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Abstract

Every solution u = u(x, t) of the Cauchy-Dirichlet problem for
the fast diffusion equation, ∂t(|u|m−2u) = ∆u in Ω × (0,∞) with a
smooth bounded domain Ω of RN and 2 < m < 2∗ := 2N/(N − 2)+,
vanishes in finite time at a power rate. This paper is concerned with
asymptotic profiles of sign-changing solutions and a stability analysis
of the profiles. Our method of proof relies on a detailed analysis of a
dynamical system on some surface in the usual energy space as well
as energy method and variational method.
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1 Introduction

Let Ω be a bounded domain of RN with smooth boundary ∂Ω. We are
concerned with the Cauchy-Dirichlet problem for fast diffusion equations of
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the form

∂t
(
|u|m−2u

)
= ∆u in Ω× (0,∞), (1.1)

u = 0 on ∂Ω× (0,∞), (1.2)

u(·, 0) = u0 in Ω, (1.3)

where ∂t = ∂/∂t and m > 2. By putting w = |u|m−2u, equation (1.1) can be
rewritten in a usual form of fast diffusion equation,

∂tw = ∆
(
|w|r−2w

)
in Ω× (0,∞) (1.4)

with the exponent r = m/(m − 1) ∈ (1, 2). Fast diffusion equations arise
in the studies of plasma physics, kinetic theory of gases, solid state physics
(see [4], [6] and also [36]), and moreover, there are a vast amount of contribu-
tions (see [25, 26, 28], [16], [15], [39], [44], [13], [35], [19], [20], [18], [17], [29]
and so on). Sabinina [37] studied the one-dimensional case and found that
classical solutions vanish at a finite time t∗, which is called extinction time,
depending on initial data, and moreover, the existence of finite extinction
time was extended to more general cases (see [3], [14], [24]). Berryman and
Holland [5] established the optimal extinction rate of solutions u = u(x, t)
vanishing at a finite time t∗ under m ≤ 2∗ := 2N/(N − 2)+, more precisely,
it holds that

c1(t∗ − t)1/(m−2) ≤ ‖u(t)‖H1
0 (Ω) ≤ c2(t∗ − t)1/(m−2) for all t ∈ [0, t∗]

with c1, c2 > 0, provided that u0 6≡ 0. Moreover, they revealed asymptotic
profiles φ(x) := limt↗t∗(t∗−t)−1/(m−2)u(x, t) of smooth positive solutions and
proved the stability of φ only for nonnegative solutions. Kwong [27] extended
the results of [5] to nonnegative weak solutions. Furthermore, Savaré and
Vespri proved the convergence in Lm(Ω) of (t∗−t)−1/(m−2)u(x, t) as t↗ t∗ for
sign-changing solutions in [38], where a generalized equation is treated. We
also refer the reader to [41] as a survey of this field. However, there seems no
contribution to the stability analysis of asymptotic profiles for sign-changing
solutions. This paper addresses such an extinction property as well as a
stability analysis of asymptotic profiles for sign-changing energy solutions to
the fast diffusion equation (1.1)–(1.3).

In Section 2, we summarize preliminary facts onH−1-solutions u = u(x, t)
for (1.1)–(1.3) as well as the extinction time t∗ = t∗(u0) of u. In Section 3,
we revisit asymptotic profiles of sign-changing H−1-solutions for (1.1)–(1.3)
which vanish at a finite time t∗ = t∗(u0). To this end, we use the following
change of variables,

v(x, s) = (t∗ − t)−1/(m−2)u(x, t) with s = log(t∗/(t∗ − t)), (1.5)
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and investigate the convergence of v(x, s) as s → ∞ along a subsequence.
Then (1.1)–(1.3) will be rewritten as

∂s
(
|v|m−2v

)
−∆v = λm|v|m−2v in Ω× (0,∞), (1.6)

v = 0 on ∂Ω× (0,∞), (1.7)

v(·, 0) = v0 in Ω (1.8)

with λm := (m− 1)/(m− 2) > 0 and the initial data

v0 = t∗(u0)
−1/(m−2)u0. (1.9)

Here it is noteworthy that the functional J : H1
0 (Ω) → R given below acts as

a Lyapunov functional for this system:

J(w) :=
1

2

∫
Ω

|∇w(x)|2dx− λm
m

∫
Ω

|w(x)|mdx for w ∈ H1
0 (Ω).

By using a standard energy method, one can prove that v(s) converges in
H1

0 (Ω) as s → ∞ along a subsequence to a stationary solution φ of (1.6)–
(1.8), which solves

−∆φ = λm|φ|m−2φ in Ω, (1.10)

φ = 0 on ∂Ω (1.11)

and plays as a critical point of J , and therefore φ is an asymptotic profile of
u = u(x, t) as t↗ t∗.

In Section 4, we investigate the dynamical system generated by (1.6)–(1.8)
on the peculiar phase space

X := {t∗(u0)−1/(m−2)u0; u0 ∈ H1
0 (Ω) \ {0}},

which is equivalently rewritten by X = {v0 ∈ H1
0 (Ω); t∗(v0) = 1} (see Propo-

sition 4.2) to obtain several important facts to be used in our stability anal-
ysis of asymptotic profiles. Moreover, we also provide some representation
of extinction time for solutions of separable form as an independent interest.
Furthermore, a by-product of our analysis also completely classifies H1

0 (Ω)
into the stable and unstable sets and their separatrix in terms of large-time
behaviors of solutions for the Cauchy-Dirichlet problem (1.6)–(1.8). Then
the set X acts as the separatrix and contacts the Nehari manifold associated
with the functional J only at the set of non-trivial solutions of (1.10), (1.11)
(see also Proposition 4.11 and Remark 4.12).

In Section 5, we perform a stability analysis of asymptotic profiles for
(1.1)–(1.3). We first give definitions for the (asymptotic) stability and insta-
bility of profiles, which coincide with those in Lyapunov’s sense of equilibria
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of the dynamical system generated by (1.6)–(1.8) in the phase space X . Our
analysis performed in Section 4 will be crucial here to investigate the restric-
tion by X on behaviors of solutions to (1.6)–(1.8). Due to these materials,
we prove that every least energy solution φ of (1.10), (1.11) is a stable (resp.,
asymptotically stable) profile, if φ is isolated in H1

0 (Ω) from all the other
least energy (resp., sign-definite) solutions. In particular, if (1.10), (1.11)
has a unique positive solution, it is an asymptotically stable profile (see §5.3
for known results on the uniqueness of positive solutions of (1.10), (1.11)).
Moreover, we also prove that every sign-changing solution φ of (1.10), (1.11)
is not an asymptotically stable profile. In addition, if φ is isolated in H1

0 (Ω)
from all the other nontrivial solutions of (1.10), (1.11) with lower energies
than J(φ), it is an unstable profile. Furthermore, we prove that sign-changing
least energy solutions of (1.10), (1.11) are always unstable profiles. In the
final subsection, we study the one dimensional case and give a representa-
tion of all stationary solutions of (1.6)–(1.8). By using it, we prove that any
solution v(s) of (1.6)–(1.8) with N = 1 converges to a stationary solution
as s → ∞, and furthermore, a positive or negative stationary solution is
asymptotically stable and all the other solutions are unstable.

Here we emphasize that (isolated) positive and negative solutions of
(1.10), (1.11) are asymptotically stable equilibria of the dynamical system
generated by (1.6)–(1.8) on the phase space X . In contrast, nontrivial so-
lutions (particularly, positive and negative solutions) of (1.10), (1.11) are
saddle points of J in H1

0 (Ω), and hence they could be unstable equilibria of
the dynamical system in the whole H1

0 (Ω). One can say that the geometry
of X peculiarly affects the stability and instability of equilibria.

As for porous medium equations, i.e., the case of 1 < m < 2, solutions
decay at the optimal rate, t1/(m−2), as t → ∞, and moreover, asymptotic
profiles of solutions have already been studied also for sign-changing data
(see [2], [40] and also [42] as a survey of this field). In this case, by applying
the change of variables, v(x, s) = (t+1)1/(m−2)u(x, t) and s = log(t+1), one
also treats (1.6)–(1.8); then, v0 coincides with u0.

