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Abstract

This paper is concerned with nonlinear diffusion equations driven
by the p(·)-Laplacian with variable exponents in space. The well-
posedness is first checked for measurable exponents by setting up a
subdifferential approach. The main purposes are to investigate the
large-time behavior of solutions as well as to reveal the limiting be-
havior of solutions as p(·) diverges to the infinity in the whole or in a
subset of the domain. To this end, the recent developments in the stud-
ies of variable exponent Lebesgue and Sobolev spaces are exploited,
and moreover, the spatial inhomogeneity of variable exponents p(·) is
appropriately controlled to obtain each result.
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1 Introduction

Nonlinear elliptic operators with non-standard growth have been attracting
more attention in the studies of nonlinear PDEs. The reader can overview
the recent development of this field in [31]. Here we particularly treat the
p(·)-Laplace operator ∆p(·) given by

∆p(·)φ(x) := ∇ ·
(
|∇φ(x)|p(x)−2∇φ(x)

)
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with a measurable function p(·) from Ω ⊂ RN into (1,∞). The p(·)-Laplacian
with a variable exponent p(·) is deeply related to generalized Lebesgue and
Sobolev spaces, Lp(·) and W 1,p(·), which have been vigorously studied and
whose theory has been ripe for applications to PDEs (see [22]). There have
been many contributions to nonlinear elliptic problems associated with the
p(·)-Laplacian from various view points (see [31] for a survey). On the other
hand, there seem to be less contributions to parabolic problems.

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω. In this
paper, we deal with a solution u = u(x, t) for the following initial-boundary
value problem:

∂tu = ∆p(·)u+ f in Ω × (0,∞), (1.1)

u = 0 on ∂Ω × (0,∞), (1.2)

u(·, 0) = u0 in Ω, (1.3)

where ∂tu = ∂u/∂t and f : Ω × (0,∞) → R and u0 : Ω → R are given
functions. Equation (1.1) can be regarded as a sort of nonlinear diffusion
equation, whose diffusion coefficient is of the form |∇u(x, t)|p(x)−2 by analogy
with Fick’s diffusion model. Hence the nonlinear diffusion driven by (1.1)
strongly depends on the gradient of the density u(x, t), and moreover, it
might be inhomogeneous in space even though the gradient has the same
norm over Ω. The constant exponent p(·) ≡ p is particularly known to have
a threshold between two drastically different types of nonlinear diffusion, and
moreover, the limit of p→ ∞ exhibits a peculiar phenomena called fast/slow
diffusion.

Parabolic equations involving the p(·)-Laplacian have been proposed in
the study of image restoration (see [19]) as well as in some model of elec-
trorheological fluids (see [21], [23], [38]). A mathematical analysis was also
done for such problems by Acerbi and Mingione [1, 2] and by Acerbi, Min-
gione and Seregin [3]. In [30], some nonlinear parabolic problem proposed
by [19] was studied in a weak formulation and an existence result for weak
solutions was established. Antontsev and Shmarev studied parabolic equa-
tions involving anisotropic p(·, ·)-Laplace operators with log-Hölder continu-
ous (x, t)-dependent exponents and proved the existence, uniqueness, extinc-
tion in finite time and blow-up of solutions in [7, 8, 9, 10]. Equation (1.1)
was also studied by Bendahmane, Wittbold and Zimmermann in [16], where
the well-posedness is proved for renormalized solutions in an L1-framework
for continuous variable exponents. Moreover, the existence and uniqueness
of entropy solutions and the equivalence between two notions of solutions are
discussed for log-Hölder continuous variable exponents in [41] by Zhang and
Zhou (see also [33] for an elliptic counterpart).
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The main purpose of this paper is to observe specific properties of solu-
tions for the nonlinear diffusion equation (1.1)–(1.3) with a variable exponent
p(·). To be concrete, we shall investigate asymptotic behaviors of solutions
u = u(x, t) as t → ∞ when f ≡ 0, and we shall also find out the limiting
behavior of solutions for pn(·)-Laplacians as pn(·) → ∞. To do so, we work in
an L2-framework and set up a subdifferential approach to (1.1). In Section
2, we recall the definition of variable exponent Lebesgue spaces, Lp(·)(Ω),
as well as Sobolev spaces, W 1,p(·)(Ω). Moreover, some properties of these
spaces will be also exhibited to be used later. In Section 3, we discuss the
well-posedness of the Cauchy-Dirichlet problem (1.1)–(1.3) with measurable
exponents p(·) by using a standard theory of evolution equations governed by
subdifferential operators. It is noteworthy that our well-posedness result is
completely free from continuity assumptions on variable exponents. Indeed,
it has been an open question whether the (log-Hölder) continuity of variable
exponent is necessary for the well-posedness (see p.4560 of [31]).

Section 4 is devoted to revealing asymptotic behaviors as t → ∞ of
solutions for (1.1)–(1.3) without source (i.e., f ≡ 0). For the fully degenerate
case, inf p(·) > 2, solutions decay and converge to 0 as t → ∞. On the
other hand, for the fully singular case, sup p(·) < 2, one can observe the
extinction of solutions, namely, every solution vanishes at a finite time, which
is called extinction time. We estimate the decay rate and the extinction rate
of solutions from above and below. Moreover, we also establish an estimate
for the extinction time in terms of initial data.

In contrast to constant exponent cases, where decay and extinction rates
are homogeneous in space, variable exponents might turn them inhomoge-
neous. Moreover, when p(x) ≡ p, the non-increase in t of the Rayleigh quo-
tient ‖∇u(·, t)‖Lp/‖u(·, t)‖L2 plays a crucial role to obtain decay/extinction
rates of solutions. However, in variable exponent cases, it would be some-
what difficult to obtain the non-increase of the corresponding Rayleigh quo-
tient with Lp(·)(Ω)-norm, due to the lack of inhomogeneity of the modular in
Lp(·)(Ω)-space.

In Section 5, we investigate the fast/slow diffusion limit, that is, the limit
as n → ∞ of solutions un = un(x, t) for the nonlinear diffusion (1.1)–(1.3)
with a sequence of variable exponents pn(·) → ∞. The constant exponent
version of fast/slow diffusion limit arises from some macroscopic model of
a critical-state of type-II superconductors and a model of sandpile growth
(see [12], [14], [6]). Moreover, the variable exponent case could be a natural
extension to these physical models. Since the diffusion coefficient for the
pn(·)-Laplacian is in the form |∇u(x, t)|pn(x)−2 with the density u(x, t) at the
position x and the time t, one can expect that the speed of diffusion diverges
as pn(x) → ∞ at (x, t) where |∇u(x, t)| is greater than 1 and no diffusion
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will occur at (x, t) where |∇u(x, t)| is less than 1. Such a limiting diffusion
is called fast/slow diffusion in [12]. Compared to the constant exponent
case, the speed of the divergence of pn(·) might not be uniform over Ω in
our setting. We prove the convergence of solutions as n → ∞ and find out
a limiting problem, which is an evolutionary variational inequality with a
constraint set of the form,

K = {w ∈ H1
0 (Ω); ‖∇w‖L∞(Ω) ≤ 1},

under an appropriate control of the fastest and slowest speeds of pn(·) → ∞
over Ω. Our analysis is based on a gradient structure of (1.1) and the notion
of Mosco convergence for convex functionals is employed to investigate the
limit of Lyapunov functionals.

In the final section, we treat a more peculiar case, where pn(·) diverges
only on a subset of Ω. More precisely, we consider the case that

pn(x) =

{
qn(x) → ∞ for x ∈ D,

q(x) <∞ for x ∈ Ω \D
as n→ ∞

with an open subset D of Ω and measurable functions qn(·), q(·) with values
in (1,∞). From an analogue to the former case, one can expect that the
fast/slow diffusion can be observed in D by letting n → ∞, and moreover,
an inhomogeneous nonlinear diffusion driven by the q(·)-Laplacian occurs
in Ω \ D. This situation is particular to the variable exponent case and
never happens in the constant exponent case. We finally obtain a mixed
problem which consists of an evolutionary quasi-variational inequality in D
and a nonlinear diffusion equation involving the q(·)-Laplacian in Ω \D as a
limiting problem. In contrast to the preceding case, the constraint set of the
quasi-variational inequality depends on the unknown.

