 4.3. There exists a constant C independent of ε such that∫ T

0

|u′ε(t)|2Hdt ≤ C. (4. 1)

Proof. Test (3. 2) by u′ε(t). Then, inequality (3. 6) follows with u = uε.
Hence, by integrating both sides over (0, T ), we deduce that

ε

∫ T

0

|u′ε(t)|2Hdt+
C1

2

∫ T

0

|u′ε(t)|2Hdt+ φε(uε(T ))

≤ φε(uε(0)) + C

(∫ T

0

|fε(t)|2Hdt+ 1

)
,

which, together with Lemma 4.2, implies (4. 1).

Moving from estimate (4. 1) we deduce by (A2) and a comparison in
equation (3. 2) that ∫ T

0

|ηε(t)|2Hdt ≤ C, (4. 2)∫ T

0

|∂φε(uε(t))|2Hdt ≤ C, (4. 3)

where ηε := fε − εu′ε − ∂φε(uε(·)) ∈ A(u′ε(·)) almost everywhere in time.
Moreover, we also note that, by (4. 1),∫ T

0

∣∣∣∣ d

dt
Jεuε(t)

∣∣∣∣2
H

dt ≤
∫ T

0

|u′ε(t)|
2
H dt ≤ C, (4. 4)

since Jε is non-expansive in H (see [16]).

Let us get to a crucial estimate, namely an ordinary differential inequality
for φε(uε(t)).
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Lemma 4.4. Let yε(t) := φε(uε(t)). Then,

dyε

dt
(t) + yε(t) ≤ gε(t) for a.e. t ∈ (0, T )

where the functions gε are uniformly bounded in L1(0, T ) for ε ∈ (0, 1).

Proof. Recall again that

ε|u′ε(t)|2H +
C1

2
|u′ε(t)|2H +

d

dt
φε(uε(t)) ≤ C(|fε(t)|2H + 1). (4. 5)

On the other hand, by testing (3. 2) by uε(t) − v0 with any v0 ∈ D(φ) and
using (A2) and (3. 1), we have, for any ε ∈ (0, 1),

φε(uε(t)) ≤ φε(v0) + (∂φε(uε(t)), uε(t) − v0)H

≤ φ(v0) + (fε(t) − εu′ε(t) − ηε(t), uε(t) − v0)H

≤ C
(
|fε(t)|2H + ε2|u′ε(t)|2H + |u′ε(t)|2H + 1

)
+

1

2
φε(uε(t)),

which yields

φε(uε(t)) ≤ 2C
(
|fε(t)|2H + ε2|u′ε(t)|2H + |u′ε(t)|2H + 1

)
(4. 6)

with some constant C ≥ 0 independent of ε. By adding (4. 6) to (4. 5), we
have

dyε

dt
(t) + yε(t) ≤ C(|fε(t)|2H + |u′ε(t)|2H + 1) =: gε(t)

with some constant C > 0 independent of ε. Moreover, by (3. 4) and (4. 1),
the functions gε are bounded in L1(0, T ) for all ε ∈ (0, 1).

Hence, by Proposition A.2 and Lemma 4.2 the following estimates follow
immediately.

Lemma 4.5. There exists a constant C independent of ε such that

sup
t∈[0,T ]

φε(uε(t)) ≤ C. (4. 7)

By (A6), it also holds that

sup
t∈[0,T ]

|Jεuε(t)|H ≤
√
C/ρ. (4. 8)

From these a priori estimates, by extracting a sequence εn → 0, which
will be also denoted by ε below, we can derive convergences of uε.
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Lemma 4.6. There exist u ∈ W 1,2(0, T ;H) and η, ξ ∈ L2(0, T ;H) such that

Jεuε → u strongly in C([0, T ];H), (4. 9)

uε → u strongly in C([0, T ];H), (4. 10)

weakly in W 1,2(0, T ;H), (4. 11)

ηε → η weakly in L2(0, T ;H), (4. 12)

∂φε(uε(·)) → ξ weakly in L2(0, T ;H). (4. 13)

Moreover, [u(t), ξ(t)] ∈ ∂φ for a.e. t ∈ (0, T ).