Notation. We write (s)+ := max{s, 0} ≥ 0 for s ∈ R. Let H1
0 (Ω) be

the closure of C∞
0 (Ω) in the usual Sobolev space H1(Ω) = W 1,2(Ω). Let us

denote by ‖·‖m the usual norm of Lm-spaces, and moreover, ‖u‖1,2 := ‖∇u‖2
and ‖ · ‖−1,2 stand for the norms of H1

0 (Ω) and of its dual space H−1(Ω),
respectively. The value of a functional u ∈ H−1(Ω) at v ∈ H1

0 (Ω) is denoted
by 〈u, v〉H1

0
. We put F := (−∆)−1, where ∆ is the Laplace operator from

H1
0 (Ω) into H

−1(Ω), to be a duality mapping, i.e., 〈w,F (w)〉H1
0
= ‖w‖2−1,2 =

‖F (w)‖21,2 for w ∈ H−1(Ω).
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We set constants: λm := (m− 1)/(m− 2) > 0,

2∗ :=
2N

N − 2
if N ≥ 3 and 2∗ = ∞ if N = 1, 2,

where 2∗ is the so-called Sobolev critical exponent associated with the con-
tinuous embedding H1(Ω) ↪→ Lm(Ω) for m ∈ [1, 2∗]. Furthermore, define the
Rayleigh quotient,

R(w) :=
‖w‖1,2
‖w‖m

for w ∈ H1
0 (Ω) \ {0},

associated with the Sobolev-Poincaré inequality

‖w‖m ≤ Cm‖w‖1,2 for w ∈ H1
0 (Ω), (1.12)

provided that m ∈ [1, 2∗], with the best possible constant Cm which is the
supremum of R(w)−1 over w ∈ H1

0 (Ω) \ {0}.

2 Preliminary facts on H−1-solutions

In this paper we are concerned with H−1-solutions for (1.1)–(1.3) defined by

Definition 2.1 (H−1-solutions). A function u : Ω×(0,∞) → R is said to be
an H−1-solution (simply, solution) for (1.1)–(1.3) if the following conditions
are all satisfied :

• u ∈ L2(0, T ;H1
0 (Ω))∩Lm(0, T ;Lm(Ω)) and |u|m−2u ∈ W 1,2(0, T ;H−1(Ω))

for all T > 0.

• It follows that

〈
(
|u|m−2u

)′
(t), φ〉H1

0
+

∫
Ω

∇u(x, t) · ∇φ(x)dx = 0 (2.1)

for a.a. t ∈ (0,∞) and for all φ ∈ H1
0 (Ω),

where 〈·, ·〉H1
0
denotes the duality pairing between H1

0 (Ω) and its dual
space and ′ = d/dt.

• |u|m−2u(·, t) → |u0|m−2u0 strongly in H−1(Ω) as t→ +0.

The existence and uniqueness of H−1-solutions have already been proved
for any |u0|m−2u0 ∈ H−1(Ω) by using the theory of evolution equations due
to Brézis [7]. As pointed out in [3], every solution u = u(x, t) vanishes at a
finite time t∗ and remains to be zero for t ≥ t∗. Throughout this paper we
call t∗ the extinction time of u. From the uniqueness of a solution, one can
write t∗ = t∗(u0).

Furthermore, we can derive energy inequalities in a standard way.
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Proposition 2.2 (Energy inequalities). Let u be an H−1-solution for (1.1)–
(1.3) with u0 ∈ H1

0 (Ω)∩Lm(Ω). Then u belongs to C([0,∞);H1
0 (Ω)∩Lm(Ω))

such that u(0) = u0 and the following energy inequalities hold for a.a. t ∈
(0,∞):

1

m′
d

dt
‖u(t)‖mm + ‖u(t)‖21,2 = 0, (2.2)

µm

∥∥∥∥ ddt |u|(m−2)/2u(t)

∥∥∥∥2
2

+
1

2

d

dt
‖u(t)‖21,2 ≤ 0, (2.3)

with the constant µm := 4/(mm′) > 0 and m′ := m/(m− 1).

Identity (2.2) immediately follows from the multiplication of (1.1) and
u(t). To derive (2.3), we first establish a corresponding energy inequality by
testing suitable approximations of (1.1) on ∂tu, and then derive the conver-
gence of such approximations. Here, we also exploited the following elemen-
tary inequality:

µm

∣∣|a|(m−2)/2a− |b|(m−2)/2b
∣∣2 ≤ (a−b)

(
|a|m−2a− |b|m−2b

)
for all a, b ∈ R,

provided that m ∈ (1,∞).
As in [5] and [25] (see also [16], [38]), one can prove that

R(u(t)) is nonincreasing for t ≥ 0, (2.4)

as well as the following proposition.

Proposition 2.3 (Estimates from above and below). For m > 2, let u be
an H−1-solution of (1.1)–(1.3) with an initial data u0 ∈ H1

0 (Ω)∩Lm(Ω)\{0}.
Let t∗ be the extinction time of u. Then it follows that

‖u(t)‖m ≤
(
R(u0)

2

λm

)1/(m−2)

(t∗ − t)1/(m−2) for all t ∈ [0, t∗]. (2.5)

In addition, if m ≤ 2∗, then it holds that

‖u(t)‖m ≥
(
C−2

m

λm

)1/(m−2)

(t∗ − t)1/(m−2) for all t ∈ [0, t∗]. (2.6)

Moreover, we have(
C−m

m

λm

)1/(m−2)

(t∗ − t)1/(m−2) ≤ ‖u(t)‖1,2

≤
(
R(u0)

m

λm

)1/(m−2)

(t∗ − t)1/(m−2). (2.7)
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This fact has already been proved (see, e.g., [38], where pointwise es-
timates are also established for nonnegative solutions and their gradients);
however, for the reader’s convenience, we briefly give a proof.

Proof. Since R(u(t)) is nonincreasing, we use (2.2) to get

0 =
1

m′
d

dt
‖u(t)‖mm +R(u(t))2‖u(t)‖2m

≤ 1

m′y
′(t) +R(u0)

2y(t)2/m,

where we have put y(t) := ‖u(t)‖mm. Noting that y(t∗) = 0, we get (2.5).
By (2.2) and (1.12), we have

y′(t) +m′C−2
m y(t)2/m ≤ 0.

This shows (2.6). By the nonincrease of R(u(t)) and (1.12), we have

‖u(t)‖1,2 ≤ R(u0)‖u(t)‖m, ‖u(t)‖m ≤ Cm‖u(t)‖1,2.

Then (2.5) and (2.6) imply (2.7).

By putting t = 0 into (2.5) and (2.6), we can immediately obtain the
following corollary, which is also exhibited in [28].

Corollary 2.4 (Extinction rate and extinction time). Assume that 2 <
m ≤ 2∗. Let u be an H−1-solution of (1.1)–(1.3) with u0 ∈ H1

0 (Ω) \ {0}.
The optimal extinction rate of u is (t∗ − t)1/(m−2) as t ↗ t∗. Moreover, the
extinction time t∗ = t∗(u0) is estimated in terms of u0 as follows :

λm
‖u0‖mm
‖u0‖21,2

≤ t∗(u0) ≤ λmC
2
m‖u0‖m−2

m . (2.8)

We next show some scaling property of extinction times by using the fact
that equation (1.1) is invariant under the following transformation:

u 7→ uλ(x, t) := λ−1/(m−2)u(x, λt) for λ > 0.

Proposition 2.5 (Scaling property of t∗). For any µ > 0 and |u0|m−2u0 ∈
H−1(Ω), it follows that

t∗(µu0) = µm−2t∗(u0).

Let us discuss the continuous dependence of the extinction time t∗ on
initial data u0. To the best of our knowledge, the following result could be
new, and it will play a crucial role with the scaling property in our stability
analysis of asymptotic profiles.
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Proposition 2.6 (Continuity of t∗). Assume that 2 < m ≤ 2∗. Let u0, u0,n ∈
H1

0 (Ω) be such that (u0,n) is bounded in H1
0 (Ω) and u0,n → u0 strongly in

Lm(Ω). Then t∗(u0,n) converges to t∗(u0). In particular, if m < 2∗, then
t∗(·) is weakly sequentially continuous in H1

0 (Ω).

Proof. Set τn := t∗(u0,n). By (2.8), we have

λm
‖u0,n‖mm
‖u0,n‖21,2

≤ τn ≤ λmC
2
m‖u0,n‖m−2

m .