We also have to mention an elliptic counterpart of the limiting prob-
lems treated here. In [35], Manfredi, Rossi and Urbano studied the limits as
pn(x) → ∞ of pn(x)-harmonic functions, i.e., solutions of −∆pn(·)un = 0 in
Ω. They finally proved the limit of un solves an elliptic equation involving
the so-called infinity-Laplace operator under more restrictive assumptions of
pn(x) → ∞ than ours (see also Remark 5.4 in §5). Moreover, in [34], they
also treated the case that pn(x) → ∞ only in a subdomain of Ω (see also [40]).
However, we emphasize that the elliptic limit would be essentially different
from parabolic ones. In parabolic cases, due to the presence of the time-
derivative term, one cannot normalize both sides of equations when pn(x)
diverges to the infinity, and hence, the limiting problems are described as
variational inequalities instead of PDEs involving explicit differential opera-
tors such as the infinity-Laplacian.
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Notation. We write (s)+ := max{s, 0} for s ∈ R. Let ‖ ·‖q denote the usual
norm of Lq(Ω)-spaces for 1 ≤ q ≤ ∞. Moreover, (·, ·)L2 denotes the usual
inner product of the Hilbert space L2(Ω), i.e., (u, v)L2 =

∫
Ω
u(x)v(x)dx.

2 Preliminaries

This section is devoted to some preliminary results on Lebesgue and Sobolev
spaces with variable exponents (see [32], [24, 25], [28] for a good introduction
to this field and [22] for a complete collection of up-to-date results). Let Ω be
a domain in RN . Throughout this section, we assume that p is a measurable
function from Ω to [1,∞). We write

p+ := ess sup
x∈Ω

p(x), p− := ess inf
x∈Ω

p(x).

Define the Lebesgue space with a variable exponent p(·), which is the so-
called Nakano space and a special sort of Musielak-Orlicz spaces (see [36]),
as follows:

Lp(·)(Ω) :=

{
u : Ω → R; measurable in Ω and

∫
Ω

|u(x)|p(x)dx <∞
}

with a Luxemburg-type norm

‖u‖p(·) := inf

{
λ > 0;

∫
Ω

∣∣∣∣u(x)λ
∣∣∣∣p(x)

dx ≤ 1

}
.

The following proposition plays an important role to establish energy esti-
mates (see, e.g., Theorem 1.3 of [28] for a proof).

Proposition 2.1. It holds that

σ−(‖w‖p(·)) ≤
∫

Ω

|w(x)|p(x)dx ≤ σ+(‖w‖p(·)) for all w ∈ Lp(·)(Ω)

with the strictly increasing functions

σ−(s) := min{sp− , sp+}, σ+(s) := max{sp− , sp+} for s ≥ 0.

We next define variable exponent Sobolev spaces W 1,p(·)(Ω) as follows:

W 1,p(·)(Ω) :=

{
u ∈ Lp(·)(Ω);

∂u

∂xi

∈ Lp(·)(Ω) for all i = 1, 2, . . . , N

}
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with the norm

‖u‖W 1,p(·)(Ω) :=
(
‖u‖2

p(·) + ‖∇u‖2
p(·)
)1/2

,

where ‖∇u‖p(·) denotes the Lp(·)(Ω)-norm of |∇u|. Furthermore, letW
1,p(·)
0 (Ω)

be the closure of C∞
0 (Ω) in W 1,p(·)(Ω). Here we note that the space W

1,p(·)
0 (Ω)

is usually defined in a slightly different way for the variable exponent case.
However, both definitions are equivalent under (2.1) given below (see [22]
and also [42] for an unusual phenomena of discontinuous exponents). In this

paper, we use the notation of W
1,p(·)
0 (Ω) only when (2.1) is satisfied.

The following proposition is concerned with the uniform convexity of Lp(·)-
and W 1,p(·)-spaces.

Proposition 2.2 ([22]). If p− > 1 and p+ <∞, then Lp(·)(Ω) and W 1,p(·)(Ω)
are uniformly convex Banach spaces. Hence they are reflexive.

Let us exhibit the Poincaré and Sobolev inequalities (see [26], [29], [39]
and references therein for more details). To do so, we introduce the log-Hölder
condition:

|p(x) − p(x′)| ≤ A

log(e+ 1/|x− x′|)
for all x, x′ ∈ Ω (2.1)

with some constant A > 0 (see [22]). This condition follows from the Hölder
continuity of p over Ω and it implies p ∈ C(Ω) and p+ <∞.

Proposition 2.3 ([22]). Let Ω be a bounded domain in RN with smooth
boundary ∂Ω. Assume that (2.1) holds.

(i) There exists a constant C ≥ 0 such that

‖w‖p(·) ≤ C‖∇w‖p(·) for all w ∈ W
1,p(·)
0 (Ω).

In particular, the space W
1,p(·)
0 (Ω) has a norm ‖ · ‖1,p(·) given by

‖w‖1,p(·) := ‖∇w‖p(·) for w ∈ W
1,p(·)
0 (Ω),

which is equivalent to ‖ · ‖W 1,p(·)(Ω).

(ii) Let q : Ω → [1,∞) be a measurable and bounded function and sup-
pose that q(x) ≤ p∗(x) := Np(x)/(N − p(x))+ for a.e. x ∈ Ω. Then
W 1,p(·)(Ω) is continuously embedded in Lq(·)(Ω).
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In particular, if Ω is bounded and smooth, p− ≥ 2N/(N + 2) and (2.1)
holds, then there exists a constant Cp(·),2 > 0 such that

‖w‖2 ≤ Cp(·),2‖w‖1,p(·) for all w ∈ W
1,p(·)
0 (Ω). (2.2)

This fact will be frequently used in Section 4.
Let us introduce the following amalgam space with a variable exponent:

Xp(·)(Ω) :=
{
u ∈ L2(Ω); ∂u/∂xi ∈ Lp(·)(Ω) for i = 1, 2, . . . , N

}
equipped with the norm

‖u‖Xp(·)(Ω) :=
(
‖u‖2

2 + ‖∇u‖2
p(·)
)1/2

for u ∈ Xp(·)(Ω).

Moreover, set a subspace of Xp(·)(Ω) by

X
p(·)
0 (Ω) := Xp(·)(Ω) ∩W 1,p−

0 (Ω)

with ‖u‖
X

p(·)
0 (Ω)

:= ‖u‖Xp(·)(Ω). Assume that 1 < p− and p+ <∞. Then since

L2(Ω) and Lp(·)(Ω) are reflexive Banach spaces, one can observe that Xp(·) is

a reflexive Banach space, and moreover, X
p(·)
0 (Ω) is as well, since X

p(·)
0 (Ω) is

a closed subspace of Xp(·)(Ω).
If Ω is bounded and smooth, then it follows that

W 1,p+

(Ω) ∩ L2(Ω) ↪→ Xp(·)(Ω) ↪→ W 1,p−(Ω) ∩ L2(Ω) (2.3)

with continuous canonical injections. Indeed,Xp+
(Ω) ↪→ Xp(·)(Ω) ↪→ Xp−(Ω)

continuously by p− ≤ p(·) ≤ p+, and moreover, Xp−(Ω) ↪→ W 1,p−(Ω) contin-
uously by usual Sobolev’s embedding theorem. Since W 1,p+

(Ω) ∩ L2(Ω) ↪→
Xp+

(Ω) clearly, we obtain (2.3). Moreover, it also follows that

W 1,p+

0 (Ω) ∩ L2(Ω) ↪→ X
p(·)
0 (Ω) ↪→ W 1,p−

0 (Ω) ∩ L2(Ω). (2.4)

Furthermore, we have:

Proposition 2.4. Assume that Ω is bounded and smooth. If p(·) satis-

fies (2.1), then Xp(·)(Ω) and X
p(·)
0 (Ω) coincide with W 1,p(·)(Ω) ∩ L2(Ω) and

W
1,p(·)
0 (Ω) ∩ L2(Ω), respectively.

Proof. By Corollary 8.2.6 of [22], there exists a constant C such that

‖u− 〈u〉Ω‖p(·) ≤ C‖∇u‖p(·) for u ∈ L1
loc(Ω) satisfying |∇u| ∈ Lp(·)(Ω),
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where 〈u〉Ω stands for the mean value of u over Ω. Hence Xp(·)(Ω) ⊂
W 1,p(·)(Ω) ∩ L2(Ω). The inverse inclusion is straightforward.