Proof. By (A3) and Lemma 4.5, the family (Jεuε(t))ε∈(0,1) is precompact inH
for each t > 0. By estimate (4. 4), the function t 7→ Jεuε(t) is equicontinuous
in H on [0, T ] for all ε > 0. Therefore Ascoli’s compactness lemma yields
the uniform convergence (4. 9). Moreover, by exploiting the bound (4. 7),
we deduce that

sup
t∈[0,T ]

|uε(t) − Jεuε(t)|2H ≤ 2ε sup
t∈[0,T ]

φε(uε(t)) ≤ Cε→ 0,

which leads us to obtain the strong convergence (4. 10). Furthermore, the
weak convergences (4. 11), (4. 12) and (4. 13) follow from the estimates
(4. 1), (4. 2) and (4. 3), respectively. Finally, from the demiclosedness of
maximal monotone operators, one can infer from the convergence (4. 9) and
(4. 13) that u(t) ∈ D(∂φ) and ξ(t) ∈ ∂φ(u(t)) for a.e. t ∈ (0, T ).

Next, let us prove the periodicity of u.

Lemma 4.7. It holds that u(0) = u(T ).

Proof. Since both uε(t) and Jεuε(t) converge to u(t) strongly in H (uni-
formly) for all t ∈ [0, T ], we deduce by uε(0) = Jεuε(T ) that u(0) = u(T ).

We finally check that η(t) ∈ A(u′(t)) for a.e. t ∈ (0, T ).

Lemma 4.8. It holds that [u′(t), η(t)] ∈ A for a.e. t ∈ (0, T ).

Proof. Test ηε(t) ∈ A(u′ε(t)) by u′ε(t) and integrate this over (0, T ). We
obtain∫ T

0

(ηε(t), u
′
ε(t))Hdt

=

∫ T

0

(fε(t), u
′
ε(t))Hdt− ε

∫ T

0

|u′ε(t)|2Hdt−
∫ T

0

(∂φε(uε(t)), u
′
ε(t))Hdt

≤
∫ T

0

(fε(t), u
′
ε(t))Hdt,
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since we deduce by Lemma 4.2 that

−
∫ T

0

(∂φε(uε(t)), u
′
ε(t))Hdt = −φε(uε(T )) + φε(uε(0)) ≤ 0.

Therefore, as φ(u(0)) = φ(u(T )), it holds by convergence (3. 4) that

lim sup
ε→0

∫ T

0

(ηε(t), u
′
ε(t))Hdt ≤

∫ T

0

(f(t) − ξ(t), u′(t))H dt.

Consequently, by Proposition 2.5 of [16], we conclude that u′(t) ∈ D(A) and
η(t) ∈ A(u′(t)) for a.e. t ∈ (0, T ).

Combining these lemmas, we have proved the conclusion of Theorem 4.1.

5 Structural stability

In the last section, we proved the existence of solutions for (P) under (A6),
a stronger coercivity condition of φ. In order to replace (A6) by the weaker
condition (A4), we shall establish a structural stability result for solutions of
(P). Indeed, for n ∈ N, define a functional φn : H → [0,∞] by

φn(u) := φ(u) +
1

2n
|u|2H for u ∈ H, (5. 1)

which converges to φ (precisely, in the sense of Mosco on H) as n → ∞.
Then, φn complies with (A6) as well as all assumptions of Theorem 4.1.
Hence, we have the existence of solutions un for (P) with φ replaced by φn.
If one can obtain a structural stability result, i.e., the convergence of un to a
solution of (P) as n→ ∞, our proof of Theorem 2.2 will be completed.

We shall work here in a more general setting of possibly independent
interest. Let (An) be a sequence of maximal monotone operators in H and
let (φn) be a sequence of proper lower semicontinuous convex functionals
from H into [0,∞]. Assume that

An → A in the sense of graph on H, (5. 2)

φn → φ in the sense of Mosco on H (5. 3)

as n → ∞. Here we recall the definitions of graph-convergence and Mosco-
convergence.
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Definition 5.1 (Graph-convergence and Mosco-convergence). Let H be a
Hilbert space. Let (An) be a sequence of maximal monotone operators in H
and let (φn) be a sequence of proper lower semicontinuous convex functionals
from H into [0, T ].