If u0 = 0, then the inequality above implies that τn converges to 0. Let
u0 6= 0. Since ‖u0,n‖1,2 is bounded by some constant C > 0 and u0,n → u0
strongly in Lm(Ω), up to a subsequence, τn converges to a limit τ > 0 such
that

τn → τ and 0 < λmC
−2‖u0‖mm ≤ τ ≤ λmC

2
m‖u0‖m−2

m . (2.9)

We are next concerned with the convergence of solutions un of (1.1)–(1.3)
with initial data u0,n. Let u be the solution of (1.1)–(1.3) with u0. Then
subtract (1.1) from that with u = un and multiply this by F (|un|m−2un(t)−
|u|m−2u(t)) (see §1 for the definition of F ) to get

1

2

d

dt

∥∥|un|m−2un(t)− |u|m−2u(t)
∥∥2
−1,2

≤ 0 for a.a. t > 0,

which leads us to

sup
t≥0

∥∥|un|m−2un(t)− |u|m−2u(t)
∥∥2
−1,2

≤ C2
m

∥∥|u0,n|m−2u0,n − |u0|m−2u0
∥∥2
m′ → 0. (2.10)

The convergence of the last term follows from the fact that u0,n → u0 strongly
in Lm(Ω). Furthermore, one can easily observe by (2.3) that

sup
t≥0

‖un(t)‖1,2 ≤ ‖u0,n‖1,2 ≤ C,

and moreover, by Tartar’s inequality,

ω‖un(t)− u(t)‖mm
≤

〈
|un|m−2un(t)− |u|m−2u(t), un(t)− u(t)

〉
H1

0
→ 0

with a constant ω > 0. Thus un → u strongly in C([0,∞);Lm(Ω)).
Recall (2.5) and (2.6) with u = un, u0 = u0,n and t∗ = τn. Then since

(u0,n) is bounded in H1
0 (Ω) and u0,n → u0 strongly in Lm(Ω), by passing to

the limit as n→ ∞, one can derive that

c1(τ − t)1/(m−2) ≤ ‖u(t)‖m ≤ c2(τ − t)1/(m−2) for all t ∈ [0, τ ]
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with some constants c1, c2 > 0. Thus we conclude that τ = t∗(u0).
In addition, if m < 2∗, then H1

0 (Ω) is compactly embedded in Lm(Ω), and
therefore, if u0,n → u0 weakly in H1

0 (Ω), then t∗(u0,n) → t∗(u0).

3 Asymptotic profiles

This section is devoted to investigating asymptotic profiles of H−1-solutions
u = u(x, t) of (1.1)–(1.3), which vanish in finite time t∗ at the rate (t∗ −
t)1/(m−2) (see Proposition 2.3). We are concerned with asymptotic profiles
defined as follows.

Definition 3.1 (Asymptotic profiles). Let u0 ∈ H1
0 (Ω) \ {0} and let u =

u(x, t) be an H−1-solution for (1.1)–(1.3) vanishing at a finite time t∗ > 0.
A function φ ∈ H1

0 (Ω)\{0} is called an asymptotic profile of u if there exists
an increasing sequence tn → t∗ such that

lim
tn↗t∗

‖(t∗ − tn)
−1/(m−2)u(tn)− φ‖1,2 = 0.

Asymptotic profiles for positive solutions of (1.1)–(1.3) are already stud-
ied in [5] and [27]. Moreover, those for sign-changing solutions are studied
in [38], where the convergence of (t∗−tn)−1/(m−2)u(·, tn) is proved in the strong
topology of Lm(Ω) as tn ↗ t∗. The same conclusion can be also proved for
sign-changing solutions in the strong topology of H1

0 (Ω) by simply combin-
ing the both arguments; however, we shall give a proof, because its argument
may provide important hints for our stability analysis of asymptotic profiles.

In order to pursue our analysis, we exploit the change of variables (1.5)
and derive the Cauchy-Dirichlet problem (1.6)–(1.8) from (1.1)–(1.3). The
notion of H−1-solution is defined also for (1.6)–(1.8) as in Definition 2.1. Let
2 < m ≤ 2∗. Then as in (1.1)–(1.3), the following energy inequalities hold
for a.a. s ∈ (0,∞):

1

m′
d

ds
‖v(s)‖mm + ‖v(s)‖21,2 = λm‖v(s)‖mm, (3.1)

µm

∥∥∥∥ dds |v|(m−2)/2v(s)

∥∥∥∥2
2

+
d

ds
J(v(s)) ≤ 0, (3.2)

where J(·) is a functional defined on H1
0 (Ω) by

J(w) :=
1

2
‖w‖21,2 −

λm
m

‖w‖mm for w ∈ H1
0 (Ω).
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It is well-defined because H1
0 (Ω) ⊂ Lm(Ω) by m ≤ 2∗. Moreover, multiplying

(1.6) by F (∂s(|v|m−2v)), we also derive∥∥∥∥ dds |v|m−2v(s)

∥∥∥∥2
−1,2

+
1

m′
d

ds
‖v(s)‖mm

= λm

〈
|v|m−2v(s),

d

ds
F
(
|v|m−2v(s)

)〉
H1

0

=
λm
2

d

ds

∥∥F (|v|m−2v(s)
)∥∥2

1,2
.

Thus it holds that ∥∥∥∥ dds |v|m−2v(s)

∥∥∥∥2
−1,2

+
d

ds
K(v(s)) = 0 (3.3)

with the functional K : Lm(Ω) → R given by

K(w) :=
1

m′‖w‖
m
m − λm

2

∥∥F (|w|m−2w
)∥∥2

1,2
for w ∈ Lm(Ω).

Since m ≤ 2∗, the space Lm/(m−1)(Ω) is embedded in H−1(Ω). Hence for
w ∈ Lm(Ω), |w|m−2w belongs to H−1(Ω) and F (|w|m−2w) is well-defined.
Moreover, if w is in a bounded subset of Lm(Ω), then F (|w|m−2w) is bounded
in H1

0 (Ω) and so is K(w). By (2.4) we obtain

R(v(s)) = R(u(t)) is nonincreasing for s ≥ 0. (3.4)

We also recall the Dirichlet problem (1.10), (1.11) as a stationary prob-
lem for (1.6)–(1.8). Equation (1.10) is called the Lane-Emden (or Emden-
Fowler) equation. Here we remark that (1.10), (1.11) can be regarded as
an Euler-Lagrange equation for the functional J(·). There are a number of
contributions to this elliptic problem, and particularly, it is well known (see,
e.g., [34]) that (1.10), (1.11) admits infinitely many nontrivial solutions and a
positive solution, provided that m < 2∗. Moreover, any solution has a C2(Ω)
regularity by the standard regularity theorem of elliptic equation.

Now, we are ready to state a theorem on asymptotic profiles of solutions
u = u(x, t) for (1.1)–(1.3) as t→ t∗, equivalently, the convergence of solutions
v = v(x, s) for (1.6)–(1.8) as s→ ∞ (cf. [5], [27], [38]).

Theorem 3.2 (Asymptotic profiles). Assume that 2 < m < 2∗. Let u be an
H−1-solution of (1.1)–(1.3) with u0 ∈ H1

0 (Ω) \ {0}. Then for any increasing
sequence tn → t∗, there exist a subsequence (n′) of (n) and a solution φ ∈
H1

0 (Ω) \ {0} of (1.10), (1.11) such that

lim
tn′→t∗

‖(t∗ − tn′)−1/(m−2)u(tn′)− φ‖1,2 = 0. (3.5)
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Proof. Let tn ↗ t∗ and put sn := log(t∗/(t∗ − tn)) ↗ ∞. By (2.5) and (2.6),
it follows that

0 < c1 ≤ ‖v(s)‖m ≤ c2 for all s ≥ 0

with some constants c1, c2 > 0. Therefore once one proves (3.5), φ is non-
trivial. Since s 7→ J(v(s)) is nonincreasing by (3.2), we obtain

sup
s∈[0,∞)

‖v(s)‖1,2 <∞. (3.6)

As stated before (3.4), K(v(s)) is bounded. Then (3.3) leads us to∫ ∞

0

∥∥∥∥ dds |v|m−2v(s)

∥∥∥∥2
−1,2

ds <∞.

Let T be a measurable subset of (0,∞) such that (0,∞) \ T has Lebesgue
measure zero and (1.6), (3.1)–(3.3) hold for all s ∈ T . For each n ∈ N we
can take θn ∈ [sn, sn + 1] ∩ T such that

d

ds
|v|m−2v(θn) → 0 strongly in H−1(Ω).

Hence by (1.6), it follows that

−∆v(θn)− λm|v|m−2v(θn) → 0 strongly in H−1(Ω).

By (3.6), we can take a subsequence denoted by θn → ∞ and φ ∈ H1
0 (Ω)

such that

v(θn) → φ weakly in H1
0 (Ω) and strongly in Lm(Ω),

since H1
0 (Ω) is compactly embedded in Lm(Ω) by assumption. Moreover,

|v|m−2v(θn) → |φ|m−2φ strongly in Lm′
(Ω).

Therefore φ solves (1.10), (1.11).
To derive the strong convergence of v(θn) in H

1
0 (Ω), we remark by (1.6)

that

‖v(s)‖21,2 = λm‖v(s)‖mm −
〈
d

ds
|v|m−2v(s), v(s)

〉
H1

0

for s ∈ T .