Moreover, by Theorem 11.2.7 of [22], it follows thatW 1,p(·)(Ω)∩W 1,p−

0 (Ω) =

W
1,p(·)
0 (Ω). Hence we conclude that

X
p(·)
0 (Ω) = Xp(·)(Ω) ∩W 1,p−

0 (Ω)

= W 1,p(·)(Ω) ∩ L2(Ω) ∩W 1,p−

0 (Ω) = W
1,p(·)
0 (Ω) ∩ L2(Ω).

3 Well-posedness

In this section, we discuss the well-posedness of (1.1)–(1.3) in an L2-framework
by using a subdifferential approach. Subdifferential is a generalized notion
of functional derivative for convex functionals. Let H be a Hilbert space
with an inner product (·, ·)H and let φ : H → (−∞,∞] be a proper (i.e.,
φ 6≡ ∞) lower-semicontinuous convex functional with the effective domain
D(φ) := {u ∈ H; φ(u) <∞}. Then the subdifferential operator ∂φ : H → H
of φ is defined by

∂φ(u) := {ξ ∈ H; φ(v)−φ(u) ≥ (ξ, v−u)H for all v ∈ D(φ)} for u ∈ D(φ)

with the domain D(∂φ) := {u ∈ D(φ); ∂φ(u) 6= ∅}. It is well known that
subdifferential operators are maximal monotone in H.

In [8] and [41], the well-posedness of (1.1)–(1.3) was proved by imposing
the log-Hölder continuity assumption on variable exponents (see also [5]).
Moreover, in [16], the well-posedness is also proved for renormalized solutions
by assuming only the continuity of exponents with 1 < p− ≤ p+ < N .
Here we emphasize that our well-posedness result is completely free from
the continuity assumption of variable exponents, and moreover, it can cover
even discontinuous variable exponents. Such a fairly general framework will
be essentially required in §6 (see Remark 6.2).

Throughout this paper, we always assume that Ω is bounded and smooth.
Let us begin with the definition of solutions for (1.1)–(1.3).

Definition 3.1. A function u ∈ C([0,∞);L2(Ω)) is said to be a solution of
(1.1)–(1.3), if the following conditions are all satisfied :

• u ∈ W 1,2
loc (0,∞;L2(Ω))∩C((0,∞);X

p(·)
0 (Ω)) and ∆p(·)u ∈ L2

loc(0,∞;L2(Ω)),

• u(0) = u0,
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• For all w ∈ X
p(·)
0 (Ω), it holds that∫

Ω

∂tu(x, t)w(x)dx+

∫
Ω

|∇u(x, t)|p(x)−2∇u(x, t)·∇w(x)dx =

∫
Ω

f(x, t)w(x)dx

for a.e. t > 0.

We reduce the initial-boundary value problem (1.1)–(1.3) into the Cauchy
problem for an abstract evolution equation. Let H := L2(Ω) and define
ϕ : H → [0,∞] by

ϕ(w) =


∫

Ω

1

p(x)
|∇w(x)|p(x)dx if w ∈ X

p(·)
0 (Ω),

∞ otherwise.
(3.1)

In order to prove the well-posedness for (1.1)–(1.3), the most crucial point
lies in checking the lower semicontinuity of the functional ϕ in H = L2(Ω).

Lemma 3.2. Suppose that 1 < p− and p+ < ∞. The function ϕ is proper,
convex and lower semicontinuous in H.

Proof. It is obvious that ϕ is proper and convex in H. So, it remains to prove
the lower semicontinuity of ϕ in H. Let µ ∈ R be fixed and set

[ϕ ≤ µ] := {u ∈ H;ϕ(u) ≤ µ}.

Let (un) be a sequence on [ϕ ≤ µ] such that un → u strongly in H. By
Proposition 2.1, it follows that

1

p+
σ− (‖∇un‖p(·)

)
≤ 1

p+

∫
Ω

|∇un(x)|p(x)dx ≤ ϕ(un) ≤ µ.

Hence (un) is bounded in X
p(·)
0 (Ω) for all n ∈ N. Since X

p(·)
0 (Ω) is reflexive

by 1 < p− and p+ < ∞, we can take a subsequence of (n) denoted by the

same letter again such that un → u weakly in X
p(·)
0 (Ω).

Let ϕ̂ be the restriction of ϕ toX
p(·)
0 (Ω). Then ϕ̂ is continuous inX

p(·)
0 (Ω),

and moreover, ϕ̂ is convex. Hence ϕ̂ becomes weakly lower semicontinuous
in X

p(·)
0 (Ω). Therefore we have lim infn→∞ ϕ̂(un) ≥ ϕ̂(u) = ϕ(u), which

together with the fact that ϕ̂(un) = ϕ(un) ≤ µ implies that u ∈ [ϕ ≤ µ].
Thus we conclude that [ϕ ≤ µ] is closed in H, and therefore, ϕ is lower
semicontinuous in H.

One can verify the following proposition as in the constant variable case.
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Proposition 3.3. The restriction ϕ̂ of ϕ to X
p(·)
0 (Ω) is Gâteaux differen-

tiable, and the Gâteaux derivative dϕ̂(u) of ϕ̂ at u coincides with −∆p(·)u
furnished with u|∂Ω = 0 in the sense of distribution.

Since ∂ϕ(u) ⊂ ∂ϕ̂(u) = dϕ̂(u), we have ∂ϕ(u) = −∆p(·)u with u|∂Ω = 0
for all u ∈ D(∂ϕ). Thus the initial-boundary value problem (1.1)–(1.3) is
reduced into the following Cauchy problem:

du

dt
(t) + ∂ϕ(u(t)) = f(t) in H for t > 0, (3.2)

u(0) = u0. (3.3)

Such an abstract evolution equation was well studied in 1970s and funda-
mental results were established by H. Brézis (see Chap. III of [17]). Hence
we have:

Theorem 3.4 (Well-posedness). Let p(·) be a measurable function from
Ω into (1,∞). Assume that 1 < p− and p+ < ∞. Then for all f ∈
L2

loc([0,∞);L2(Ω)) and u0 ∈ L2(Ω), there exists a unique solution u = u(x, t)
of the initial-boundary value problem (1.1)–(1.3).

In particular, if u0 belongs to X
p(·)
0 (Ω), then u ∈ W 1,2

loc ([0,∞);L2(Ω)) ∩
C([0,∞);X

p(·)
0 (Ω)).

Furthermore, the unique solution u of (1.1)–(1.3) continuously depends
on initial data u0 and f in the following sense: Let ui be the unique solution
of (1.1)–(1.3) with u0 = u0,i ∈ L2(Ω) and f = fi ∈ L2

loc([0,∞);L2(Ω)) for
i = 1, 2. Then it follows that

‖u1(t) − u2(t)‖2 ≤ ‖u0,1 − u0,2‖2 +

∫ t

0

‖f1(τ) − f2(τ)‖2 dτ for all t ≥ 0.

Proof. By the well-posedness result due to Brézis, the Cauchy problem (3.2),
(3.3) admits a unique strong solution u ∈ W 1,2

loc (0,∞;L2(Ω)) such that ∂ϕ(u(·)) ∈
L2

loc(0,∞;L2(Ω)) and ϕ(u(·)) is absolutely continuous in (0,∞). Here we only

prove u ∈ C((0,∞);X
p(·)
0 (Ω)), which is a direct consequence from a standard

property of uniformly convex Banach spaces in the constant variable case.
Define a functional ρ : (Lp(·)(Ω))N → [0,∞) by

ρ(u) :=


∫

Ω

1

p(x)
|u(x)|p(x)dx if u ∈ (Lp(·)(Ω))N ,

∞ else.

Then ρ becomes a uniformly convex continuous modular in (Lp(·)(Ω))N . Since
ϕ(u(·)) is continuous in (0,∞), for each t > 0, it follows that

ρ(∇u(s)) → ρ(∇u(t)) as s→ t,
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and moreover, we have

∇u(s) → ∇u(t) weakly in (Lp(·)(Ω))N .

Hence by Lemma 2.4.17 of [22], we deduce that

ρ(∇u(s) −∇u(t)) → 0 as s→ t,

which implies ∇u(s) → ∇u(t) strongly in (Lp(·)(Ω))N as s→ t at each t > 0.

