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Dedicated to the memory of Professor Tsutomu Arai

Goro Akagi∗ and Mitsuharu Ôtani †

Abstract. This paper is concerned with time-dependent constraint problems arising from
macroscopic critical-state models for type-II superconductivity as well as their approximate
problems associated with p-Laplacian for enough large number p.

In order to derive their solvabilities, an abstract framework of doubly nonlinear evolution
equations governed by time-dependent subdifferential operators in reflexive Banach spaces
is established and applied to these problems.

Moreover the convergence of solutions for the approximate problems as p → +∞ is also
proved without any explicit error estimates; furthermore a new method of approximation to
the critical-state models is proposed to enable us to derive an explicit error estimate as well
as the convergence of the corresponding approximate solutions.

1 Introduction

In the early 20th century, several macroscopic models for superconductivity were proposed
and some of them succeeded in explaining the structures of various properties of super-
conductivity: no electric resistance, Meissner effect, quantization of magnetic flux and so
on. In particular, F and H. London [18] illustrated the Meissner effect by introducing their
macroscopic model, which is the so-called London model. On the other hand, it seems
to be difficult to give full explanations to all principal properties of superconductivity only
from the macroscopic viewpoint; indeed superconductivity involves several aspects which can
be explained only on the microscopic theory, e.g., BCS (Bardeen-Cooper-Schrieffer) theory.
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However, macroscopic models could be still useful to give intuitive explanations even if they
can not cover the whole picture of superconductivity. In this paper, we focus on a somewhat
intuitive macroscopic model providing the current-voltage law.

In 1960’s, Bean [8] and Kim et al [16] proposed macroscopic critical-state models for
type-II superconductivity. Their models can give a description for the magnetization of
a type-II superconductor placed in a non-stationary external magnetic field. According
to their models, type-II superconductivity is characterized by the following (multi-valued)
relationship between the electric field e and the current density j:

(B) e ∈


0 if | j | < jc,

[0,+∞) j if | j | = jc,

∅ if | j | > jc.

In particular, if | j | < jc, then the electric current can flow even if the electric field vanishes.
This feature means the non-existence of electric resistance and the existence of persistent
current flow in type-II superconductors. Moreover the strength | j | of the current density
can not exceed the critical value jc.

In Bean’s model, the critical current density is homogeneous, i.e., jc does not depend
on space and time. However, in Kim’s model, jc depends on the magnetic field H, which
possibly depends on space and time. On the other hand, it would be natural to consider the
case where jc depends on space and time but not on the magnetic field such as jc = jc(x, t),
which gives an intermediate model between above two models. In this paper, we consider
such a case that jc = γ(x, t) for some given function γ.

On the other hand, (B) has a high nonlinearity, e.g., e = e(j) becomes a multi-valued
mapping. Therefore the following approximation is often used to simplify the treatment of
(B).

(B)p e = kp(j) :=

∣∣∣∣∣ j

jc

∣∣∣∣∣
p−2

j

jc
,

where p is an enough large number. This approximation (B)p is called the power approxi-
mation of (B). By using this approximation, several theoretical and numerical results were
obtained (see e.g. [5], [6]).

Prigozhin investigated the magnetization of type-II superconductors in non-stationary
external magnetic fields for two specific geometrical configurations: a long cylindrical super-
conductor placed in a parallel external magnetic field, and a thin superconductor film in a per-
pendicular external magnetic field (see Prigozhin [20, 21, 22, 23], Barrett and Prigozhin [7])
by using the Bean model or its power approximation. We here follows the setting proposed
in [7].

Let Ω0 be a bounded domain of R2 with smooth boundary ∂Ω0, and consider the case of
a long cylindrical superconductor with the cross-section Ω0 (“Long cylinder case”) and the
case of a thin superconductor film with the surface Ω0 (“Thin film case”).

Let he := (0, 0, he) be a non-stationary external magnetic field, which is orthogonal to Ω0.
By Faraday’s law of electromagnetic induction, the time variation of the external magnetic



field induces a current flow, which is lying on Ω0. Moreover according to Ampare’s law, the
current flow induces an internal magnetic field which is orthogonal to the current flow.

Long cylinder case: Denote the current density by j := (j1, j2, 0). Moreover let h :=
(0, 0, h) and h0 := (0, 0, h0) be an internal magnetic field and its initial data respectively.

Thin film case: Let j = (j1, j2) denote the 2-dimensional sheet current density on the
film surface Ω0. We then denote by h and h0 the stream function of the sheet current density
j and an initial data of h.

In both cases, Ω0 admits a finite number of holes Ωi (i = 1, 2, . . . , L); then we set
Ω := ∪Li=0Ωi, which becomes simply connected in R2. For the sake of the continuity of the
total magnetic field h + he on ∂Ω and the non-existence of current flow in the holes, the
following conditions are imposed.

h = 0 on ∂Ω and |∇h| = 0 in Ωi (i = 1, 2, . . . , L).