(i) The sequence (An) is said to graph-converge to a maximal monotone
operator A : H → H (or An → A in the sense of graph on H) if for
any [u, ξ] ∈ A and n ∈ N, there exists [un, ξn] ∈ An such that

un → u strongly in H, ξn → ξ strongly in H as n→ ∞.

(ii) The sequence (φn) is said to Mosco-converge to a proper lower semi-
continuous convex functional φ : H → [0,∞] (φn → φ in the sense of
Mosco on H) if the following (a), (b) hold :

(a) (Liminf condition) Let un → u weakly in H as n→ ∞. Then

lim inf
n→∞

φn(un) ≥ φ(u).

(b) (Existence of recovery sequences) For every u ∈ D(φ), there exists
a recovery sequence (un) in H such that un → u strongly in H and
φn(un) → φ(u).

Remark 5.2. Let φ, φn : H → [0,∞] be proper lower-semicontinuous and
convex. Then it is known that ∂φn graph-converges to ∂φ if φn Mosco-
converges to φ. We refer the reader to Theorem 3.66 of [9].

Now, let us consider the following periodic problems (P)n:

An(u′(t)) + ∂φn(u(t)) 3 fn(t) in H, 0 < t < T, (5. 4)

u(0) = u(T ), (5. 5)

where (fn) is a sequence in L2(0, T ;H) such that

fn → f strongly in L2(0, T ;H) as n→ ∞. (5. 6)

The main result of this section is concerned with the asymptotic behavior of
solutions un for (P)n as n→ ∞.

Theorem 5.3 (Structural Stability). In addition to (5. 2), (5. 3), and (5. 6),
assume that (A1) and (A2) are satisfied with A = An and constants indepen-
dent of n. Moreover, suppose that
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(A3)′ every sequence (un) is precompact in H whenever φn(un) + |un|H is
bounded as n→ ∞,

(A4)′ for each n ∈ N large enough, there exists z0,n ∈ D(φn) such that for
any δ > 0 sufficiently small it holds that

|u|H ≤ δ(ξ, u− z0,n)H + Cδ for all [u, ξ] ∈ ∂φn

with some constant Cδ ≥ 0 independent of n. Moreover, |z0,n|H ≤ B1

for all n ∈ N with some constant B1 ≥ 0.

Let un be a solution of (P)n. Then, there exist a subsequence (n′) of (n) and
a solution u of (P) such that

un′ → u weakly in W 1,2(0, T ;H),

strongly in C([0, T ];H) as n′ → ∞.

Before proceeding to a proof, we set up a couple of lemmas.

Lemma 5.4. Assume that (A4)′ is satisfied and set H := L2(0, T ;H) with

‖u‖H := (
∫ T

0
|u(t)|2Hdt)1/2 for u ∈ H. Let (un) be a sequence in W 1,2(0, T ;H)

such that un(t) ∈ D(∂φn) for a.e. t ∈ (0, T ). Let (ξn) be a sequence in H
such that

ξn(t) ∈ ∂φn(un(t)) for a.e. t ∈ (0, T ) and ‖ξn‖H ≤ B2 for all n ∈ N

with some constant B2 ≥ 0. Then there exists a constant C independent of
n such that

‖un‖H ≤ C (‖u′n‖H + 1) for all n ∈ N.

Proof. By (A4)′, it follows that

|un(t)|H ≤ δ(ξn(t), un(t) − z0,n)H + Cδ for a.e. t ∈ (0, T ).

Integrating this over (0, T ), we find that∫ T

0

|un(t)|Hdt ≤ δ

∫ T

0

(ξn(t), un(t) − z0,n)Hdt+ CδT

≤ δ‖ξn‖H
(
‖un‖H + |z0,n|HT 1/2

)
+ CδT

≤ δB2

(
‖un‖H +B1T

1/2
)

+ CδT. (5. 7)
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On the other hand, by Hölder’s and Sobolev’s inequalities for vector-valued
functions, there is a constant M ≥ 0 such that

‖u‖H ≤M

(∫ T

0

|u(t)|Hdt+ ‖u′‖H
)

for all u ∈ W 1,2(0, T ;H). (5. 8)

Hence combining this with (5. 7) and taking δ > 0 sufficiently small, one can
deduce that ∫ T

0

|un(t)|Hdt ≤ C (‖u′n‖H + 1)

with some constant C independent of n.