Therefore u ∈ C((0,∞);X
p(·)
0 (Ω)).

In much the same way as in the case of constant exponent p-Laplacians,
one can also prove the comparison principle for (1.1)–(1.3). For the reader’s
convenience, let us show its proof.

Proposition 3.5 (Comparison principle). Assume that p(·) satisfies (2.1)
and p− > 1. Let u1 be a subsolution for (1.1) in the L2(Ω)-sense, that

is, u1 ∈ C([0,∞);L2(Ω)) ∩W 1,2
loc ((0,∞);L2(Ω)), u1(t) ∈ W

1,p(·)
0 (Ω) for a.e.

t > 0, and it holds that∫
Ω

∂tu1(x, t)φ(x)dx+

∫
Ω

|∇u1|p(x)−2∇u1(x, t) · ∇φ(x)dx ≤
∫

Ω

f(x, t)φ(x)dx

for every non-negative function φ ∈ W
1,p(·)
0 (Ω) ∩ L2(Ω) and for a.e. t > 0.

Let u2 be a supersolution for (1.1) in the L2(Ω)-sense, which is analogously
defined to the above. If u1(x, 0) ≤ u2(x, 0) for a.e. x ∈ Ω and γ(u1(·, t) −
u2(·, t))+(x) = 0 for a.e. x ∈ ∂Ω and t > 0, where γ stands for the trace
operator from W 1,p−(Ω) into W 1−1/p−,p−(∂Ω), then it follows that

u1(x, t) ≤ u2(x, t) for a.e. x ∈ Ω, t > 0.

Proof. Let j be a function in R given by

j(s) =
s2

2
for s ≥ 0; j(s) = 0 for s < 0

and define a functional ψ on H := L2(Ω) by

ψ(v) :=

∫
Ω

j(v(x))dx for v ∈ H.

Then ψ is proper, lower semicontinuous and convex in H. Moreover, ∂ψ(v) =
(v(·))+ ≥ 0. Here we also note that ∂ψ(v) ∈ W 1,p(·)(Ω) if v ∈ W 1,p(·)(Ω).
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Put w := u1 − u2. Subtracting the inequality for the supersolution u2

from that for the subsolution u1, we obtain(
dw

dt
(t), φ

)
L2

+

∫
Ω

(
|∇u1|p(x)−2∇u1(x, t) − |∇u2|p(x)−2∇u2(x, t)

)
· ∇φ(x)dx

≤ 0 for every non-negative φ ∈ W
1,p(·)
0 (Ω) ∩ L2(Ω) and for a.e. t ≥ 0.

One can put φ = ∂ψ(w(t)) = (w(·, t))+. Indeed, since γ(w(·, t))+(x) = 0 for

a.e. x ∈ ∂Ω and t > 0, we find by (2.1) that φ ∈ W
1,p(·)
0 (Ω). Applying the

chain rule for subdifferentials, we get

d

dt
ψ(w(t))

≤ −
∫

Ω

(
|∇u1|p(x)−2∇u1(x, t) − |∇u2|p(x)−2∇u2(x, t)

)
· ∇(w(x, t))+dx

= −
∫

Ω

(
|∇u1|p(x)−2∇u1(x, t) − |∇u2|p(x)−2∇u2(x, t)

)
· ∇w(x, t)

×sgn(w(x, t)) dx

≤ 0 for a.e. t > 0,

where sgn(s) = 0 for s ≤ 0 and sgn(s) = 1 for s > 0. Therefore

ψ(w(t)) ≤ ψ(w(0)) = 0 for all t ≥ 0,

which implies w(x, t) ≤ 0 for a.e. x ∈ Ω and t > 0.

Remark 3.6. In [5], the existence of periodic solutions is also proved, pro-
vided that p− ≥ 2N/(N + 2) and p(·) satisfies (2.1). Furthermore, it is also
proved that the solution u(t) converges to a stationary solution φ strongly in

L2(Ω) and ϕ(u(t)) → ϕ(φ) (hence u(t) → φ strongly in W
1,p(·)
0 (Ω) as t→ ∞)

when p− > 2N/(N + 2), (2.1) holds, f(t) → f∞ weakly in L2(Ω) as t → ∞
and f(·) − f∞ ∈ L2(0,∞;L2(Ω)). Moreover, the convergence rate of u(t) in
L2(Ω) is also estimated from above if p− ≥ 2.

4 Decay and extinction properties

In this section, we are concerned with decay and extinction properties of
solutions for (1.1)–(1.3) with f ≡ 0 as t→ ∞. In case p(·) is constant, these
properties are well known, and moreover, the optimal decay rate and the
extinction rate of solutions have been revealed for the degenerate case (p > 2)
and the fast diffusion case (p < 2), respectively (see [20], [37] and [15]). As for
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the variable exponent case, Antontsev and Shmarev [7, 9] also observed the
extinction property of solutions without estimate for the rate of extinction
when exponents are variable both in space and time. Throughout this section,
the Sobolev-Poincaré inequality (2.2) plays an important role, so we always
assume that

p satisfies (2.1) and 2N/(N + 2) ≤ p− (4.1)

(then X
p(·)
0 (Ω) coincides with W

1,p(·)
0 (Ω), by Propositions 2.3 and 2.4).

Our main results of this section are stated in the following: For the fully
degenerate case, p− > 2, it holds that

Theorem 4.1 (Decay property). In addition to (4.1), assume p− > 2. Let

u0 ∈ W
1,p(·)
0 (Ω) \ {0} and let u = u(x, t) be the unique solution of (1.1)–(1.3)

with f ≡ 0. Then there exists a constant c > 0 such that

c−1(t+ 1)−1/(p−−2) ≤ ‖u(t)‖2 ≤ c(t+ 1)−1/(p+−2) for all t ≥ 0. (4.2)

For the fully singular case, p+ < 2, we have:

Theorem 4.2 (Extinction property). In addition to (4.1), assume p+ < 2.

Let u0 ∈ W
1,p(·)
0 (Ω) \ {0} and let u = u(x, t) be the unique solution of (1.1)–

(1.3) with f ≡ 0. Then there exist a finite time t∗ > 0 and a constant c > 0
such that

c−1(t∗ − t)
1/(2−p−)
+ ≤ ‖u(t)‖2 ≤ c(t∗ − t)

1/(2−p+)
+ for all t ≥ 0. (4.3)

Hence the solution u = u(x, t) vanishes at t∗, which is called extinction time
of u.

Our proof is based on the following two fundamental energy identities:

1

2

d

dt
‖u(t)‖2

2 +

∫
Ω

|∇u(x, t)|p(x)dx = 0, (4.4)∥∥∥∥dudt (t)
∥∥∥∥2

2

+
d

dt
ϕ(u(t)) = 0 (4.5)

for a.e. t ∈ (0,∞). The first identity follows from the multiplication of (1.1)
by u and the integration over Ω, and the second one can be obtained by mul-
tiplying (3.2) by du(t)/dt in L2(Ω) and using a chain rule for subdifferentials
(see Lemma 3.3 of [17]). Then we have,

Lemma 4.3 (Upper estimates). Assume (4.1). In case p+ > 2, there exists
c0 > 0 such that

‖u(t)‖2 ≤ c0(t+ 1)−1/(p+−2) for all t ≥ 0.

In case p+ < 2, the solution vanishes at a finite time t∗ > 0.
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Proof. By Proposition 2.1, it follows from (4.4) that

1

2

d

dt
‖u(t)‖2

2 + σ− (‖u(t)‖1,p(·)
)
≤ 0 for a.e. t > 0,

and hence, by (2.2),

1

2

d

dt
‖u(t)‖2

2 + σ−
(
C−1

p(·),2‖u(t)‖2

)
≤ 0 for a.e. t > 0. (4.6)

Now, let us solve the Cauchy problem for the following ODE:

y′(t) + 2σ−
(
C−1

p(·),2y(t)
1/2
)

= 0 for t > 0, y(0) = ‖u0‖2
2 > 0. (4.7)

Then by comparison principle, ‖u(t)‖2
2 ≤ y(t) for all t ≥ 0. In case y(0) =

‖u0‖2
2 > C2

p(·),2, one can write

y′(t) +
2

Cp−

p(·),2

y(t)p−/2 = 0 for t ∈ [0, t1)

with t1 := sup{τ > 0; y(t) > C2
p(·),2 for all t ∈ [0, τ ]} > 0 (hence, σ−(C−1

p(·),2y(t)
1/2) =

y(t)p−/2/Cp−

p(·),2 for t ∈ [0, t1)). Then we have

y(t) =



(
‖u0‖2−p−

2 − 2 − p−

Cp−

p(·),2

t

)2/(2−p−)

if p− 6= 2,

‖u0‖2
2 exp

(
− 2

C2
p(·),2

t

)
if p− = 2

for all t ∈ [0, t1),

which implies
0 < t1 <∞ and y(t1) = C2

p(·),2.