Hence as in [7], we employ the following function space:

Xp :=
{
u ∈ W 1,p

0 (Ω); |∇u(x)| = 0 for a.e. x ∈ Ωi (i = 1, 2, . . . , L)
}

(1. 1)

with the norm | · |Xp := |∇ · |Lp(Ω) for each p ∈ (1,+∞). When Ω0 has no hole, we set Ω = Ω0

and Xp coincides with W 1,p
0 (Ω). Just as in [7], we can derive the following variational

inequality from the Maxwell system and (B) with jc = γ(x, t).

(P)


b

(
dh

dt
(t), v − h(t)

)
≥ −

〈
dhe
dt

(t), v − h(t)

〉
X2

∀v ∈ Kt, 0 < t < T,

h(0) = h0,

where Kt := {u ∈ X2(Ω) ; |∇u(x)| ≤ jc = γ(x, t) for a.e. x ∈ Ω} and b(·, ·) is given by

b(u, v) :=


∫
Ω
u(x)v(x)dx (Long cylinder case),∫

Ω

∫
Ω

∇xu(x) · ∇x′v(x
′)

4π|x− x′|
dxdx′ (Thin film case).

According to [7], b(·, ·) is a symmetric, continuous, coercive bilinear form in V0 × V0, where
V0 is defined by

V0 :=

 L2(Ω) (Long cylinder case),

H
1/2
00 (Ω) (Thin film case),

where

H
1/2
00 (Ω) :=

χ ∈ H1/2(Ω); χ̃ :=

 χ in Ω,

0 in R2 \ Ω
∈ H1/2(R2)

 ,
equipped with the norm

|u|V0 :=


|u|L2(Ω) =

(∫
Ω
|u(x)|2dx

)1/2

(Long cylinder case),

|u|
H

1/2
00 (Ω)

:=

(
|u|2

H1/2(Ω)
+
∫
Ω

|u(x)|2

dist(x, ∂Ω)
dx

)1/2

(Thin film case).



Furthermore, the Maxwell system and the power approximation (B)p yield the following
equation.

(P)p



b

(
dhp
dt

(t), v

)
+
∫
Ω

(
1

γ(x, t)

)p
|∇hp(x, t)|p−2∇hp(x, t) · ∇v(x)dx

= −
〈
dhe
dt

(t), v

〉
Xp

∀v ∈ Xp, 0 < t < T,

hp(0) = h0.

For the case where jc is constant, i.e., the Bean model case, Barrett and Prigozhin [7]
proved the existence of the unique solution for (P)p and discussed the convergence of hp as
p→ +∞. Moreover they proved that the limit of hp gives the unique solution for (P).

On the other hand, for the case where jc depends on space and time, i.e., jc = γ(x, t),
(P)p and (P) become non-autonomous systems. Because of this, there arise some technical
difficulties and the study on this case is not performed yet. The main purpose of this paper
is to show the existence of unique solutions hp and h for (P)p and (P) respectively and to
discuss the convergence of hp to h as p→ +∞. To this end, it will be shown that (P)p and
(P) are reduced to Cauchy problems for evolution equations governed by two time-dependent
subdifferential operators from a reflexive Banach space V into its dual space V ∗ such as

∂ψt
(
du

dt
(t)

)
+ ∂ϕt(u(t)) 3 f(t) in V ∗, 0 < t < T,(1. 2)

where ∂ψt and ∂ϕt are the subdifferentials of time-dependent proper lower semicontinuous
convex functionals ψt and ϕt from V into (−∞,+∞] respectively and f is a given function
from [0, T ] into V ∗ (see Section 3). Hence in order to assure the existence of the unique
solution for (P)p or (P), we shall develop an abstract theory concerning the solvability of
Cauchy problem for (1. 2) in Section 2. The scope of our abstract framework developed here
is ample enough not only for (P)p and (P) but also for other types of problems, which will
be discussed in forthcoming papers.

Furthermore in Section 5, another way of approximations of (B) is proposed from the
viewpoint of convex analysis. As in the case of the power approximation, we derive approx-
imate problems of (P) from the Maxwell system and the new approximation proposed here;
moreover we can show the existence, the uniqueness and the convergence of solutions for the
approximate problems. The advantage of our new approximations of (B) lies in the fact that
it is possible to show the convergence much more easily and estimate the convergence rate
of solutions for the approximate problems towards the solutions of (P).

2 Abstract Theory

Before formulating our problem, we review the definition of subdifferentials. Let Φ(E) be
the set of all proper lower semicontinuous convex functions φ from a topological linear space
E into (−∞,+∞], where “proper” means that the effective domain D(φ) of φ defined by
D(φ) := {u ∈ E;φ(u) < +∞} is not empty. Define the subdifferential ∂Eφ of φ in E by

∂Eφ(u) := {f ∈ E∗;φ(v) − φ(u) ≥ 〈f, v − u〉E for all v ∈ D(φ)} ,



where 〈·, ·〉E denotes the natural duality between E and its dual space E∗, with its domain
D(∂Eφ) = {u ∈ E; ∂Eφ(u) 6= ∅}. We shall write ∂φ and 〈·, ·〉 simply instead of ∂Eφ and
〈·, ·〉E respectively when no confusion can arise.

Let V and H be a real reflexive Banach space and a real Hilbert space respectively, and
let V ∗ and H∗ be their dual spaces respectively. Now suppose that H is identified with H∗

and the following embeddings hold true with densely defined continuous injections.