The next lemma is well known (one can prove this lemma as in Proposition
3.59 of [9] with slight modifications).

Lemma 5.5. Let (An) be a sequence of maximal monotone operators in
H such that An graph-converges to a maximal monotone operator A. Let
[vn, ηn] ∈ An be such that

vn → v and ηn → η weakly in H,

lim sup
n→∞

(ηn, vn)H ≤ (η, v)H .

Then [v, η] ∈ A and (ηn, vn)H → (η, v)H .

Now, we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. By testing equation (5. 4) by u′n(t) and using (A1)
with C1, C2 independent of n, we deduce that

C1

2
|u′n(t)|2H +

d

dt
φn(un(t)) ≤ C2 + C|fn(t)|2H for a.e. t ∈ (0, T ). (5. 9)

Integrating this over (0, T ) and using periodicity (5. 5), we have∫ T

0

|u′n(t)|2Hdt ≤ C, (5. 10)

which, together with (A2) with C3 independent of n, implies∫ T

0

|ηn(t)|2Hdt ≤ C, (5. 11)
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where ηn(t) denotes a section of An(u′n(t)) as in equation (2. 3). Moreover,
by comparison in equation (5. 4), it follows that∫ T

0

|ξn(t)|2Hdt ≤ C, (5. 12)

where ξn := fn − ηn is a section of ∂φn(un(·)). Therefore, by Lemma 5.4, we
have ∫ T

0

|un(t)|2Hdt ≤ C, (5. 13)

which together with the estimate (5. 10) entails that (un) is bounded in
W 1,2(0, T ;H). Hence, supt∈[0,T ] |un(t)|H ≤ C.

We next prove the uniform boundedness of φn(un(t)) on [0, T ]. Let v0 ∈
D(φ). Then, one can take v0,n ∈ D(φn) such that φn(v0,n) → φ(v0) and
v0,n → v0 strongly in H, since φn → φ in the sense of Mosco. We observe
that

φn(un(t)) ≤ φn(v0,n) + (ξn(t), un(t) − v0,n)H

= φn(v0,n) + (fn(t), un(t) − v0,n)H − (ηn(t), un(t) − v0,n)H

≤ φn(v0,n) + C
(
|fn(t)|2H + |u′n(t)|2H + |un(t)|2H + |v0,n|2H + 1

)
with a constant C independent of n. Hence, by adding the latter to inequality
(5. 9) we deduce that

d

dt
φn(un(t)) + φn(un(t))

≤ gn(t) := φn(v0,n) + C
(
|fn(t)|2H + |u′n(t)|2H + |un(t)|2H + |v0,n|2H + 1

)
with a constant C ≥ 0 independent of n. From already obtained estimates we
notice that (gn) is uniformly bounded in L1(0, T ). Therefore, by Proposition
A.2 we conclude that

sup
t∈[0,T ]

φn(un(t)) ≤
(

1

T
+ 1

) ∫ T

0

|gn(t)|dt ≤ C. (5. 14)

By (A3)′, we note that (un(t)) is precompact in H for all t ∈ [0, T ]. Hence
one can derive the following convergences:

un → u weakly in W 1,2(0, T ;H),

strongly in C([0, T ];H),

ξn → ξ weakly in L2(0, T ;H),

ηn → η weakly in L2(0, T ;H).
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Here we also obtain u(0) = u(T ), since un(0) = un(T ). From Lemma 5.5,
one can prove ξ(t) ∈ ∂φ(u(t)) and η(t) ∈ A(u(t)) for a.e. t ∈ (0, T ) by a
similar argument to that of Sect. 4. Thus u solves (P) and it completes our
proof.

Eventually, let us complete the proof of Theorem 2.2.