Therefore we deduce that

‖u(t1)‖2
2 ≤ C2

p(·),2.

In case y(0) = ‖u0‖2
2 ≤ C2

p(·),2, since y(t) is non-increasing by (4.7), we have

y′(t) +
2

Cp+

p(·),2

y(t)p+/2 = 0 for t ≥ 0.

Then as in the last case, for any p+ 6= 2, we can obtain

‖u(t)‖2
2 ≤ y(t) =

(
‖u0‖2−p+

2 − 2 − p+

Cp+

p(·),2

t

)2/(2−p+)

+

for all t ≥ 0. (4.8)
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Combining these facts, we conclude that: in case p+ < 2, the solution u(t)
vanishes at some finite time t∗ > 0; in case p+ > 2, the solution u(t) converges
to zero as t→ ∞ such that

‖u(t)‖2 ≤ c0(t+ 1)−1/(p+−2) for all t ≥ 0

with some constant c0 > 0. This completes our proof.

In constant exponent cases, one can use the fact that the Rayleigh quo-
tient t 7→ R(t) := ‖∇u(t)‖p/‖u(t)‖2 is non-increasing. However, in variable
exponent cases, its analogue is not obvious, because of a gap between the
norm ‖∇w‖p(·) and the modular ρ(w) =

∫
Ω
|∇w(x)|p(x)dx in Lp(·)(Ω). Here,

to derive the lower and upper estimates for ‖u(t)‖2, we set up the following
lemma, where a modified Rayleigh quotient involving a Lyapunov energy ϕ
is introduced.

Lemma 4.4. The function

t 7→ R̃(t) :=
ϕ(u(t))

‖u(t)‖p−

2

is non-increasing on the interval I := {t ≥ 0; ‖u(t)‖2 > 0}.

Proof. By (4.5), it follows that

d

dt
R̃(t) =

−‖u′(t)‖2
2‖u(t)‖

p−

2 − ϕ(u(t)) d
dt
‖u(t)‖p−

2

‖u(t)‖2p−

2

for all t ∈ I.

Here we note by (4.4) that

d

dt
‖u(t)‖p−

2 =
p−

2
‖u(t)‖p−−2

2

d

dt
‖u(t)‖2

2.

Hence
d

dt
R̃(t) =

−‖u′(t)‖2
2‖u(t)‖2

2 − ϕ(u(t))p−

2
d
dt
‖u(t)‖2

2

‖u(t)‖p−+2
2

.

By (4.4),

ϕ(u(t)) =

∫
Ω

1

p(x)
|∇u(x, t)|p(x)dx

≤ 1

p−

∫
Ω

|∇u(x, t)|p(x)dx = − 1

2p−
d

dt
‖u(t)‖2

2.
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Thus since (d/dt)‖u(t)‖2
2 ≤ 0 by (4.4), it holds that

d

dt
R̃(t) ≤

−‖u′(t)‖2
2‖u(t)‖2

2 +
(

1
2

d
dt
‖u(t)‖2

2

)2
‖u(t)‖p−+2

2

=
−‖u′(t)‖2

2‖u(t)‖2
2 + (u′(t), u(t))2

L2

‖u(t)‖p−+2
2

for all t ∈ I,

which implies that
d

dt
R̃(t) ≤ 0 for all t ∈ I.

Therefore the function R̃(·) is non-increasing on I.

Now, we are in a position to give a proof of Theorem 4.1.

Proof of Theorem 4.1. The upper estimate has already been proved in Lemma
4.3. Hence let us prove the lower estimate. Recalling (4.4) and using the def-
inition of p+, we find that

d

dt
‖u(t)‖2

2 + 2p+ϕ(u(t)) ≥ 0 for all t ≥ 0.

By Lemma 4.4, we note that

ϕ(u(t)) = R̃(t)‖u(t)‖p−

2 ≤ R̃(0)‖u(t)‖p−

2 if ‖u(t)‖2 > 0. (4.9)

Hence we obtain

d

dt
‖u(t)‖2

2 + 2p+R̃(0)‖u(t)‖p−

2 ≥ 0 for a.e. t > 0.

By solving the following ODE:

y′(t) + κ−y(t)p−/2 = 0 for t > 0, y(0) = ‖u0‖2
2 > 0

with κ− := 2p+R̃(0) and by using the comparison principle, we deduce by
p− > 2 that

‖u(t)‖2 ≥
(
‖u0‖2−p−

2 + (p− − 2)p+R̃(0)t
)−1/(p−−2)

for all t ≥ 0,

which implies our desired result.

We next prove Theorem 4.2.
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Proof of Theorem 4.2. Let us derive the upper estimate for ‖u(t)‖2. As in
the proof of Theorem 4.1, by the definition of p+ and Lemma 4.4, one can
obtain

d

dt
‖u(t)‖2

2 + 2p+R̃(0)‖u(t)‖p−

2 ≥ 0 for a.e. t ∈ (0, t∗),

which implies
2

2 − p−
d

dt
‖u(t)‖2−p−

2 ≥ −2p+R̃(0).

The integration of both sides over (t, t∗) leads us to

‖u(t)‖2 ≤
{

(2 − p−)p+R̃(0)
}1/(2−p−)

(t∗ − t)
1/(2−p−)
+ for all t ≥ 0. (4.10)

We next prove the lower estimate. Set t1 := inf{τ ≥ 0; ‖u(τ)‖2 ≤ Cp(·),2}.
Then 0 ≤ t1 < t∗ and σ−(C−1

p(·),2‖u(t)‖2) = ‖u(t)‖p+

2 /Cp+

p(·),2 for all t ≥ t1.

Moreover, by (4.8) in the proof of Lemma 4.3, we find that

0 ≤ t1 ≤

(
Cp+

p(·),2‖u0‖2−p+

2 − C2
p(·),2

2 − p+

)
+

. (4.11)

It then follows from (4.6) that

2

2 − p+

d

dt
‖u(t)‖2−p+

2 ≤ − 2

Cp+

p(·),2

for a.e. t > t1.

Integrating both sides over (t, t∗), we have

‖u(t)‖2 ≥

(
2 − p+

Cp+

p(·),2

)1/(2−p+)

(t∗ − t)
1/(2−p+)
+ for all t ≥ t1. (4.12)

As for the case that t1 > 0 (hence ‖u(t1)‖2 = Cp(·),2), taking a positive

constant c1 := ‖u(t1)‖2/t
1/(2−p+)
∗ , we observe

‖u(t)‖2 ≥ ‖u(t1)‖2 = c1t
1/(2−p+)
∗ ≥ c1(t∗ − t)1/(2−p+) for all t ∈ [0, t1].

Thus we have proved this theorem.

One can also obtain the following corollary, which provides some estimate
for the extinction time in terms of initial data.
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Corollary 4.5 (Estimates for extinction times). In addition to (4.1), as-

sume that p+ < 2. For each u0 ∈ W
1,p(·)
0 (Ω) \ {0} and f ≡ 0, let u = u(x, t)

be the unique solution of (1.1)–(1.3) with the extinction time t∗ = t∗(u0) > 0.
Then it follows that

1

2 − p−
‖u0‖2

2

p+ϕ(u0)
≤ t∗(u0) ≤

Cp+

p(·),2

2 − p+
‖u0‖2−p+

2 . (4.13)

Proof. The lower estimate follows immediately from (4.10) with t = 0. More-
over, recall that

‖u(t1)‖2 ≤ Cp(·),2,

where t1 is estimated by (4.11). Substitute t = t1 in (4.12) to get

‖u(t1)‖2 ≥

(
2 − p+

Cp+

p(·),2

)1/(2−p+)

(t∗ − t1)
1/(2−p+),

which together with (4.11) implies the upper estimate.