V ⊂ H ≡ H∗ ⊂ V ∗(2. 1)

Let ψt, ϕt belong to Φ(V ) for all t ∈ [0, T ]. Our abstract Cauchy problem is then described
as follows:

(CP)

 ∂ψt
(
du

dt
(t)

)
+ ∂ϕt(u(t)) 3 f(t) in V ∗, 0 < t < T,

u(0) = u0.

For the case where both ψt and ϕt are independent of t, such as ψt = ψ and ϕt = ϕ,
Arai [2] and Colli [13] studied the existence of strong solutions for (CP) in the Hilbert space
setting (i.e., V = H) and in the reflexive Banach space setting respectively. As for the
time-dependent subdifferential case, Senba [24] extended Arai’s result to the case where ψt

may depend on t and ∂ϕt = ∂ϕ is a positive definite self-adjoint operator independent of t.
However the case where both functionals ϕt and ψt depend on t has not been studied yet
even for the case where V = H.

Let q ∈ (1,+∞) and introduce the following assumptions on ψt.

(A1) There exist constants α > 0 and C1 ≥ 0 such that

α|u|qV ≤ ψt(u) + C1 for all u ∈ D(ψt) and t ∈ [0, T ].

(A2) There exist a constant C2 ≥ 0 and a function a ∈ L1(0, T ) such that

|η|q
′

V ∗ ≤ C2ψ
t(u) + a(t) for all [u, η] ∈ ∂ψt and t ∈ [0, T ].

Now define the mapping B : Lq(0, T ;V ) → Lq
′
(0, T ;V ∗) as follows: for any [u, f ] ∈

Lq(0, T ;V ) × Lq
′
(0, T ;V ∗),

Bu 3 f ⇔ ∂ψt(u(t)) 3 f(t) for a.e. t ∈ (0, T ).

Then B is said to be a weakly closed mapping from Lq(0, T ;V ) into Lq
′
(0, T ;V ∗) if the

following holds true: if un → u weakly in Lq(0, T ;V ), ηn ∈ B(un) and ηn → η weakly in
Lq

′
(0, T ;V ∗), then η ∈ B(u). Now our third assumption on ψ is as follows.

(A3) B is a weakly closed mapping from Lq(0, T ;V ) into Lq
′
(0, T ;V ∗).

In order to verify the uniqueness of solutions for (CP), we employ the following (A3)′ instead
of (A3).

(A3)′ For every t ∈ [0, T ], D(∂ϕt) ⊂ D(∂ψt), the graph of ∂ψt is linear,

i.e., αξ + βη ∈ ∂ψt(αu+ βv) ∀[u, ξ], [v, η] ∈ ∂ψt, ∀α, β ∈ R,

and ∂ψt is symmetric, where “symmetric” means 〈ξ, v〉 = 〈η, u〉
∀[u, ξ], [v, η] ∈ D(∂ψt).



Remark 2.1 (1) Suppose that (A1) with C1 = 0 and (A3)′ hold. Moreover assume that
ψt0(0) = 0 and D(∂ψt0) 6= {0} for some t0 ∈ [0, T ]. Then q must be equal to 2. Indeed,
by the definition of ∂ψt0 , we get

ψt0(u) ≤ 〈ξ, u〉 ≤ |ξ|V ∗|u|V ∀[u, ξ] ∈ ∂ψt0 .(2. 2)

Hence (A1) with C1 = 0 implies

α|u|qV ≤ ψt0(u) ≤ |ξ|V ∗|u|V .

Let µ ∈ (0,+∞) and let [u0, ξ0] ∈ ∂ψt0 be such that u0 6= 0 and ξ0 6= 0. Then putting
u = µu0 and ξ = µξ0, we find that

αµq|u0|qV ≤ µ2|ξ0|V ∗|u0|V ∀µ ∈ (0,+∞),

which yields q = 2.

(2) The condition (A3) is assured by (A3)′. Actually by (A3)′, we observe that the graph
of B is linear. Moreover by Proposition 1.1 of [14], B is demiclosed in Lq(0, T ;V ) ×
Lq

′
(0, T ;V ∗); hence by Mazur’s lemma, B becomes a weakly closed mapping from

Lq(0, T ;V ) into Lq
′
(0, T ;V ∗).

As for ϕt, we assume the following condition.

(A4) There exist a Banach space X and a non-decreasing function ` defined

on R such that X is compactly embedded in V and |u|X ≤ `(|ϕt(u)| + |u|H)

for all u ∈ D(∂ϕt) and t ∈ [0, T ].

From now on, we write {ϕt}t∈[0,T ] ∈ Φ(V, [0, T ];α, β, C0, r) for some functions α, β :
[0, T ] → R and numbers C0 ∈ R, r ∈ (1,+∞) if the following (1) and (2) hold true.

(1) ϕt ∈ Φ(V ) for all t ∈ [0, T ].

(2) ∃δ > 0, ∀t0 ∈ [0, T ], ∀u0 ∈ D(ϕt0), ∃u : Iδ(t0) := [t0 − δ, t0 + δ] ∩ [0, T ] → V ;

|u(t) − u0|V ≤ |α(t) − α(t0)|{|ϕt0(u0)| + C0}1/r,

ϕt(u(t)) ≤ ϕt0(u0) + |β(t) − β(t0)|{|ϕt0(u0)| + C0} ∀t ∈ Iδ(t0).