Proof of Theorem 2.2. Define a sequence (φn) of functionals from H into
[0,∞] by

φn(u) := φ(u) +
1

2n
|u|2H for u ∈ H

with D(φn) = D(φ). Then φn satisfies (A6). Hence by Theorem 4.1, one
deduce that (P) with φ replaced by φn admits a strong solution un. We
can easily check that φn → φ in the sense of Mosco on H as n → ∞, and
moreover, we derive (A3)′ and (B4)′ with z0,n ≡ z0, since φ complies with
(A3) and (A4). Therefore due to Theorem 5.3, un converges to u as n→ ∞
and the limit u solves (P).

6 Application to PDEs

This section is devoted to a typical application of the preceding abstract
theory. Let Ω be a bounded domain in RN with smooth boundary ∂Ω. We
are concerned with the following periodic problem:

γ(ut) − ∆pu 3 f in Ω × (0, T ), (6. 1)

u = 0 on ∂Ω × (0, T ), (6. 2)

u(·, 0) = u(·, T ) in Ω, (6. 3)

where ut = ∂u/∂t, γ is a maximal monotone graph in R2, f = f(x, t) is a
given function, and ∆p is the so-called p-Laplace operator given by

∆pφ(x) := ∇ ·
(
|∇φ(x)|p−2∇φ(x)

)
, 1 < p <∞.

Inclusions of the type of (6. 1) may arise in connection with phase transi-
tions [12, 15, 19, 24, 28, 29], gas flow through porous media [39], and damage
processes [13, 14, 22, 23, 31]. In the limiting case of graphs α being 0-
homogeneous (which is however not covered by our analysis) this kind of
equation may stem in elastoplasticity, brittle fractures, ferroelectricity, and
general rate-independent systems [30]. Let us remark that relation (6. 1)
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stems as the gradient flow in H = L2(Ω) of the (complementary) energy
functional φ given by

φ(u, t) :=


∫

Ω

(
1

p
|∇u(x)|p − f(x, t)u(x)

)
dx if u ∈ W 1,p

0 (Ω),

∞ otherwise

with respect to the metric structure induced by the dissipation functional

F (u(x)) :=


∫

Ω

α̂(u(x))dx if α̂(u(·)) ∈ L1(Ω),

∞ otherwise

for α̂′ = α. Indeed, by taking variations in L2(Ω), inclusion (6. 1) is equiva-
lent to the kinetic relation

∂F (ut) + ∂uφ(u, t) 3 0

which represents the balance between the system of conservative (∂uφ(u, t),
respectively) and dissipative actions (∂F (ut), respectively) in the physical
system. The question of the periodic solvability of inclusion (6. 1) has hence
a clear applicative interest, especially in connection with the study of long-
time behavior of the above-mentioned physical systems in case of periodic
external actions.

In order to state our result, we assume that

(H1) There exist constants C5 > 0, C6 ≥ 0 such that

C5|s|2 ≤ gs+ C6 for all [s, g] ∈ γ.

(H2) There exists a constant C7 ≥ 0 such that

|g| ≤ C7(|s| + 1) for all [s, g] ∈ γ.

Remark 6.1. Assumptions (H1) and (H2) allow γ to be degenerate and
multivalued. Indeed, γ1 and γ2 given below satisfy the assumptions:

γ1(s) =


s if s < 0,
0 if 0 ≤ s ≤ 1,
s− 1 if 1 < s.

γ2(s) =


s if s < 0,
[0, 1] if s = 0,
s+ 1 if 0 < s.

Furthermore, one can check (H1) and (H2) if γ satisfies these assumptions
only for |s| ≥ R with some constant R > 0 and γ ∈ W 1,∞(−R,R).
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Our result reads,

Theorem 6.2 (Existence of periodic solutions for a nonlinear PDE). Assume
that f ∈ L2(0, T ;L2(Ω)) and (H1), (H2) are satisfied. Moreover, suppose that
p > 2N/(N + 2). Then problem (6. 1)–(6. 3) admits at least one solution.