Remark 4.6. One can also estimate the W
1,p(·)
0 (Ω)-norm of u(t) from above

and below by using (2.2) and the fact that

σ− (‖u(t)‖1,p(·)
)
≤ p+ϕ(u(t)) ≤ p+ ϕ(u0)

‖u0‖p−

2

‖u(t)‖p−

2 .

Then in case p− > 2, it follows that

c̃−1(t+1)−1/(p−−2) ≤ ‖u(t)‖1,p(·) and σ− (‖u(t)‖1,p(·)
)1/p− ≤ c̃(t+1)−1/(p+−2);

in case p+ < 2, we have

c̃−1(t∗ − t)
1/(2−p−)
+ ≤ ‖u(t)‖1,p(·) and σ− (‖u(t)‖1,p(·)

)1/p− ≤ c̃(t∗ − t)
1/(2−p+)
+

with some constant c̃ > 0. Since σ−(s) = sp+
for all s ∈ [0, 1], the decay rate

(resp., the extinction rate) will be equal to or faster than (t+1)−p−/{p+(p+−2)}

as t→ ∞ (resp., (t∗ − t)p−/{p+(2−p+)} as t→ t∗).

5 Fast/slow diffusion limit

Let (pn(·)) be a sequence of measurable functions from Ω into (1,∞) such
that

pn(x) → ∞ for a.e. x ∈ Ω.
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In this section, we shall investigate the limiting behavior as n → ∞ of the
solutions un = un(x, t) for

∂tun = ∆pn(·)un + fn in Ω × (0, T ), (5.1)

un = 0 on ∂Ω × (0, T ), (5.2)

un(·, 0) = u0,n in Ω (5.3)

with a constant T > 0 and sequences (u0,n) and (fn) in L2(Ω) and L2(0, T ;L2(Ω)),
respectively, satisfying

u0,n → u0 strongly in L2(Ω),

fn → f strongly in L2(0, T ;L2(Ω)).

The limit of solutions un as n→ ∞ has been studied in the constant exponent
case, i.e., pn(·) ≡ pn, and such a problem arises from a critical-state model
of type-II superconductors (see [14], [6], [4]) and a growing sandpile model
(see [12]). Particularly, in [4], the first author characterized the limit of
solutions for (5.1)–(5.3) by employing the notion of Mosco convergence of a
sequence (ψn) of functionals associated with pn-Laplacians:

ψn(w) :=


1

pn

∫
Ω

|∇w(x)|pndx if w ∈ W 1,pn

0 (Ω),

∞ otherwise,

and by exploiting a general theory for the convergence as n→ ∞ of solutions
for abstract evolution equations governed by subdifferential operators ∂ψn of
ψn in a Hilbert space H:

dun

dt
(t) + ∂ψn(un(t)) 3 fn(t) in H for t ∈ (0, T ), un(0) = u0,n.

In this section we also follow the same strategy to investigate the limit
of solutions for (5.1)–(5.3) with the sequence (pn(·)) of variable exponents
as n → ∞. Before starting our analysis let us briefly review the notion of
Mosco convergence and recall the convergence result due to H. Attouch [13]
for evolution equations governed by subdifferential operators in the next sub-
section.

5.1 Mosco convergence and evolution equations

The Mosco convergence of convex functionals is defined as follows:
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Definition 5.1 (Mosco convergence). Let H be a Hilbert space and denote
by Φ(H) the set of all proper (i.e., φ 6≡ ∞), lower semicontinuous and convex
functionals φ from H into (−∞,∞]. Let (φn) be a sequence in Φ(H) and
let φ ∈ Φ(H). Then φn → φ on H in the sense of Mosco as n → ∞ if the
following conditions are all satisfied :

(i) For all u ∈ D(φ), there exists a sequence (un) in H such that un → u
strongly in H and φn(un) → φ(u).

(ii) Let (un) be a sequence in H such that un → u weakly in H. Then
lim inf
n→∞

φn(un) ≥ φ(u).

Attouch [13] investigated the limit as n→ ∞ of solutions for the following
Cauchy problems:

dun

dt
(t) + ∂φn(un(t)) 3 fn(t) in H for t ∈ (0, T ), (5.4)

un(0) = u0,n. (5.5)

Proposition 5.2 (Theorem 3.74 of [13]). Let φn, φ ∈ Φ(H) be such that

φn → φ on H in the sense of Mosco as n→ +∞.

Moreover, let fn, f ∈ L2(0, T ;H) be such that

fn → f strongly in L2(0, T ;H)

and let u0,n ∈ D(φn) and u0 ∈ D(φ) be such that

u0,n → u0 strongly in H.

Then the solutions un of (5.4), (5.5) converge to u as n→ ∞ in the following
sense:

un → u strongly in C([0, T ];H),
√
t
dun

dt
→

√
t
du

dt
strongly in L2(0, T ;H).

Moreover, the limit u is the unique solution of

du

dt
(t) + ∂φ(u(t)) 3 f(t) in H, 0 < t < T, u(0) = u0.

In addition, if φn(u0,n) → φ(u0) <∞, then

un → u strongly in W 1,2(0, T ;H),

φn(un(·)) → φ(u(·)) uniformly on [0, T ].
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5.2 Limit of solutions for the pn(·)-Laplacian

Let us return to our issue of the fast/slow diffusion limit. Here and thereafter,
we write

p+
n := ess sup

x∈Ω
pn(x), p−n := ess inf

x∈Ω
pn(x).

Our result is stated as follows:

Theorem 5.3 (Convergence of solutions). Let (pn(·)) be a sequence of mea-
surable functions from Ω into (1,∞) such that

p−n → ∞ and (p+
n )1/p−n → 1 as n→ ∞, (5.6)

where the latter is equivalently rewritten into

log p+
n

p−n
→ 0 as n→ ∞.

Let fn ∈ L2(0, T ;L2(Ω)) and u0,n ∈ L2(Ω) be such that

fn → f strongly in L2(0, T ;L2(Ω)), (5.7)

u0,n → u0 strongly in L2(Ω) (5.8)

and let un be the solutions of (5.1)–(5.3). Then there exists a function u ∈
C([0, T ];L2(Ω)) ∩W 1,2

loc ((0, T ];L2(Ω)) such that∫
Ω

(f(x, t) − ∂tu(x, t)) (v(x) − u(x, t)) dx ≤ 0 for a.e. t ∈ (0, T ),

and all v ∈ K,

u(t) ∈ K for a.e. t ∈ (0, T ) and u(·, 0) = u0 in Ω,

where K := {v ∈ H1
0 (Ω); ‖∇v‖∞ ≤ 1}, and

un → u strongly in C([0, T ];L2(Ω)), (5.9)
√
t
dun

dt
→

√
t
du

dt
strongly in L2(0, T ;L2(Ω)). (5.10)

In addition, if
∫

Ω
(1/pn(x))|∇u0,n(x)|pn(x)dx→ 0, then it also holds that

un → u strongly in W 1,2(0, T ;L2(Ω)). (5.11)

Remark 5.4 (Comparison to an elliptic case). In [35], Manfredi, Rossi and
Urbano studied the limit of solutions un = un(x) for the Dirichlet problem

−∆pn(·)un = 0 in Ω, un = f on ∂Ω
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with some given function f = f(x). They proved that un uniformly converges
to the unique viscosity solution u of

−∆∞u− |∇u|2 ln |∇u| ξ · ∇u = 0 in Ω, u = f on ∂Ω,

where ∆∞u = (D2u∇u) · ∇u, under the assumption that

∇pn(x)

pn(x)
→ ξ(x) uniformly in Ω,

which always implies (5.6). In this elliptic case, in order to avoid the diver-
gence of each term as pn(x) → ∞, one can carry out a normalization of the
expanded form of the equation,

0 = ∆pn(·)un(x) = |∇un(x)|pn(x)−2∆un(x) + (pn(x) − 2)|∇un(x)|pn(x)−4∆∞un(x)

+ |∇un(x)|pn(x)−2 ln |∇un(x)|∇pn(x) · ∇un(x),

by dividing both sides by pn(x)|∇un(x)|pn(x)−4 beforehand. On the other
hand, in parabolic cases, such a normalization cannot be applied due to the
presence of the term ∂tu. Then the limiting problem is essentially different
from that of the elliptic case, and it is described as a variational inequality.