We introduce the following condition to describe the t-smoothness of functionals.

(A5) There exist functions α1 ∈ W 1,ρ(0, T ) with ρ = max{q, 2},
α2 ∈ W 1,r(0, T ), βi ∈ W 1,1(0, T ) (i = 1, 2) and constants C0 ∈ R,

r ∈ (1,+∞) such that {ϕt}t∈[0,T ] ∈ Φ(V, [0, T ];α1, β1, C0, ρ) and

{ψt}t∈[0,T ] ∈ Φ(V, [0, T ];α2, β2, C0, r).

In order to derive the uniqueness of solutions for (CP), we need to assume the following
(A5)′.

(A5)′ There exist functions α2, β2 ∈ W 1,1(0, T ) such that

{ψt}t∈[0,T ] ∈ Φ(V, [0, T ];α2, β2, 0, q).

Here and henceforth, we are concerned with strong solutions of (CP) in the following
sense.



Definition 2.2 A function u ∈ C([0, T ];V ) is said to be a strong solution of (CP), if the
following conditions are satisfied :

(a) u is a V -valued absolutely continuous function on [0, T ].

(b) u(0) = u0.

(c) u(t) ∈ D(∂ϕt), du(t)/dt ∈ D(∂ψt) for a.e. t ∈ (0, T )

and there exist sections g(t) ∈ ∂ϕt(u(t)) and η(t) ∈ ∂ψt(du(t)/dt) such that

η(t) + g(t) = f(t) in V ∗ for a.e. t ∈ (0, T ).(2. 3)

(d) The function t 7→ ϕt(u(t)) is differentiable for a.e. t ∈ (0, T ) and the function

t 7→ ψt(du(t)/dt) is integrable on (0, T ).

Our main theorem in this section is as follows.

Theorem 2.3 Let q ∈ (1,+∞) and suppose that (A1)-(A5) are all satisfied. Then for all
f ∈ Lq

′
(0, T ;V ∗) and u0 ∈ D(ϕ0), (CP) has at least one strong solution u on [0, T ] satisfying

u ∈ W 1,q(0, T ;V ), g, η ∈ Lq
′
(0, T ;V ∗),(2. 4)

where g(t) and η(t) denote the sections of ∂ϕt(u(t)) and ∂ψt(du(t)/dt) in (2. 3) respectively.
In particular, suppose that (A1) with C1 = 0, (A2) with a ≡ 0, (A3)′ and (A5)′ are

satisfied and ψ0(0) = 0. Then the solution is unique.

Throughout the present paper, we denote by C non-negative constants, which do not
depend on the elements of the corresponding space or set.

2.1 Basic Lemmas

In this subsection, we summarize the relevant materials on subdifferentials which will be
used later without their proofs. Let FE be the duality mapping from a real reflexive Banach
space E onto its dual space E∗. Then we can assume that the duality mapping FE is
single-valued without any loss of generality (see [4]). To begin with, we give a definition of
the resolvent and the Yosida approximation of a (possibly multi-valued) maximal monotone
operator A : E → 2E

∗
.

Definition 2.4 Let A be a maximal monotone operator from E into E∗. Then the resolvent
JE,λ : E → D(A) of A is given by JE,λu := vλ for all u ∈ E, where vλ is a unique solution
of the following inclusion:

FE(vλ − u) + λAvλ 3 0.(2. 5)

Moreover the Yosida approximation Aλ : E → E∗ of A is given by

Aλu :=
FE(u− vλ)

λ
.(2. 6)

In particular, if E is a Hilbert space and E is identified with its dual space E∗, then we can
take FE = I in (2. 5) and (2. 6), where I denotes the identity in E.



For any φ ∈ Φ(E), it is well known that ∂Eφ becomes a maximal monotone operator
from E into E∗. Moreover the Yosida approximation (∂Eφ)λ of ∂Eφ coincides with the
subdifferential of the Moreau-Yosida regularization φλ of φ given by

φλ(u) := inf
v∈E

{
1

2λ
|u− v|2E + φ(v)

}
∀λ > 0, ∀u ∈ E.(2. 7)

More precisely, the following lemma holds.

Lemma 2.5 Let φ ∈ Φ(E). Then φλ is a Gâteaux differentiable convex functional from
E into R (in particular, if E is a Hilbert space, then φλ becomes Fréchet differentiable).
Moreover the infimum in (2. 7) is attained by the JφE,λu, where JφE,λ denotes the resolvent of
∂Eφ, i.e.,

φλ(u) =
1

2λ
|u− JφE,λu|2E + φ(JφE,λu)

=
λ

2
|(∂Eφ)λ(u)|2E∗ + φ(JφE,λu).

Furthermore the following (1)-(3) hold.

(1) ∂E(φλ) = (∂Eφ)λ, where ∂E(φλ) is the subdifferential (Gâteaux derivative) of φλ.

(2) φ(JφE,λu) ≤ φλ(u) ≤ φ(u) for all u ∈ E and λ > 0.

(3) φλ(u) → φ(u) as λ→ +0 for all u ∈ E.