Proof. We set H = L2(Ω) with the norm | · |H := | · |L2 and define φ by

φ(u) :=


1

p

∫
Ω

|∇u(x)|pdx if u ∈ W 1,p
0 (Ω),

∞ else.

Moreover, we let A : H → H be given by

A(u) := {η ∈ H; η(x) ∈ γ(u(x)) for a.e. x ∈ Ω}

with the domain D(A) := {u ∈ H; A(u) 6= ∅}. Then, we observe that
∂φ(u) = −∆pu with the homogeneous Dirichlet boundary condition in H,
and A is maximal monotone in H. Thus (6. 1)–(6. 3) is reduced to (P).
Now, (A1) and (A2) follow immediately from (H1) and (H2). Moreover,
since W 1,p

0 (Ω) is compactly embedded in L2(Ω) by 2N/(N + 2) < p, every
sublevel set of φ is compact in H. Hence (A3) holds true. Furthermore,
thanks to the Sobolev-Poincaré inequality,

|u|H ≤ Cp‖∇u‖Lp(Ω) for all u ∈ W 1,p
0 (Ω), provided that p ≥ 2N/(N+2),

we see that

(∂φ(u), u)H

|u|H
=

‖∇u‖p
Lp(Ω)

|u|H
≥ C−p

p |u|p−1
H for all u ∈ D(∂φ),

which implies (A4) with z0 = 0. Therefore, by applying Theorem 2.2, we
conclude that the system (6. 1)–(6. 3) admits at least one solution.

As for uniqueness we have the following.

Proposition 6.3. In case p = 2 and γ is strictly monotone, the periodic
solution for (6. 1)–(6. 3) is unique.

Proof. Along with the same positions as in the proof of Theorem 6.1, if
p = 2, then ∂φ = −∆ is linear and (∂φ)−1(0) = 0. Furthermore, A is strictly
monotone, since γ is so. Hence by Proposition 2.3 the solution of the system
(6. 1)–(6. 3) is unique.

22



The above well-posedness results can be generalized in a number of dif-
ferent directions. At first, the results for equation (6. 1) can be extended to
more general elliptic operators by replacing the p-Laplacian −∆pu by

−∇ · m(x,∇u) + ∂Iκ(u)

where the function m = m(x,p) : Ω × RN → RN is measurable in x and
differentiable and maximal monotone in p and the indicator function Iκ over
some closed interval κ ⊂ R. Indeed, the statement of Theorem 2.2 can
be extended by assuming that m(x, ·) admits a strongly coercive primitive
function P (x, ·) and by setting

φ(u) :=

∫
Ω

P (x,∇u(x))dx+ IK(u),

where IK denotes the indicator function over the setK := {u ∈ L2(Ω); u(x) ∈
κ for a.e. x ∈ Ω}.

Furthermore, we can treat doubly nonlinear systems such as

α(ut) − ∆pu 3 f in Ω × (0, T ), (6. 4)

where u = (u1, u2, . . . , um) : Ω× (0, T ) → Rm and α is a maximal monotone
operator in Rm with linear growth. Here, the vectorial p-Laplacian ∆pu is
defined by

∆pu = (∆pu1,∆pu2, . . . ,∆pum).

Again, the results of Theorem 2.2 can be extended in order to cover (6. 4)
by letting H = (L2(Ω))m and

φ(u) :=
1

p

m∑
i=1

∫
Ω

|∇ui(x)|pdx.

A Some tools on ordinary differential inequal-

ities

In this appendix we provide two types of estimates for solutions to ordinary
differential inequalities. Let us start by recalling without proof an elementary
estimate, for the sake of completeness.

Proposition A.1. Let T > 0 and let y : [0, T ] → R be an absolutely contin-
uous function satisfying

dy

dt
(t) + αy(t) ≤ β for a.e. t ∈ (0, T ) (A. 1)
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with constants α > 0 and β ≥ 0. Then it follows that

sup
t∈[0,T ]

y(t) ≤ R if y(0) ≤ R

for any constant R ≥ β/α.

The following proposition is exploited in the limiting procedure for solu-
tions of (P)ε as ε→ ∞ in Section 5 (see also [33]).