To prove this theorem, define the functionals ϕn : H := L2(Ω) → [0,∞]
by

ϕn(w) =


∫

Ω

1

pn(x)
|∇w(x)|pn(x)dx if w ∈ X

pn(·)
0 (Ω),

∞ otherwise.
(5.12)

Then as in Section 3, problem (5.1)–(5.3) is transcribed into the Cauchy
problem (5.4), (5.5) with φn replaced by ϕn in H = L2(Ω).

We next verify the Mosco convergence of ϕn as pn(·) → ∞ to a convex
function ϕ∞ on L2(Ω) under an appropriate control of the fastest and slowest
speeds of pn(·) → ∞ over Ω.

Proposition 5.5 (Mosco convergence). Under the same assumptions of
pn(·) as in Theorem 5.3, ϕn converges to ϕ∞ on L2(Ω) in the sense of Mosco
as n → ∞, where ϕ∞ denotes the indicator function over the closed convex
subset of L2(Ω),

K := {u ∈ H1
0 (Ω); ‖∇u‖∞ ≤ 1},

that is, ϕ∞ is a function from L2(Ω) into [0,∞] given by

ϕ∞(w) :=

{
0 if w ∈ K,
∞ otherwise.
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Proof. Let u ∈ D(ϕ∞) = K be fixed. We then set a sequence un ≡ u in
D(ϕ∞) and observe that

0 ≤ ϕn(un) =

∫
Ω

1

pn(x)
|∇u(x)|pn(x)dx ≤ |Ω|

p−n
→ 0 as n→ ∞.

Here we also used the fact that un = u ∈ D(ϕn) for each n ∈ N. Indeed, since
u ∈ H1

0 (Ω) and ∇u ∈ (L∞(Ω))N , we have u ∈ W 1,r
0 (Ω) for any r ∈ [1,∞),

which implies u ∈ X
pn(·)
0 (Ω) = D(ϕn). Hence ϕn(un) → ϕ∞(u) as n → ∞.

Thus (i) of Definition 5.1 follows.
As for (ii) of Definition 5.1, let (un) be a sequence in L2(Ω) such that

un → u weakly in L2(Ω). We then claim that

lim inf
n→∞

ϕn(un) ≥ ϕ∞(u). (5.13)

Indeed, for the case where the liminf of ϕn(un) is infinite, (5.13) follows
immediately. For the case where the liminf is finite, up to a subsequence, it
follows that

ϕn(un) ≤ C

for some constant C independent of n. Then we observe that

1 ≥ ϕn(un)

C
=

∫
Ω

{
1

(pn(x)C)1/pn(x)
|∇un(x)|

}pn(x)

dx

≥
∫

Ω

{
1

(p+
nC)1/p−n

|∇un(x)|
}pn(x)

dx for large n,

which implies

‖∇un‖pn(·) ≤ (p+
nC)1/p−n .

Thus, since p−n −1 < pn(x) for a.e. x ∈ Ω, by Hölder’s inequality (see Lemma
3.2.20 of [22]), we have∫

Ω

|∇un(x)|p
−
n −1dx ≤ 2

∥∥∥|∇un(x)|p
−
n −1
∥∥∥

pn(·)/(p−n −1)
‖1‖rn(·),

where rn : Ω → (1,∞) is defined by

p−n − 1

pn(x)
+

1

rn(x)
= 1.

Here we observe∥∥∥|∇un(x)|p
−
n −1
∥∥∥

pn(·)/(p−n −1)

= inf

{
λ > 0;

∫
Ω

(
|∇un(x)|
λ1/(p−n −1)

)pn(x)

dx ≤ 1

}
= ‖∇un‖p−n −1

pn(·) .
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Moreover, since rn(·) = pn(·)/(pn(·) − p−n + 1) > 1, we find that ‖1‖rn(·) ≤
max{1, |Ω|} (see Lemma 3.2.11 of [22]). Therefore it follows that∫

Ω

|∇un(x)|p
−
n −1dx ≤ 2 max{1, |Ω|}‖∇un‖p−n −1

pn(·)

≤ 2 max{1, |Ω|}(p+
nC)(p−n −1)/p−n . (5.14)

On the other hand, it follows that

‖∇un‖q ≤ (|Ω| + 1)1/q‖∇un‖p−n −1

for an arbitrary q ∈ [1, p−n − 1). Since the right-hand side is bounded in n by
(5.14) and assumption, for each q > 1, up to a subsequence, we see

∇un → ∇u weakly in (Lq(Ω))N as n→ ∞

and u ∈ H1
0 (Ω). Hence passing to the limit as p−n → ∞ with the assumption

that (p+
n )1/p−n → 1, we derive

‖∇u‖q ≤ lim inf
n→∞

‖∇un‖q

≤ lim
n→∞

(|Ω| + 1)1/q (2 max{1, |Ω|})1/(p−n −1) (p+
nC)1/p−n

= (|Ω| + 1)1/q.

Then letting q → ∞, we find that

‖∇u‖∞ ≤ 1.

Thus it follows by ϕn ≥ 0 that

ϕ∞(u) = 0 ≤ lim inf
n→∞

ϕn(un).

Therefore (5.13) holds. Consequently, ϕn → ϕ∞ on L2(Ω) in the sense of
Mosco as n→ ∞.

We are now in position to prove Theorem 5.3.

Proof of Theorem 5.3. Due to Propositions 5.2 and 5.5, the solutions un con-
verge to a limit u and it uniquely solves

du

dt
(t) + ∂ϕ∞(u(t)) 3 f(t), 0 < t < T, u(0) = u0.

From the definition of subdifferential, the evolution equation above can be
rewritten by the following variational inequality:(
f(t) − du

dt
(t), v − u(t)

)
L2

≤ ϕ∞(v)−ϕ∞(u(t)) = 0 for all v ∈ D(ϕ∞) = K

and u(t) ∈ K for a.e. t ∈ (0, T ).
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6 Partial fast/slow diffusion limit

We finally discuss the case that pn(·) diverges only in a subset of Ω as n→ ∞.
More precisely, we address ourselves to the following case:

pn(x) =

{
qn(x) → ∞ if x ∈ D,
q(x) <∞ if x ∈ Ω \D as n→ ∞, (6.1)

where D is a non-empty open subset of Ω satisfying |D|, |Ω \ D| > 0 and
q : Ω\D → (1,∞) and qn : D → (1,∞) are measurable, and we shall discuss
the convergence of solutions for (5.1)–(5.3) as n → ∞. In this case, the
limiting problem will be described as a mixture of two problems, a nonlinear
diffusion equation involving the q(·)-Laplacian in Ω \D and an evolutionary
quasi-variational inequality over D. Moreover, it is noteworthy that the
constraint set of the quasi-variational inequality depends on the unknown
function (cf. the set K is independent of u in Section 5).

Our basic strategy here is also based on the Mosco convergence of the
functionals ϕn associated with pn(·)-Laplacians as in the last section (see
(5.12)). Throughout this section, we write

q+ := ess sup
x∈Ω\D

q(x) and q− := ess inf
x∈Ω\D

q(x),

q+
n := ess sup

x∈D
qn(x) and q−n := ess inf

x∈D
qn(x)

and suppose that

1 < q−n , q
− and q+

n , q
+ <∞ for all n ∈ N. (6.2)

For each function w : Ω → R, we simply use the same letter w for the
restriction of w onto a subset of Ω if no confusion can arise.

Now, our main result here reads,

Theorem 6.1 (Convergence of solutions). Let (pn(·)) be a sequence given in
(6.1) such that (6.2) and the following hold :

q−n → ∞ and (q+
n )1/q−n → 1 as n→ ∞. (6.3)

Moreover, let fn ∈ L2(0, T ;L2(Ω)) and u0,n ∈ L2(Ω) be such that (5.7) and
(5.8) hold. Let un be the solutions of (5.1)–(5.3). Then there exists a function
u ∈ C([0, T ];L2(Ω))∩W 1,2

loc ((0, T ];L2(Ω)) such that (5.9) and (5.10) hold, and
moreover, the limit u satisfies

u(t) ∈ W 1,q−

0 (Ω), u(t) ∈ Xq(·)(Ω \D) for a.e. t ∈ (0, T ), (6.4)

u(·, 0) = u0 in Ω (6.5)
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and solves the following mixed problem for a.e. t ∈ (0, T ): a nonlinear diffu-
sion equation on Ω \D driven by the q(·)-Laplacian,

∂tu(·, t) − ∆q(·)u(·, t) = f(·, t) in D ′(Ω \D) (6.6)

and an evolutionary quasi-variational inequality over D,

‖∇u(t)‖L∞(D) ≤ 1, (6.7)∫
D

(f(x, t) − ∂tu(x, t))(z(x) − u(x, t))dx ≤ 0 for all z ∈ KD(u(t)), (6.8)

where KD(w) is given for each w ∈ W 1,q−

0 (Ω) by

KD(w) :=
{
z ∈ W 1,∞(D); z − w ∈ W 1,q−

0 (D) and ‖∇z‖L∞(D) ≤ 1
}
.