The theory of subdifferentials of time-dependent functionals in the Hilbert space setting
has been studied in detail by many authors (see e.g. [15], [19] and [26]). In the following
four lemmas, we denote by H a real Hilbert space, which is identified with its dual space;
moreover we suppose that {φt}t∈[0,T ] ∈ Φ(H, [0, T ];α, β, C0, q) for some C0 ∈ R, q ∈ (1,+∞),
α ∈ W 1,q(0, T ) and β ∈ W 1,1(0, T ).

The following lemma can be found in Kenmochi [14, Lemma 3.2].

Lemma 2.6 There exists a constant C such that

φt(u) ≥ −C(|u|H + 1) ∀u ∈ H, ∀t ∈ [0, T ].(2. 8)

The following lemma is concerned with fundamental estimates relative to the resolvent
of ∂Hφ

t and the Moreau-Yosida regularization of φt.

Lemma 2.7 The resolvent J tH,λ of ∂Hφ
t is a non-expansive mapping in H, i.e.,

|J tH,λu− J tH,λv|H ≤ |u− v|H ∀u, v ∈ H.

Moreover it follows that ∂Hφ
t
λ(u) = (u− J tH,λu)/λ.

Furthermore there exists a constant C such that

φtλ(u) ≤ C

λ
(|u|2H + 1) ∀u ∈ H, ∀λ ∈ (0, 1], ∀t ∈ [0, T ],(2. 9)

|J tH,λu|H ≤ C (|u|H + 1) ∀u ∈ H, ∀λ ∈ (0, 1], ∀t ∈ [0, T ],(2. 10)

|φtλ(u)| ≤ φtλ(u) + C(|u|H + 1) ∀u ∈ H, ∀λ ∈ (0, 1], ∀t ∈ [0, T ],(2. 11)

|φt(J tH,λu)| ≤ φtλ(u) + C (|u|H + 1) ∀u ∈ H, ∀λ ∈ (0, 1], ∀t ∈ [0, T ].(2. 12)



Proof of Lemma 2.7 As for the first two fundamental properties of J tH,λ and ∂Hφ
t
λ,

we refer to [11] and [15]. From the fact that {φt}t∈[0,T ] ∈ Φ(H, [0, T ];α, β, C0, q), we can
construct a function w : [0, T ] → H such that for a suitable number r0 > 0 (see Kenmochi [15,
Lemma 1.5.1]),

|w(t)|H ≤ r0, φt(w(t)) ≤ r0 ∀t ∈ [0, T ].

Then by (2. 7), we have

φtλ(u) ≤ 1

2λ
|u− w(t)|2H + φt(w(t)) ≤ C

λ
(|u|2H + 1)

for all u ∈ H and λ ∈ (0, 1], which implies (2. 9).
The proof of (2. 10) can be found in Lemma 1.2.1 of [15].
For the case where φtλ(u) ≥ 0, it is obvious that φtλ(u) = |φtλ(u)|; for the case where

φtλ(u) < 0, it follows from (2. 8) that

1

2
φtλ(u) −

1

2
|φtλ(u)| = φtλ(u)

≥ φt(J tH,λu) ≥ −C
(
|J tH,λu|H + 1

)
,

which together with (2. 10) implies (2. 11). Moreover repeating the same argument above,
we can also verify (2. 12).

The following lemma can be found also in Kenmochi [15, Lemma 1.2.2, 1.2.3].

Lemma 2.8 For all u ∈ L1(0, T ;H), the functions t 7→ J tH,λu(t) and t 7→ ∂Hφ
t
λ(u(t)) belong

to L1(0, T ;H). Moreover the functions t 7→ φtλ(u(t)) and t 7→ φt(u(t)) are measurable on
(0, T ).

The next lemma can be proved by the same arguments as in the proof of Proposition 3.1
of [26] with slight modifications.

Lemma 2.9 There exists a positive number δ such that for all u ∈ H and s, t ∈ [0, T ] with
|t− s| < δ, it follows that∣∣∣J tH,λu− JsH,λu

∣∣∣2
H

(2. 13)

≤ |α(t) − α(s)|
{
|u− J tH,λu|H + |u− JsH,λu|H

}
×
[
{|φt(J tH,λu)| + C0}1/q + {|φs(JsH,λu)| + C0}1/q

]
+λ|β(t) − β(s)|

{
|φt(J tH,λu)| + |φs(JsH,λu)| + 2C0

}
.

The following two lemmas are concerned with the differentiability and chain rules for
time-dependent functionals in the reflexive Banach space E; they can be verified by modifying
the proof of Lemma 2.4 and Proposition 2.6 of [19]. In the rest of this subsection, we suppose
that {φt}t∈[0,T ] ∈ Φ(E, [0, T ];α, β, C0, q) for some C0 ∈ R, q ∈ (1,+∞), α ∈ W 1,q(0, T ) and
β ∈ W 1,1(0, T ).