Put s = θn ∈ T to get

‖v(θn)‖21,2 → λm‖φ‖mm = ‖φ‖21,2.
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Hence since H1
0 (Ω) is uniformly convex, v(θn) → φ strongly in H1

0 (Ω).
In particular, we observe that J(v(θn)) → J(φ). Since J(v(·)) is nonin-

creasing, J(v(sn)) also converges to J(φ).
We finally prove the strong convergence of v(sn) in H1

0 (Ω). Since sn ≤
θn ≤ sn + 1, we deduce that∥∥|v|m−2v(sn)− |v|m−2v(θn)

∥∥
−1,2

≤

(∫ θn

sn

∥∥∥∥ dds |v|m−2v(s)

∥∥∥∥2
−1,2

ds

)1/2√
θn − sn

≤

(∫ ∞

sn

∥∥∥∥ dds |v|m−2v(s)

∥∥∥∥2
−1,2

ds

)1/2

→ 0.

Therefore by Tartar’s inequality, we find that

ω‖v(sn)− v(θn)‖mm ≤
〈
|v|m−2v(θn)− |v|m−2v(sn), v(θn)− v(sn)

〉
H1

0
→ 0,

which implies that v(sn) → φ strongly in Lm(Ω), and weakly in H1
0 (Ω) by

(3.6). Hence it holds that

1

2
‖v(sn)‖21,2 = J(v(sn)) +

λm
m

‖v(sn)‖mm

→ J(φ) +
λm
m

‖φ‖mm =
1

2
‖φ‖21,2.

Thus v(sn) converges to φ strongly in H1
0 (Ω). The proof is complete.

Remark 3.3. (i) Let φ be a nontrivial solution for (1.10), (1.11). Then

u(x, t) := (1− t)1/(m−2)
+ φ(x) solves (1.1)–(1.3) with u0 = φ and vanishes

at t = 1 (hence t∗(φ) = 1). Moreover, φ(x) is the asymptotic profile of
u(x, t). On the other hand, by virtue of Theorem 3.2, every asymptotic
profile solves (1.10), (1.11). Hence the set of all asymptotic profiles
coincides with that of all nontrivial solutions for (1.10), (1.11).

(ii) This theorem does not say anything on the uniqueness of asymptotic
profiles for each solution. However, in the one-dimensional case, since
every nontrivial solution for (1.10), (1.11) is distinct from each other,
every solution has a unique profile (see §5.4 for more details).

4 Dynamical systems generated by (1.6)–(1.8)

In this section, we study a dynamical system generated by (1.6)–(1.8) in the
phase space X given by

X := {t∗(w)−1/(m−2)w; w ∈ H1
0 (Ω) \ {0}}.
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As we saw in §3, every asymptotic profile of solutions for (1.1)–(1.3) is charac-
terized as a stationary point of the dynamical system. Moreover, in the next
section, we shall introduce the notion of stability/instability for asymptotic
profiles, which is equivalently rewritten by that for stationary points of the
dynamical system on X (see Remark 5.2). Hence it is crucial to investigate
the dynamical system, in particular, the geometry of the phase space X .

On the other hand, we also provide some representation formula of t∗ and
classify asymptotic behaviors of solutions for (1.6)–(1.8) in terms of initial
data as an independent interest.

Throughout this section, we assume that

2 < m ≤ 2∗.

Let us start with the well-definedness of the dynamical system on X .

Proposition 4.1 (Dynamical system on X ). The solution operator T (s) :
v0 7→ v(s) associated with (1.6)–(1.8) generates a dynamical system on the
set X .

Proof. Let v0 ∈ X , i.e., v0 = t∗(u0)
−1/(m−2)u0 with some u0 ∈ H1

0 (Ω) \ {0}.
From the definition of extinction time, it is obvious that t∗(u(t)) = t∗(u0)− t,
where u is the unique H−1-solution of (1.1)–(1.3) vanishing at t∗(u0). Hence
we observe that

v(s) = (t∗(u0)− t)−1/(m−2)u(t) = t∗(u(t))
−1/(m−2)u(t).

Thus v(s) lies on X for all s ≥ 0.

One can easily observe that

Proposition 4.2 (Representation of X ). It follows that

X = {w ∈ H1
0 (Ω); t∗(w) = 1}.

Proof. If v ∈ X , then there exists w ∈ H1
0 (Ω)\{0} such that v = t∗(w)

−1/(m−2)w.
By Proposition 2.5, we have t∗(v) = 1. Conversely, if v ∈ H1

0 (Ω) and
t∗(v) = 1, then we can write v = t∗(v)

−1/(m−2)v ∈ X .

Then by Proposition 2.6, one can immediately verify the following propo-
sition.

Proposition 4.3 (Weak sequential closedness of X ). Suppose that m < 2∗.
The set X is sequentially closed in the weak topology of H1

0 (Ω), i.e., if wn ∈ X
and wn → w weakly in H1

0 (Ω), then w ∈ X .
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Throughout this paper, we employ the following notation,

j(w) := λm‖w‖mm − ‖w‖21,2 for w ∈ H1
0 (Ω),

S := {φ ∈ H1
0 (Ω); φ is a nontrivial solution of (1.10), (1.11)},

N := {w ∈ H1
0 (Ω) \ {0}; j(w) = 0},

d := inf
w∈N

J(w), (4.1)

V :=
{
w ∈ H1

0 (Ω); J(w) < d and j(w) ≤ 0
}
,

J + :=
{
w ∈ H1

0 (Ω); j(w) > 0
}
.

The setN is called Nehari manifold andN = {w ∈ H1
0 (Ω)\{0}; 〈J ′(w), w〉 =

0}, where J ′ denotes the Fréchet derivative of J . For any w ∈ N , by (1.12)
we have

‖w‖21,2 = λm‖w‖mm ≤ λmC
m
m‖w‖m1,2,

which shows

J(w) =
m− 2

2m
‖w‖21,2 ≥

m− 2

2m
(λmC

m
m)−2/(m−2) for any w ∈ N .

Thus

d =
m− 2

2m
(λmC

m
m)−2/(m−2) . (4.2)

This value is attained by a certain solution of (1.10), (1.11) provided that
m < 2∗ (see, e.g., [43]).

Here let us recall some preliminary facts on the Dirichlet problem (1.10),
(1.11) to be used later. We call φ a least energy solution if it minimizes J(φ)
over the set of all nontrivial solutions of (1.10), (1.11). Least energy solutions
exist whenever m < 2∗.

Lemma 4.4. Then the following (i)–(iii) are equivalent :

(i) φ is a least energy solution of (1.10), (1.11),

(ii) φ is a minimizer of J over N ,

(iii) φ is a minimizer of the Rayleigh quotient R over N .

Moreover, least energy solutions are sign-definite.

Proof. By the definition of N , we have the relation,

‖w‖21,2 =
2m

m− 2
J(w) = λ−2/(m−2)

m R(w)2m/(m−2) for w ∈ N .

Since S ⊂ N , we have the equivalence among (i)–(iii).
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If φ is a least energy solution, so is |φ|. Hence |φ| is a critical point of J ,
i.e., it is a weak solution of (1.10), (1.11). Then it belongs to C2(Ω) by the
elliptic regularity theorem. By the strong maximum principle, |φ(x)| > 0 in
Ω. Thus φ is a positive or negative solution.

Remark 4.5. Coffman [10], Li [30] and Byeon [8] studied the case that Ω is
the annulus domain ΩR, R < |x| < R + 1, and proved that a positive radial
solution φrad of (1.10), (1.11) with Ω = ΩR is not a least energy solution
if R > 0 is large enough. Indeed, they obtained many non-radial positive
solutions ψ1, . . . , ψk, which are not rotationally equivalent, satisfying

J(ψ1) < J(ψ2) < · · · < J(ψk) < J(φrad),

provided that R > 0 is large enough, where φrad is a unique positive radial
solution (the uniqueness of positive radial solutions in the annulus domain
was proved by Ni [32]). Therefore least energy solutions are not radially
symmetric.

Let φ be a least energy solution of (1.10), (1.11) and O(N) the orthogonal
group. Then the set {φ(gx); g ∈ O(N)} is not a single point but a continuum
in H1

0 (Ω). Since φ(gx) also minimizes J over N , least energy solutions are
not unique and φ is not isolated from all the other least energy solutions. We
shall also state known results on the uniqueness of the least energy solution
in Remark 5.11.

We next investigate the dynamical system generated by (1.6)–(1.8) in a
usual energy space, that is, H1

0 (Ω).

Lemma 4.6 (Large-time behavior of v). Let v be an H−1-solution of (1.6)–
(1.8) with an initial data v0 ∈ H1

0 (Ω).