Proposition A.2. Let T > 0 and let y : [0, T ] → [0,∞) be an absolutely
continuous function satisfying

dy

dt
(t) + αy(t) ≤ g(t) for a.e. t ∈ (0, T ), (A. 2)

y(0) ≤ y(T ), (A. 3)

where α is a positive constant and g ∈ L1(0, T ). Then it follows that

sup
t∈[0,T ]

y(t) ≤
(

1

αT
+ 1

) ∫ T

0

|g(t)|dt.

Proof. By integrating the ordinary differential inequality (A.2) and using
condition (A. 3), we have

y(T ) + α

∫ T

0

y(τ)dτ ≤ y(0) +

∫ T

0

|g(τ)|dτ ≤ y(T ) +

∫ T

0

|g(τ)|dτ,

which implies ∫ T

0

y(τ)dτ ≤ 1

α

∫ T

0

|g(τ)|dτ =: M.

Let tmin and tmax be a minimizer and a maximizer of y = y(t), respectively.
Then we find that

y(tmin)T ≤
∫ T

0

y(τ)dτ ≤M,

which gives y(tmin) ≤M/T .

In case tmin ≤ tmax, by integrating inequality (A. 2) over (tmin, tmax), we
observe that

y(tmax) ≤ y(tmin) +

∫ T

0

|g(τ)|dτ ≤ M

T
+

∫ T

0

|g(τ)|dτ.
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In case tmin > tmax, the integration of (A. 2) over (0, tmax) yields

y(tmax) ≤ y(0) +

∫ tmax

0

g(τ)dτ.

Moreover, the integration of (A. 2) over (tmin, T ) gives

y(T ) ≤ y(tmin) +

∫ T

tmin

g(τ)dτ.

Since y(0) ≤ y(T ), we conclude that

y(tmax) ≤ y(tmin) +

∫ T

0

|g(τ)|dτ ≤ M

T
+

∫ T

0

|g(τ)|dτ.

Thus we have proved this proposition.

Remark A.3. By repeating a similar argument to the above, one can also
verify the following: if an absolutely continuous function y : [0, T ] → R
satisfies

y′(t) ≤ g(t) for a.e. t ∈ (0, T ),

∫ T

0

y(τ)dτ ≤M, y(0) ≤ y(T ),

it then follows that

sup
t∈[0,T ]

y(t) ≤ M

T
+

∫ T

0

|g(τ)|dτ.

B Equivalence of coercivity conditions

In this section we prove the equivalence of two coercivity conditions.

Proposition B.1 (Equivalence of coercivity conditions). Let φ be a proper
lower semicontinuous convex functional from H into [0,∞] and let z0 ∈ D(φ).
Then the following two conditions are equivalent :

(i) lim inf
|u|H→∞
[u,ξ]∈∂φ

(ξ, u− z0)H

|u|H
= ∞.

(ii) For any δ > 0, there exists a constant Cδ ≥ 0 such that

|u|H ≤ δ(ξ, u− z0)H + Cδ for all [u, ξ] ∈ ∂φ.
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Proof. We first show that (i) implies (ii). Assume on the contrary that one
can take δ0 > 0 such that for all n ∈ N there exists [un, ξn] ∈ ∂φ satisfying

|un|H > δ0(ξn, un − z0)H + n.

Then it follows that

|un|H ≥ −δ0φ(z0) + n→ ∞

and
(ξn, un − z0)H

|un|H
<

1

δ0
.

Hence, by passing to the limit as n→ ∞, we derive

lim inf
n→∞

(ξn, un − z0)H

|un|H
≤ 1

δ0
<∞,

which contradicts (i).

Let us next prove that (ii) implies (i). From (ii), one can immediately
deduce for u 6= 0 that

1

δ
≤ (ξ, u− z0)H

|u|H
+

Cδ

δ|u|H
for all δ > 0 and [u, ξ] ∈ ∂φ.

Taking a liminf in both sides as |u|H → ∞, we deduce that

0 <
1

δ
≤ lim inf

|u|H→∞
[u,ξ]∈∂φ

(ξ, u− z0)H

|u|H
.

Hence by letting δ → 0+, we complete our proof.
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