Lemma 2.10 Let u be an E-valued absolutely continuous function on [0, T ] such that the
function t 7→ φt(u(t)) is differentiable and u(t) ∈ D(∂Eφ

t) for a.e. t ∈ (0, T ). Then we have∣∣∣∣∣ ddtφt(u(t)) −
〈
g(t),

du

dt
(t)

〉∣∣∣∣∣(2. 14)

≤ |α̇(t)||g(t)|E∗{|φt(u(t))| + C0}1/q + |β̇(t)|
{
|φt(u(t))| + C0

}
,

∀g ∈ L1(0, T ;E∗) satisfying g(t) ∈ ∂Eφ
t(u(t)) for a.e. t ∈ (0, T ),

where α̇(t) := dα(t)/dt and β̇(t) := dβ(t)/dt.

Lemma 2.11 Let u ∈ W 1,q(0, T ;E) and let g ∈ Lq
′
(0, T ;E∗) be such that u(t) ∈ D(∂Eφ

t)
and g(t) ∈ ∂Eφ

t(u(t)) for a.e. t ∈ (0, T ). Then u(t) ∈ D(φt) for all t ∈ (0, T ] and the
function t 7→ φt(u(t)) is differentiable for a.e. t ∈ (0, T ). Moreover the function t 7→
dφt(u(t))/dt is integrable on (0, T ).

Now suppose that E and H satisfy (2. 1) with V replaced by E. We then define the
extension φH : H → (−∞,+∞] of φ ∈ Φ(E) on H as follows.

φH(u) :=

 φ(u) if u ∈ E,

+∞ if u ∈ H \ E.
(2. 15)

It is obvious that φH is convex and proper in H. Moreover if φ possesses some suitable
property, e.g., coerciveness, then φH becomes lower semicontinuous in H.

Now we suppose that (A4) is satisfied with ϕt and V replaced by φt and E respec-
tively. Then we can verify that φtH becomes lower semicontinuous in H for every t ∈ [0, T ]
(see [1]). Moreover it is easily seen that {φtH}t∈[0,T ] ∈ Φ(H, [0, T ];α, β, C0, q),D(φtH) = D(φt),
D(∂Hφ

t
H) ⊂ D(∂Eφ

t) and ∂Hφ
t
H(u) ⊂ ∂Eφ

t(u) for all u ∈ D(∂Hφ
t
H) and t ∈ [0, T ].

The next lemma gives an information on the chain rule of the Moreau-Yosida regulariza-
tion φtH,λ of φtH , which can be proved by the same arguments with obvious modifications as
in the proof of Lemma 2.5 of [19].

Lemma 2.12 Let u be an H-valued absolutely continuous function on [0, T ] such that u(t) ∈
E for all t ∈ [0, T ]. Then the function t 7→ φtH,λ(u(t)) is differentiable for a.e. t ∈ (0, T ) and
its derivative is integrable on (0, T ). Moreover the following inequality holds true.∣∣∣∣∣ ddtφtH,λ(u(t)) −

(
∂Hφ

t
H,λ(u(t)),

du

dt
(t)

)
H

∣∣∣∣∣(2. 16)

≤ |α̇(t)||∂HφtH,λ(u(t))|E∗{|φtH,λ(J tH,λu(t))| + C0}1/q

+|β̇(t)|{|φtH,λ(J tH,λu(t))| + C0} for a.e. t ∈ (0, T ),

where J tH,λ denotes the resolvent of ∂Hφ
t
H .



2.2 Proof of Theorem 2.3

The proof is divided into 4 steps.

Approximation: To construct a strong solution of (CP), we introduce the following approx-
imate problems for (CP) in the Hilbert space H.

(CP)λ


λ
duλ
dt

(t) + ηλ(t) + ∂Hϕ
t
H,λ(uλ(t)) = fλ(t) in H, 0 < t < T,

ηλ(t) ∈ ∂Hψ
t
H

(
duλ
dt

(t)

)
, uλ(0) = u0,

where ψtH (resp. ϕtH) denotes the extension of ψt (resp. ϕt) on H defined as in (2. 15) and
(fλ) denotes a sequence in C([0, T ];H) such that fλ → f strongly in Lq

′
(0, T ;V ∗) as λ→ +0.

Moreover ∂Hϕ
t
H,λ denotes the Yosida approximation of ∂Hϕ

t
H .

Since (λI + ∂Hψ
t
H)−1 and ∂Hϕ

t
H,λ become Lipschitz continuous in H with Lipschitz con-

stants 1/λ and 2/λ respectively, the mapping u 7→ A(t, u) := (λI + ∂Hψ
t
H)

−1 {fλ(t) −
∂Hϕ

t
H,λ(u)} becomes Lipschitz continuous with respect to u for each t ∈ [0, T ], where I

denotes the identity in H. Moreover from the fact that (λI + ∂Hψ
t
H)−1u = Jψ

t

H,1/λ(u/λ), we
have

A(t, u) = Jψ
t

H,1/λ

(
1

λ

{
fλ(t) −

u− J tH,λu

λ

})
,

where Jψ
t

H,λ and J tH,λ denote the resolvents of ∂Hψ
t
H and ∂Hϕ

t
H respectively. Therefore (CP)λ

is equivalent to the following:
duλ
dt

(t) = A(t, uλ(t)) in H, 0 < t < T,

uλ(0) = u0.