(i) If v0 ∈ V, then v vanishes in finite time.

(ii) If v0 ∈ J +, then v is unbounded in Lm(Ω) as s→ ∞.

Proof. From the definition of d, one can say N ∩ V = ∅, and hence,

V =
{
φ ∈ H1

0 (Ω); J(φ) < d and j(φ) < 0
}
∪ {0}.

If v0 = 0, the assertion (i) is obvious. If v0 ∈ V \ {0}, then v(s) ∈ V for all
s ≥ 0. Indeed, since J(v(s)) is nonincreasing, J(v(s)) < d for all s ≥ 0, and
therefore v(s) 6∈ N . Hence j(v(s)) < 0.

We have

1

2
‖v(s)‖21,2 = J(v(s)) +

1

m

[
j(v(s)) + ‖v(s)‖21,2

]
< J(v0) +

1

m
‖v(s)‖21,2,
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which implies

‖v(s)‖1,2 ≤
(

2m

m− 2
J(v0)

)1/2

.

Hence we derive from (3.1) with (1.12) that

1

m′
d

ds
‖v(s)‖mm + ‖v(s)‖21,2 ≤ λmC

m
m

(
2m

m− 2
J(v0)

)(m−2)/2

‖v(s)‖21,2.

Since J(v0) < d, we find by (4.2) that

δ := 1− λmC
m
m

(
2m

m− 2
J(v0)

)(m−2)/2

> 0.

Hence it follows that

d

ds
‖v(s)‖mm +m′δC−2

m ‖v(s)‖2m ≤ 0 for a.a. s > 0,

which implies that ‖v(s)‖m vanishes in finite time.
As to (ii), since R(v(s)) ≤ R(v0) by (3.4), we derive from (3.1) that

1

m′
d

ds
‖v(s)‖mm +R(v0)

2‖v(s)‖2m ≥ λm‖v(s)‖mm.

Now the following ODE of Bernoulli-type,

y′ −m′λmy = −m′R(v0)
2y2/m for s ≥ 0 and y(0) = ‖v0‖mm,

is explicitly solved by

y(s) =

{(
‖v0‖m−2

m − R(v0)
2

λm

)
es +

R(v0)
2

λm

}m/(m−2)

.

Here we note by the fact that j(v0) > 0 that

‖v0‖m−2
m − R(v0)

2

λm
=

j(v0)

λm‖v0‖2m
> 0.

By the comparison principle, y(s)1/m ≤ ‖v(s)‖m for all s ≥ 0.

From these observations, we can characterize the phase space X in the
following proposition, which will play a crucial role in our stability analysis
to be performed in §5.
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Proposition 4.7 (Variational property of X ). It holds that

X ⊂ [d ≤ J ] := {w ∈ H1
0 (Ω); d ≤ J(w)}.

Moreover, if w ∈ X and J(w) = d, then J ′(w) = 0.

Proof. For each v0 ∈ X , i.e., v0 = t∗(u0)
−1/(m−2)u0 with some u0 ∈ H1

0 (Ω),
the function v(s) := (t∗ − t)−1/(m−2)u(t) uniquely solves (1.6)–(1.8), where u
is a solution of (1.1)–(1.3) with u(0) = u0, and moreover, v(s) is uniformly
away from zero and bounded for all s ≥ 0 by (2.5) and (2.6). Hence by
Lemma 4.6, we deduce that v0 6∈ V ∪ J +. Thus X ⊂ [d ≤ J ].

Suppose that v0 ∈ X and J(v0) = d but J ′(v0) 6= 0. Let v(s) be the
unique solution of (1.6)–(1.8) with the initial data v0. Since J ′(v0) 6= 0,
v(s) is not a stationary solution. Hence (d/ds)J(v(s)) < 0 by (3.2), and
J(v(s)) < J(v0) = d for s > 0. Moreover, by Proposition 4.1, v(s) ∈ X .
These facts contradict X ⊂ [d ≤ J ]. It completes our proof.

Remark 4.8. (i) Only in the case of the subcritical, m < 2∗, one can
obtain the conclusion of Proposition 4.7 in an easier way. Indeed, by
Theorem 3.2, for any v0 ∈ X , we can take a sequence sn → ∞ such
that v(sn) converges to φ ∈ S strongly in H1

0 (Ω). Since φ solves (1.10),
(1.11), it holds that d ≤ J(φ). Since J(v(·)) is nonincreasing, we can
conclude that d ≤ J(v0). Thus v0 ∈ [d ≤ J ].

(ii) Lemma 4.6 also provides further information that j(w) ≤ 0 for all
w ∈ X . Hence by (3.1), ‖v(·)‖m is nonincreasing for the solution v of
(1.6)–(1.9) with any v0 ∈ X . Moreover, since J(v(·)) is nonincreasing,
so is ‖v(·)‖1,2.

The rest of this section is devoted to some results of independent interest.
The following lemma provides a representation of t∗.

Lemma 4.9. For u0 ∈ H1
0 (Ω) \ {0}, let u be an H−1-solution of (1.1)–(1.3),

and let t∗ = t∗(u0) be the extinction time for u. Then it holds that

1

t∗
=

1

λm‖u0‖m−2
m

∫ ∞

0

R(v(s))2e−sds, (4.3)

where v(s) := (t∗ − t)−1/(m−2)u(t) with s = log(t∗/(t∗ − t)) ≥ 0 for t ∈ [0, t∗).

Proof. By (2.2), we have

1

m′
d

dt
‖u(t)‖mm +R(u(t))2‖u(t)‖2m = 0 for a.a. t ∈ (0, t∗).
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Then it follows that

‖u(t)‖m =

(
‖u0‖m−2

m − 1

λm

∫ t

0

R(u(τ))2dτ

)1/(m−2)

+

for all t ≥ 0.

Putting t = t∗ and using the fact that R(u(t)) = R(v(s)), we can deduce

λm‖u0‖m−2
m = t∗

∫ ∞

0

R(v(s))2e−sds,

which implies (4.3).

In the next proposition, solutions u = u(x, t) of separable type (equiva-
lently, solutions for initial data u0 ∈ R(S), i.e., u0 = rψ with some r ∈ R
and ψ ∈ S) are characterized by an explicit formula of the extinction time.

Proposition 4.10 (Extinction time for solutions of separable type). Let
u0 ∈ H1

0 (Ω) \ {0} be fixed. Then u0 ∈ R(S) if and only if

t∗(u0) = λm
‖u0‖mm
‖u0‖21,2

. (4.4)

Proof. The “only if part” follows from Proposition 2.5 and the fact that
t∗(φ) = 1 and λm‖φ‖mm = ‖φ‖21,2 for φ ∈ S. As for the “if part”, by (4.3) and
assumption, we obtain∫ ∞

0

R(v(s))2e−sds =
λm‖u0‖m−2

m

t∗(u0)
= R(u0)

2 =

∫ ∞

0

R(u0)
2e−sds.

Since R(v(0)) = R(u0), we observe by (3.4) that

R(u(t)) = R(v(s)) = R(u0) for all s ≥ 0,

which yields
d

dt
R(u(t))2 = 0 for all t ∈ [0, t∗).

We note by (2.2) and (2.3) that

0 =
d

dt
R(u(t))2 =

‖u(t)‖mm d
dt
‖u(t)‖21,2 − 2

m
‖u(t)‖21,2 d

dt
‖u(t)‖mm

‖u(t)‖m+2
m

≤ −2µm

‖u(t)‖mm
∥∥∂t (|u|(m−2)/2u

)
(t)
∥∥2
2
−
(
1
2

d
dt
‖u(t)‖mm

)2
‖u(t)‖m+2

m

.
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Since (d/dt)‖u(t)‖mm ≤ 0 by (2.2), the inequality above implies

‖u(t)‖m/2
m

∥∥∂t (|u|(m−2)/2u
)
(t)
∥∥
2
≤ −1

2

d

dt
‖u(t)‖mm.

Here it also follows that

‖u(t)‖mm =
∥∥|u|(m−2)/2u(t)

∥∥2
2
,

and (
∂t
(
|u|(m−2)/2u

)
(t), |u|(m−2)/2u(t)

)
L2

=
1

2

d

dt
‖u(t)‖mm ≤ 0.

Therefore we obtain

−
(
∂t
(
|u|(m−2)/2u

)
(t), |u|(m−2)/2u(t)

)
L2

=
∥∥∂t (|u|(m−2)/2u

)
(t)
∥∥
2

∥∥|u|(m−2)/2u(t)
∥∥
2
.