In addition, if∫
Ω

1

pn(x)
|∇u0,n(x)|pn(x)dx→

∫
Ω\D

1

q(x)
|∇u0(x)|q(x)dx, (6.9)

then (5.11) holds and

un → u strongly in Lr(0, T ;Xq(·)(Ω \D)) for each r ∈ [1,∞). (6.10)

Remark 6.2. (1) Roughly speaking, the constraint set of the evolution-
ary quasi-variational inequality requires all test functions z in (6.8) to
coincide with u(·, t) on the boundary ∂D at each time t.

(2) From the assumptions, q(·) <∞ in Ω \D and q−n → ∞, the exponents
pn(·) must not be continuous on ∂D for n ∈ N large enough. So we
need work in the framework of discontinuous exponents (see §3).

To prove this theorem, we first show the Mosco convergence of ϕn.

Proposition 6.3 (Mosco convergence). Suppose that (6.3) holds. Then ϕn

Mosco-converges on L2(Ω) to the functional ϕD : L2(Ω) → [0,∞] given by

ϕD(w) :=


∫

Ω\D

1

q(x)
|∇w(x)|q(x)dx if w ∈ W 1,q−

0 (Ω), w ∈ Xq(·)(Ω \D)

and ‖∇w‖L∞(D) ≤ 1,

∞ otherwise

as n→ ∞.
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Proof. Let u ∈ D(ϕD) be fixed and set un = u for all n ∈ N. Then u ∈ L2(Ω),
and it also holds that ∂u/∂xi ∈ Lpn(·)(Ω) for i = 1, 2, . . . , N . Moreover, since

p−n = q− for any n ∈ N large enough, we have W 1,q−

0 (Ω) = W 1,p−n
0 (Ω). Hence

u ∈ X
pn(·)
0 (Ω) = D(ϕn) for sufficiently large n ∈ N. We observe that

ϕn(un) =

∫
D

1

qn(x)
|∇u(x)|qn(x)dx+

∫
Ω\D

1

q(x)
|∇u(x)|q(x)dx

→
∫

Ω\D

1

q(x)
|∇u(x)|q(x)dx = ϕD(u),

since it follows from (6.3) that∫
D

1

qn(x)
|∇u(x)|qn(x)dx ≤ |D|

q−n
→ 0.

Thus (i) of Definition 5.1 holds for ϕn.
We next prove (ii) of Definition 5.1. Let un ∈ D(ϕn) be such that un → u

weakly in L2(Ω). It is sufficient to treat the case that

lim inf
n→∞

ϕn(un) <∞.

Then, up to a subsequence, we have ϕn(un) ≤ C, which brings us two obser-
vations. The first one reads,∫

Ω\D

1

q(x)
|∇un(x)|q(x)dx ≤ C, (6.11)

which implies, up to a subsequence, ∇un → ∇u weakly in (Lq(·)(Ω \ D))N .
Hence u ∈ Xq(·)(Ω \D). The second one is the following:∫

D

1

qn(x)
|∇un(x)|qn(x)dx ≤ C. (6.12)

Repeating the same argument as in the proof of Proposition 5.5, since q−n −1 >
q− for sufficiently large n ∈ N, one can also derive

‖∇un‖Lq− (D) ≤ C,

which together with (6.11) yields the boundedness of (∇un) in (Lq−(Ω))N . By

Poincaré’s inequality for usual Sobolev spaces, (un) is bounded in W 1,q−

0 (Ω),

and therefore, up to a subsequence, un → u weakly in W 1,q−

0 (Ω) and u ∈
W 1,q−

0 (Ω). Moreover, it can be also proved by (6.12) as in Section 5 that

‖∇u‖L∞(D) ≤ 1.
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Thus combining these facts, we deduce that u ∈ D(ϕD).
Since the functional u 7→

∫
Ω\D(1/q(x))|∇u(x)|q(x)dx is weakly lower semi-

continuous in L2(Ω), it follows that

ϕD(u) =

∫
Ω\D

1

q(x)
|∇u(x)|q(x)dx

≤ lim inf
n→∞

∫
Ω\D

1

q(x)
|∇un(x)|q(x)dx

≤ lim inf
n→∞

ϕn(un).

Consequently, (ii) of Definition 5.1 follows.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. One can prove the convergence of un and observe that
the limit u uniquely solves

du

dt
(t) + ∂ϕD(u(t)) = f(t) in H = L2(Ω), u(0) = u0 (6.13)

by applying Proposition 5.2 with φn = ϕn and φ = ϕD. Hence the main task
of our proof is to obtain a representation of (6.13). We first claim that

ξ = −∆q(·)w in D ′(Ω \D) if ξ ∈ ∂ϕD(w). (6.14)

By the definition of subdifferentials,

ϕD(v) − ϕD(w) ≥
∫

Ω

ξ(x) (v(x) − w(x)) dx for all v ∈ D(ϕD). (6.15)

In particular, put

v(x) =

{
w(x) in D,
w(x) + he(x) in Ω \D

with arbitrary h ∈ R and e ∈ C∞
0 (Ω \D). Then v belongs to D(ϕD) and we

observe that∫
Ω\D

1

q(x)
|∇w(x) + h∇e(x)|q(x)dx−

∫
Ω\D

1

q(x)
|∇w(x)|q(x)dx

≥ h

∫
Ω\D

ξ(x)e(x)dx.
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Thus we derive∫
Ω\D

|∇w(x)|q(x)−2∇w(x) · ∇e(x)dx =

∫
Ω\D

ξ(x)e(x)dx

for all e ∈ C∞
0 (Ω \D), and therefore, ξ = −∆q(·)w in D ′(Ω \D).

We next claim that∫
D

ξ(x) (z(x) − w(x)) dx ≤ 0 for all z ∈ KD(w) if ξ ∈ ∂ϕD(w). (6.16)

Indeed, let z ∈ KD(w) and substitute the following to (6.15):

v(x) =

{
z(x) in D,
w(x) in Ω \D.

Here we remark that v ∈ D(ϕD), because obviously v ∈ Xq(·)(Ω \ D) and

‖∇v‖L∞(D) ≤ 1; the zero extension z − w of z − w ∈ W 1,q−

0 (D) into Ω

belongs to W 1,q−

0 (Ω) and hence v = z − w + w ∈ W 1,q−

0 (Ω). Then (6.16)
follows. Consequently, by (6.14) and (6.16), the Cauchy problem (6.13) is
rewritten to (6.4)–(6.8).

We finally prove (6.10) under (6.9). Since ϕn(un(·)) → ϕD(u(·)) uniformly
on [0, T ] by Proposition 5.2, we observe∫

Ω\D

1

q(x)
|∇u(x, t)|q(x)dx = ϕD(u(t))

= lim
n→∞

ϕn(un(t))

≥ lim sup
n→∞

∫
Ω\D

1

q(x)
|∇un(x, t)|q(x)dx.

Recall ∇un → ∇u weakly in (Lq(·)(Ω \D))N and note that

lim inf
n→∞

∫
Ω\D

1

q(x)
|∇un(x, t)|q(x)dx ≥

∫
Ω\D

1

q(x)
|∇u(x, t)|q(x)dx.

Hence as in the proof of Theorem 3.4, it follows that un(t) → u(t) strongly
in Xq(·)(Ω \ D) for every t ∈ [0, T ]. Since ϕn(un(t)) is uniformly bounded
over [0, T ] for all n ∈ N, by Lebesgue’s dominated convergence theorem, un

converges to u strongly in Lr(0, T ;Xq(·)(Ω \D)) for any r ∈ [1,∞).
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