Now by Lemmas 2.7 and 2.9, we note that

|∂HϕtH,λ(u)|H =

∣∣∣∣∣u− J tH,λu

λ

∣∣∣∣∣
H

≤ C

λ
(|u|H + 1)

and

|A(t, u) − A(s, u)|H

≤
∣∣∣∣∣Jψt

H,1/λ

(
fλ(t) − ∂Hϕ

t
H,λ(u)

λ

)
− Jψ

s

H,1/λ

(
fλ(t) − ∂Hϕ

t
H,λ(u)

λ

)∣∣∣∣∣
H

+
|fλ(t) − fλ(s)|H

λ
+

|J tH,λu− JsH,λu|H
λ2

≤ Cλ
∑
i=1,2

{|αi(t) − αi(s)| + |βi(t) − βi(s)|}1/2 +
|fλ(t) − fλ(s)|H

λ
,

where Cλ denotes a constant depending on λ, |u|H and supt∈[0,T ] |fλ(t)|H . Therefore the
function t 7→ A(t, u) belongs to C([0, T ];H) for each u ∈ H. Consequently Theorem 1.4 of [9]



assures the existence of a unique strong solution uλ for (CP)λ satisfying uλ ∈ C1([0, T ];H)
and duλ(t)/dt ∈ D(∂Hψ

t
H) for all t ∈ [0, T ]. Moreover by Lemma 2.12, the function t 7→

ϕtH,λ(uλ(t)) is differentiable for a.e. t ∈ (0, T ) and supt∈[0,T ] ϕ
t
H,λ(uλ(t)) < +∞. Now letting

gλ(t) := ∂Hϕ
t
H,λ(uλ(t)), we find, by Lemma 2.7,

|gλ(t) − gλ(s)|H ≤ 1

λ

(
|uλ(t) − uλ(s)|H + |J tH,λuλ(t) − JsH,λuλ(s)|H

)
≤ 1

λ

(
2|uλ(t) − uλ(s)|H + |J tH,λuλ(t) − JsH,λuλ(t)|H

)
.

Hence by Lemmas 2.7 and 2.9, gλ belongs to C([0, T ];H); therefore (CP)λ implies ηλ ∈
C([0, T ];H).

We now claim that

ψt(u) ≤ 〈η, u〉 + C(|η|V ∗ + 1) ∀[u, η] ∈ ∂ψt, ∀t ∈ [0, T ].(2. 17)

Indeed by (A5), we can choose a function w : [0, T ] → V and a constant r0 such that
|w(t)|V ≤ r0 and ψt(w(t)) ≤ r0 for all t ∈ [0, T ]. Then by the definition of ∂ψt, we have

ψt(u) ≤ ψt(w(t)) + 〈η, u− w(t)〉
≤ 〈η, u〉 + r0(|η|V ∗ + 1) ∀[u, η] ∈ ∂ψt, ∀t ∈ [0, T ].

Therefore putting u = duλ(t)/dt and η = ηλ(t) in (2. 17), we have supt∈[0,T ] ψ
t(duλ(t)/dt) <

+∞, which together with (A1) implies supt∈[0,T ] |duλ(t)/dt|V < +∞. Hence combining this
with the fact that duλ/dt ∈ C([0, T ];H), we conclude that duλ/dt ∈ Cw([0, T ];V ), where
Cw([0, T ];V ) denotes the set of all weakly continuous functions from [0, T ] into V .

A priori estimates : We first establish the following a priori estimates for uλ(t).

Lemma 2.13 There exists a constant M1 such that

sup
t∈[0,T ]

|ϕtH,λ(uλ(t))| ≤ M1,(2. 18)

sup
t∈[0,T ]

|uλ(t)|V ≤ M1,(2. 19)

λ
∫ T

0

∣∣∣∣∣duλdt (t)

∣∣∣∣∣
2

H

dt ≤ M1,(2. 20)

∫ T

0

∣∣∣∣∣duλdt (t)

∣∣∣∣∣
q

V

dt ≤ M1,(2. 21)

∫ T

0
ψt
(
duλ
dt

(t)

)
dt ≤ M1(2. 22)

for all λ ∈ (0, 1].

Proof of Lemma 2.13 Multiplying (CP)λ by duλ(t)/dt and recalling (2. 17), we get

λ

∣∣∣∣∣duλdt (t)

∣∣∣∣∣
2

H

+ ψt
(
duλ
dt

(t)

)
+

〈
gλ(t),

duλ
dt

(t)

〉
(2. 23)

≤
〈
fλ(t),

duλ
dt

(t)

〉
+ C (|ηλ(t)|V ∗ + 1)



for a.e. t ∈ (0, T ), where gλ(t) := ∂Hϕ
t
H,λ(uλ(t)). Now by (A5) and Lemma 2.12, it follows

that ∣∣∣∣∣ ddtϕtH,λ(uλ(t)) −
〈
gλ(t),

duλ
dt

(t)

〉∣∣∣∣∣(2. 24)

≤ |α̇1(t)||gλ(t)|V ∗

{
|ϕtH,λ(J tH,λuλ(t))| + C0

}1/ρ

+|β̇1(t)|
{
|ϕtH,λ(J tH,λuλ(t))| + C0

}
.