Since ‖u(t)‖m > 0 for all t ∈ [0, t∗), we can deduce that

∂t
(
|u|(m−2)/2u

)
(x, t) = λ(t)|u|(m−2)/2u(x, t) for a.a. x ∈ Ω and t ∈ [0, t∗)

with λ(t) := −‖∂t(|u|(m−2)/2u)(t)‖2/‖u(t)‖m/2
m . Thus

|u|(m−2)/2u(x, t) = |u0|(m−2)/2u0(x) exp

(∫ t

0

λ(τ)dτ

)
for a.a. x ∈ Ω and t ∈ [0, t∗). Therefore |u|(m−2)/2u is a function of separable
form, and therefore, so is u, i.e., u0 ∈ R(S).

We finally show that X is a separatrix between the stable set and the
unstable set for (1.6)–(1.8), that is, two regions of initial data for which v(s)
vanishes in finite time and grows up at infinity, respectively.

Proposition 4.11 (Stable set and unstable set). Assume that 2 < m < 2∗.
The following (i)–(iii) are satisfied.

(i) The sets X and N are unbounded surfaces surrounding the origin and
homeomorphic to the unit sphere of H1

0 (Ω). The space H1
0 (Ω) is sepa-

rated by the surface X into the inside X− := {w ∈ H1
0 (Ω); t∗(w) < 1}

and the outside X+ := {w ∈ H1
0 (Ω); t∗(w) > 1}. Furthermore,

N ⊂ X ∪ X+ and N ∩ X = S.

(ii) The set X coincides with the set of initial data v0 for which the solution
v(s) of (1.6)–(1.8) is bounded and uniformly away from the origin in
terms of the Lm-norm for all s ≥ 0. The same assertion also holds in
terms of the H1

0 -norm.
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(iii) Each solution v(s) of (1.6)–(1.8) vanishes in finite time if and only if
v0 ∈ X−, and v(s) grows up at infinity if and only if v0 ∈ X+.

Proof. In order to show (i), we set

x(w) := t∗(w)
−1/(m−2)w, n(w) :=

( ‖w‖21,2
λm‖w‖mm

)1/(m−2)

w

for w ∈ H1
0 (Ω) \ {0}. Moreover, define the ray from the origin through a

point w ∈ H1
0 (Ω) \ {0} by R+(w) := {λw; λ ≥ 0}. Then by Proposition 4.2

and the definition of N , it follows that

X ∩ R+(w) = {x(w)}, N ∩ R+(w) = {n(w)}. (4.5)

Hence H1
0 (Ω) is separated by X into two disjoint open sets X−, X+ given as

in the statement of (i). Moreover, one can show that the mappings x and n
are homeomorphic from the unit sphere S to X and N , respectively (further
details of proofs are left to the reader).

Combining the first inequality of (2.8) with (4.5), we deduce that N ⊂
X ∪X+. Let us show that N ∩X = S. Since t∗(φ) = 1 for φ ∈ S by Remark
3.3, it holds that S ⊂ N ∩X . It remains to show the converse inclusion. For
any w ∈ N ∩X (hence t∗(w) = 1 and j(w) = 0), thanks to Proposition 4.10,
one can write w = cφ with some c ∈ R and φ ∈ S, which together with the
fact that t∗(w) = 1 implies c = ±1, i.e., w ∈ S. Hence N ∩ X = S. Since S
is unbounded in H1

0 (Ω) (see [34]), so are X and N . Thus (i) is proved.
As to (ii) and (iii), let v0 ∈ H1

0 (Ω) \ {0} and let u(x, t) and v(x, s) be the
solutions of (1.1)–(1.3) and (1.6)–(1.8), respectively, with the common initial
data v0. Then the relation (1.5) holds with t∗ = 1. In case v0 ∈ X− (i.e.,
t∗(v0) < 1), put s∗ = log(1/(1− t∗(v0))) <∞. We have

‖v(s∗)‖m = (1− t∗(v0))
−1/(m−2)‖u(t∗(v0))‖m = 0,

since u(x, t) vanishes at t = t∗(v0). In case v0 ∈ X+ (i.e., t∗(v0) > 1), since
‖u(1)‖m is positive, we deduce that

‖v(s)‖m = (1− t)−1/(m−2)‖u(t)‖m → ∞ as s→ ∞ (equivalently, t↗ 1).

In case v0 ∈ X (i.e., t∗(v0) = 1), Proposition 2.3 guarantees that ‖v(s)‖m and
‖v(s)‖1,2 are bounded and uniformly away from zero for all s ≥ 0. Combining
all the facts above, we obtain (ii) and (iii).

Remark 4.12. It is noteworthy that the separatrix X of the stable set and
the unstable set of initial data for (1.6)–(1.8) is different from the so-called
Nehari manifold N associated with the functional J , and X is inside N .
Moreover, their intersection coincides with S, the set of nontrivial stationary
solutions.
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5 Stability analysis of profiles

In this section, we perform a stability analysis of asymptotic profiles of solu-
tions for (1.1)–(1.3). Throughout this section, we assume that

2 < m < 2∗.

We start with explicitly giving a definition of the (asymptotic) stability and
instability of profiles.

Definition 5.1 (Stability and instability of profiles). Let φ ∈ H1
0 (Ω) \ {0}

be an asymptotic profile of a nontrivial solution for (1.1)–(1.3), equivalently,
φ is a nontrivial solution of (1.10), (1.11).

(i) φ is said to be stable, if for any ε > 0 there exists δ > 0 such that any
solution u of (1.1)–(1.3) and its extinction time t∗ satisfy

sup
t∈[0,t∗)

‖(t∗ − t)−1/(m−2)u(t)− φ‖1,2 < ε,

whenever ‖u(0)− φ‖1,2 < δ.

(ii) φ is said to be unstable, if φ is not stable.

(iii) φ is said to be asymptotically stable, if φ is stable, and moreover, there
exists δ0 > 0 such that any solution u of (1.1)–(1.3) and its extinction
time t∗ satisfy

lim
t↗t∗

‖(t∗ − t)−1/(m−2)u(t)− φ‖1,2 = 0,

whenever ‖u(0)− φ‖1,2 < δ0.

Remark 5.2. Recall (1.5) and (1.9). Then we can translate the notion of
stability/instability of asymptotic profiles for solutions of (1.1)–(1.3) into
that of stationary points of the dynamical systems generated by (1.6)–(1.8)
on X . Indeed, since t∗(φ) = 1 for all φ ∈ S and t∗(·) is continuous in H1

0 (Ω)
by Proposition 2.6, one can equivalently replace ‖u(0)− φ‖1,2 in (i) and (iii)
of Definition 5.1 by ‖v(0) − φ‖1,2 with v(0) = t∗(u(0))

−1/(m−2)u(0) ∈ X .
Hence (i) and (iii) stated above can be rewritten by the following (i)′ and
(iii)′, respectively:

(i)′ φ is said to be stable, if for any ε > 0 there exists δ > 0 such that any
solution v of (1.6)–(1.8) satisfies

sup
s∈[0,∞)

‖v(s)− φ‖1,2 < ε,

whenever v(0) ∈ X and ‖v(0)− φ‖1,2 < δ.
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(iii)′ φ is said to be asymptotically stable, if φ is stable, and moreover, there
exists δ0 > 0 such that any solution v of (1.6)–(1.8) satisfies

lim
s↗∞

‖v(s)− φ‖1,2 = 0,

whenever v(0) ∈ X and ‖v(0)− φ‖1,2 < δ0.

The next lemma is elementary but important for later arguments.

Lemma 5.3. Let φn and φ be solutions of (1.10), (1.11) such that φn converges
to φ in H1

0 (Ω). If φ > 0 in Ω, then φn(x) > 0 in Ω for n large enough.
In particular, sign-definite solutions of (1.10), (1.11) are isolated in H1

0 (Ω)
from all sign-changing solutions of (1.10), (1.11).

Proof. Since φn converges to φ in H1
0 (Ω), it converges in C

2(Ω) also by the
elliptic regularity theorem. From the Hopf maximum principle, it follows
that ∂φ/∂ν < 0 on ∂Ω, where ∂φ/∂ν denotes the outward normal derivative.
Then the C2(Ω)-convergence assures that φn > 0 for n large enough.

In the rest of this section, we shall use the following notation:

[J ≤ a] := {w ∈ H1
0 (Ω); J(w) ≤ a},

B(φ; r) := {w ∈ H1
0 (Ω); ‖w − φ‖1,2 < r}

for a ∈ R, r > 0 and φ ∈ H1
0 (Ω). Moreover, [J < a] can be defined in a

similar way.

5.1 Stable profiles

In this subsection, we show that isolated least energy solutions of (1.10),
(1.11) are (asymptotically) stable profiles of solutions for (1.1)–(1.3). Exam-
ples of isolated least energy solutions will be given in Remark 5.11. Recall
that every least energy solution of (1.10), (1.11) is sign-definite by Lemma
4.4.

Theorem 5.4 (Stable profiles). Let φ be a least energy solution of (1.10),
(1.11).

(i) If φ is isolated in H1
0 (Ω) from all the other least energy solutions of

(1.10), (1.11), then it is a stable profile.

(ii) If φ is isolated in H1
0 (Ω) from all the other sign-definite solutions of

(1.10), (1.11), then it is an asymptotically stable profile.
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Proof. Let φ satisfy the assumption of (i). We choose an r > 0 so small that
there is no least energy solution in B(φ; r) except for φ. We claim that for
any ε ∈ (0, r),

c := inf{J(w); w ∈ X , ‖w − φ‖1,2 = ε} > d. (5.1)

By Proposition 4.7, we have already known that c ≥ d. Hence suppose on
the contrary that there is a sequence wn ∈ X such that ‖wn − φ‖1,2 = ε and
J(wn) converges to d. Then up to a subsequence, wn converges to a limit w∞
weakly in H1

0 (Ω) and strongly in Lm(Ω) by m < 2∗. The limit w∞ belongs to
X because of the sequential closedness of X in the weak topology of H1

0 (Ω)
(see Proposition 4.3), and so J(w∞) ≥ d by Proposition 4.7. Therefore we
obtain

1

2
‖wn‖21,2 = J(wn) +

λm
m

‖wn‖mm

→ d+
λm
m

‖w∞‖mm ≤ J(w∞) +
λm
m

‖w∞‖mm =
1

2
‖w∞‖21,2,

which leads us to
lim sup
n→∞

‖wn‖1,2 ≤ ‖w∞‖1,2.

This result together with the lower semicontinuity of ‖ · ‖1,2 implies that
‖wn‖1,2 → ‖w∞‖1,2. From the uniform convexity of H1

0 (Ω), we derive wn →
w∞ strongly in H1

0 (Ω). Then J(w∞) = d, w∞ ∈ X and ‖w∞ − φ‖1,2 = ε.
Hence Proposition 4.7 asserts that J ′(w∞) = 0, i.e., w∞ is a least energy
solution. However, this contradicts the choice of r. Thus we have (5.1).

Let ε > 0 and choose δ ∈ (0, ε) so small that J(w) < c for all w ∈ B(φ; δ).
Let v0 ∈ X ∩ B(φ; δ) (hence, J(v0) < c). By Proposition 4.1, the solution
v(s) of (1.6)–(1.8) lies on X for all s ≥ 0. We claim that v(s) remains in
B(φ; ε) for all s ≥ 0. Indeed, if v(s0) ∈ ∂B(φ; ε) at some s0 > 0, then we have
c ≤ J(v(s0)) ≤ J(v0), which contradicts the fact that J(v0) < c. Therefore
v(s) ∈ B(φ; ε) for all s ≥ 0. By Remark 5.2, this proves the stability of φ.

We next show (ii). Let φ be a least energy solution which is isolated in
H1

0 (Ω) from all the other sign-definite solutions of (1.10), (1.11). By Lemma
5.3, φ is also isolated in H1

0 (Ω) from all the other solutions, and hence, one
can choose an r > 0 so small that there is no solution of (1.10), (1.11) on
B(φ; r) except for φ. By (i), the solution v(s) remains in B(φ; ε) forever,
where we choose ε less than r. Then the ω-limit set of v(s) consists of a
single point φ only. Thus by Theorem 3.2, v(s) converges to φ, and therefore
φ is asymptotically stable.
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5.2 Unstable profiles

We next discuss the instability of profiles for solutions of (1.1)–(1.3). It is
well known that (1.10), (1.11) has an unbounded sequence of solutions in
H1

0 (Ω), which is proved by Ambrosetti and Rabinowitz [1] (see [34] also),
and moreover, the set of all sign-definite solutions has an a priori bound in
L∞(Ω), hence in H1

0 (Ω) also by Gidas and Spruck [22]. Therefore (1.10),
(1.11) has an unbounded sequence of sign-changing solutions.

Theorem 5.5 (Unstable profiles). Let ψ be a sign-changing profile of a so-
lution of (1.1)–(1.3). Then ψ is not asymptotically stable. Moreover, if ψ is
isolated in H1

0 (Ω) from all w ∈ S satisfying J(w) < J(ψ), i.e., there exists
R > 0 such that

B(ψ;R) ∩ S ∩ [J < J(ψ)] = ∅, (5.2)

then ψ is unstable.

Proof. Let ψ be any sign-changing profile, i.e., it is a sign-changing solution of
(1.10), (1.11). Then ψ has a C2(Ω)-regularity, and each connected component
of {x ∈ Ω; ψ(x) 6= 0} is called a nodal domain. By assumption, ψ has at
least two nodal domains. Let D be one of them. Then D and Ω \ D are
nonempty open sets. Define the functional JD by

JD(w) :=

∫
D

(
1

2
|∇w(x)|2 − λm

m
|w(x)|m

)
dx.

Since ψ satisfies (1.10) in D and vanishes on ∂D, it holds that∫
D

|∇ψ(x)|2dx = λm

∫
D

|ψ(x)|mdx.

Then we have the relation,

JD(tψ) =

(
t2

2
− tm

m

)∫
D

|∇ψ(x)|2dx for t ≥ 0,

which attains its maximum only at t = 1 over t ∈ [0,∞). The same assertion
holds for JΩ\D(tψ) also. We define

ψµ(x) :=

{
µψ(x) if x ∈ D,
ψ(x) if x ∈ Ω \D

for µ ≥ 0. Clearly, ψµ belongs to H1
0 (Ω) because ψ vanishes on ∂D ∪ ∂Ω.

Then we see easily that

J(cψµ) = JD(cµψ) + JΩ\D(cψ) < JD(ψ) + JΩ\D(ψ) = J(ψ) (5.3)
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if µ ≥ 0, µ 6= 1 and c ≥ 0.
We are now in a position to show that ψ is not asymptotically stable.

It is obvious that ψµ converges to ψ in H1
0 (Ω) as µ → 1. Put u0,µ := ψµ,

τµ := t∗(u0,µ) and v0,µ := τ
−1/(m−2)
µ u0,µ ∈ X . By Proposition 2.6, we have

τµ → t∗(ψ) = 1, and therefore

v0,µ → ψ strongly in H1
0 (Ω) as µ→ 1.

Let vµ(s) be the solution of (1.6)–(1.8) with the initial data v0,µ. Since
J(vµ(s)) is nonincreasing, by (5.3) we obtain

J(vµ(s)) ≤ J(v0,µ) < J(ψ) if µ 6= 1, (5.4)

which implies that vµ(s) never converges to ψ as s → ∞. Consequently, by
Remark 5.2, ψ is not asymptotically stable.

We next assume (5.2). Let u0,µ, v0,µ and vµ(s) be as above. Then
vµ(s) 6∈ B(ψ;R) for all s large enough. Indeed, if there exists a sequence
(sn) diverging to ∞ such that vµ(sn) ∈ B(ψ;R), then by Theorem 3.2,

vµ(sn) converges to an element φ ∈ B(ψ;R)∩S along a subsequence. More-
over, J(φ) ≤ J(v0,µ) < J(ψ). However, this contradicts (5.2). Therefore
vµ(s) 6∈ B(ψ;R) for all s large enough. This proves that ψ is an unstable
profile.

As stated at the beginning of this subsection, the set of all sign-changing
solutions for (1.10), (1.11) is nonempty. Denote it by SC.

Definition 5.6 (Sign-changing least energy solution). We define the sign-
changing least energy d2 by

d2 := inf{J(ψ); ψ ∈ SC}. (5.5)

We call ψ a sign-changing least energy solution if J(ψ) = d2 and ψ ∈ SC.

The existence of a sign-changing least energy solution has already been
proved by Castro, Cossio, and Neuberger [9]. However, for the reader’s con-
venience we give a proof, which is simpler than that of [9].

Proposition 5.7. The Dirichlet problem (1.10), (1.11) always admits a sign-
changing least energy solution.

Proof. It is known (we refer the reader to [34]) that J satisfies the Palais-
Smale condition, i.e., any sequence (wn) in H

1
0 (Ω) has a subsequence strongly

convergent in H1
0 (Ω) whenever J(wn) is bounded and J ′(wn) → 0 as n→ ∞.

Let ψn be a minimizing sequence for d2, i.e., ψn ∈ SC and J(ψn) converges
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to d2. Then the Palais-Smale condition assures that, up to a subsequence,
ψn converges to a critical point ψ of J . Then J ′(ψ) = 0 and J(ψ) = d2. We
claim that ψ is sign-changing. Indeed, if ψ is positive, then by Lemma 5.3,
ψn > 0 for n large enough. This contradicts ψn ∈ SC. In case ψ < 0 also,
a similar contradiction occurs. Therefore ψ is a sign-changing least energy
solution.

Now, we have a corollary of Theorem 5.5.

Corollary 5.8 (Instability of sign-changing least energy solutions). Every
sign-changing least energy solution of (1.10), (1.11) is an unstable profile.

Proof. Let ψ be a sign-changing least energy solution of (1.10), (1.11). Then
we claim that ψ is isolated in H1

0 (Ω) from all w ∈ S satisfying J(w) < J(ψ).
Suppose on the contrary that there exists a sequence (wn) in S such that
J(wn) < J(ψ) and wn → ψ strongly inH1

0 (Ω). Then wn must be sign-definite
because of the definition of sign-changing least energy solutions. However,
since wn converges also in C2(Ω) by the bootstrap argument, ψ must be
sign-definite, which yields a contradiction. Thus ψ is isolated. Therefore
Theorem 5.5 leads us to our desired conclusion.

Remark 5.9. The sign-changing least energy d2 is not necessarily the second
least energy of nontrivial solutions for (1.10), (1.11). However, if (1.10),
(1.11) has a unique positive solution, then d2 is the second least energy, that
is, there is no critical value of J in the interval (d, d2).

5.3 Remarks on the uniqueness of positive profile

In this subsection, we give a couple of remarks on the uniqueness of positive
solutions for (1.10), (1.11), which together with the preceding results imply
the asymptotic stability of positive profiles.

A nontrivial solution φ of (1.10), (1.11) is said to be nondegenerate if
the linearized operator does not admit zero as an eigenvalue, i.e., the linear
problem, {

−∆z = (m− 1)λm|φ|m−2z in Ω,
z = 0 on ∂Ω,

(5.6)

admits only the trivial solution z ≡ 0.

Corollary 5.10. (i) Every nondegenerate least energy solution of (1.10),
(1.11) is an asymptotically stable profile. Moreover, all nondegenerate
sign-changing solutions of (1.10), (1.11) are unstable profiles.
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(ii) If (1.10), (1.11) has a unique positive solution, it is an asymptotically
stable profile.

Proof. It is well known that every nondegenerate solution is isolated inH1
0 (Ω)

from all the other solutions, but for the reader’s convenience, we give a
proof. Assume that a sequence φn of solutions of (1.10), (1.11) converges
to a nondegenerate solution φ in H1

0 (Ω). By the bootstrap argument with
the elliptic regularity theorem, it converges in C2(Ω) also. Put zn := (φn −
φ)/‖φn − φ‖∞ and f(t) = |t|m−2t. Then zn satisfies

−∆zn = λm
f(φn)− f(φ)

φn − φ
zn in Ω.

Since the right hand side is bounded in L∞(Ω), the elliptic regularity theo-
rem guarantees that zn is bounded in W 2,p(Ω) for all p < ∞. Thus a subse-
quence of zn converges in C1(Ω) to a limit z∞, which solves (5.6). Moreover,
‖z∞‖∞ = 1 because ‖zn‖∞ = 1. Thus (5.6) has a nontrivial solution and
this fact contradicts the nondegeneracy of φ. Therefore every nondegenerate
solution is isolated in H1

0 (Ω) from all the other solutions. Then (i) follows
from Theorems 5.4 and 5.5.

Since least energy solutions are sign-definite, the uniqueness of positive
solutions assures that of positive least energy solutions. Then (ii) follows
from Theorem 5.4.

Remark 5.11 (Uniqueness and nondegeneracy of positive solutions). The
uniqueness and the nondegeneracy of positive (or least energy) solutions of
(1.10), (1.11) rely on the shape of Ω and the growth order m of the nonlinear
term. In this remark, we state known sufficient conditions of Ω and m for
the uniqueness of positive solutions or the nondegeneracy of least energy
solutions of (1.10), (1.11). For such Ω and m, Corollary 5.10 shows that
least energy solutions are asymptotically stable profiles.

(i) (Gidas, Ni and Nirenberg, [21]). Let Ω be a ball and 2 < m < 2∗.
Then any positive solution must be radially symmetric, and moreover,
a positive radial solution is unique (see [21, Lemma 2.3]).

(ii) (Dancer [11, Theorem 5]). Let 2 < m < 2∗ and Ω be a bounded convex
domain in R2, which is symmetric with respect to the coordinate axes.
Then a positive solution is unique and nondegenerate (see Pacella [33]
also).

(iii) (Lin [31]). Let 2 < m < 2∗ and Ω be a bounded convex domain in R2.
Then a least energy solution is unique and nondegenerate.
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(iv) (Zou, [45]). Let 2 < m < 2 + δ with a small δ > 0 and Ω be close to a
ball. Then a positive solution is unique.

(v) (Grossi, [23]). Let N ≥ 3 and 2∗ − δ < m < 2∗ with a small δ > 0. Let
Ω ⊂ RN be convex in xi and symmetric with respect to the hyperplane
xi = 0 for each 1 ≤ i ≤ N . Then a positive solution is unique and
nondegenerate.

(vi) (Dancer, [12, Lemma 1]). Let 2 < m < 2 + δ with a small δ > 0 and
Ω be any bounded smooth domain in RN . Then a positive solution is
unique and nondegenerate.

5.4 Stability analysis in the one dimensional case

The final subsection addresses the one-dimensional case, i.e.,

N = 1, Ω = (0, 1).

Then we can give a representation of all nontrivial solutions of (1.10), (1.11),
equivalently, all profiles of solutions for (1.1)–(1.3), and we also reveal the
stability or the instability of each profile. Our analysis basically relies on a
full picture of solutions to the one-dimensional stationary problem for (1.6)–
(1.8), i.e.,

−φ′′(x) = λm|φ|m−2φ(x) for x ∈ (0, 1), φ(0) = φ(1) = 0. (5.7)

Let us first show an explicit representation of solutions for (5.7). To do so,
we define

g(θ) :=
2

m

∫ θ

0

(sinσ)(2−m)/m dσ, 0 ≤ θ ≤ π

2

and put θ(x) := g−1(x). Moreover, set

Φ(x) :=

{
(sin θ(x))2/m if 0 ≤ x ≤ T := g(π/2),

− (sin θ(−x))2/m if − T ≤ x < 0.

One can further extend Φ to be an anti-periodic function in R with the period
2T , that is, Φ(x+ 2T ) = −Φ(x). Then Φ is of class C2 and solves

−Φ′′(x) =
m

2
|Φ|m−2Φ(x) for x ∈ R. (5.8)

Since m > 2, the function Ψ(x) := cmΦ(x) with cm := (2λm/m)−1/(m−2)

solves
−Ψ′′(x) = λm|Ψ|m−2Ψ(x) for x ∈ R. (5.9)
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Moreover, we notice that equation (5.9) is invariant under the scaling Ψµ(x) :=
µ2/(m−2)Ψ(µx) for µ > 0. In order to satisfy the boundary condition, Ψµ(1) =
0, we specify the scaling parameter µ = µn := 2nT with n ∈ N. By virtue
of a standard argument for the uniqueness of solutions of the Cauchy prob-
lem for ODEs, one can ensure that every nontrivial solution of the Dirichlet
problem (5.7) is explicitly written as φ = Ψµn or −Ψµn , which has exactly
n − 1 zeros in (0, 1), with some n ∈ N. In the rest of the present paper, we
write φn := Ψµn for n ∈ N.

Furthermore, we find that

J(±φn) = κmn
2m/(m−2),

with some positive constant κm independent of n. This means that

J(±φ1) < J(±φ2) < · · · < J(±φn) < · · · ↗ ∞.

Thus each solution ±φn is isolated in H1
0 (0, 1) from all the other solutions.

For any solution v(s) of (1.6)–(1.8), J(v(s)) is nonincreasing and converges
as s → ∞. Combining these facts, we obtain the uniqueness of the ω-limit
point of v(s) and get the stability or the instability of each profile as below.

Corollary 5.12 (Asymptotic profiles for N = 1). For each solution u =
u(x, t) of (1.1)–(1.3) with u0 ∈ H1

0 (0, 1) \ {0}, there exists a unique solution
φ ∈ H1

0 (0, 1) \ {0} of (5.7) such that

lim
t↗t∗

‖(t∗ − t)−1/(m−2)u(t)− φ‖1,2 = 0.

Corollary 5.13 (Stability/instability of profiles for N = 1). The sign-
definite profiles ±φ1 are asymptotically stable and the other profiles ±φi (for
i 6= 1) are unstable.
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