Moreover by (2. 12) in Lemma 2.7, we notice that

|ϕtH(J tH,λuλ(t))| ≤ ϕtH,λ(uλ(t)) + C(|uλ(t)|H + 1)(2. 25)

≤ |ϕtH,λ(uλ(t))| + |uλ(t)|qV + C,

where we note that V is continuously embedded in H. Hence combining these inequalities,
we get by (A1) and (CP)λ,

λ

∣∣∣∣∣duλdt (t)

∣∣∣∣∣
2

H

+
α

2

∣∣∣∣∣duλdt (t)

∣∣∣∣∣
q

V

+
1

2
ψt
(
duλ
dt

(t)

)
+
d

dt
ϕtH,λ(uλ(t))(2. 26)

≤ |α̇1(t)||gλ(t)|V ∗

{
|ϕtH,λ(uλ(t))| + |uλ(t)|qV + C

}1/ρ

+|β̇1(t)|
{
|ϕtH,λ(uλ(t))| + |uλ(t)|qV + C

}
+|fλ(t)|V ∗

∣∣∣∣∣duλdt (t)

∣∣∣∣∣
V

+ C (|ηλ(t)|V ∗ + 1) +
C1

2

≤ |α̇1(t)|
{
|fλ(t)|V ∗ + λ

∣∣∣∣∣duλdt (t)

∣∣∣∣∣
V ∗

+ |ηλ(t)|V ∗

}

×
{
|ϕtH,λ(uλ(t))| + |uλ(t)|qV + C

}1/ρ

+|β̇1(t)|
{
|ϕtH,λ(uλ(t))| + |uλ(t)|qV + C

}
+ |fλ(t)|V ∗

∣∣∣∣∣duλdt (t)

∣∣∣∣∣
V

+C (|ηλ(t)|V ∗ + 1) +
C1

2
.

Therefore by Young’s inequality, since ρ = max{q, 2}, it follows from (A2) that

λ

2

∣∣∣∣∣duλdt (t)

∣∣∣∣∣
2

H

+
α

2

∣∣∣∣∣duλdt (t)

∣∣∣∣∣
q

V

+
1

4
ψt
(
duλ
dt

(t)

)
+
d

dt
ϕtH,λ(uλ(t))(2. 27)

≤ C
{
|α̇1(t)|ρ + |β̇1(t)| + |fλ(t)|q

′

V ∗ + |a(t)| + 1
}

+C
{
|α̇1(t)|ρ + |β̇1(t)|

}{
|ϕtH,λ(uλ(t))| + |uλ(t)|qV

}
.

We here prepare the following three inequalities; the first one is derived immediately from
Lemma 2.6.

ψt
(
duλ
dt

(t)

)
= ψtH

(
duλ
dt

(t)

)
≥ −C

(∣∣∣∣∣duλdt (t)

∣∣∣∣∣
H

+ 1

)

≥ −α
∣∣∣∣∣duλdt (t)

∣∣∣∣∣
q

V

− C.



The second one is as follows.

2
d

dt
|uλ(t)|qV = 2q|uλ(t)|q−1

V

d

dt
|uλ(t)|V(2. 28)

≤ 2q|uλ(t)|q−1
V

∣∣∣∣∣duλdt (t)

∣∣∣∣∣
V

≤ C|uλ(t)|qV +
α

4

∣∣∣∣∣duλdt (t)

∣∣∣∣∣
q

V

.

Furthermore (2. 11) in Lemma 2.7 implies

|ϕtH,λ(uλ(t))| ≤ ϕtH,λ(uλ(t)) + C(|uλ(t)|H + 1)

≤ ϕtH,λ(uλ(t)) + |uλ(t)|qV + C.

Now integrating (2. 27) over (0, t) and combining the inequalities stated above, we have

λ
∫ t

0

∣∣∣∣∣duλdτ (τ)

∣∣∣∣∣
2

H

dτ + |uλ(t)|qV + |ϕtH,λ(uλ(t))|(2. 29)

≤ 2|u0|qV + ϕ0(u0) + C

{∫ T

0
|α̇1(τ)|ρdτ +

∫ T

0
|β̇1(τ)|dτ

+
∫ T

0
|fλ(τ)|q

′

V ∗dτ +
∫ T

0
|a(τ)|dτ + 1

}

+C
∫ t

0

{
|α̇1(τ)|ρ + |β̇1(τ)| + 1

}{
|ϕτH,λ(uλ(τ))| + |uλ(τ)|qV

}
dτ

for all t ∈ [0, T ]. Thus Gronwall’s inequality implies

sup
t∈[0,T ]

{
|uλ(t)|qV + |ϕtH,λ(uλ(t))|

}
≤ C,(2. 30)

which yields (2. 18) and (2. 19). Moreover (2. 20) follows immediately from (2. 29) and (2.
30). Furthermore integrating both sides of (2. 27) over (0, T ), by (2. 30) we obtain (2. 21)
and (2. 22).

Lemma 2.14 There exists a constant M2 such that∫ T

0
|ηλ(t)|q

′

V ∗ dt ≤ M2,(2. 31) ∫ T

0
|gλ(t)|σV ∗ dt ≤ M2(2. 32)

for all λ ∈ (0, 1], where σ = min{2, q′}.

Proof of Lemma 2.14 By (A2), we get∫ T

0
|ηλ(t)|q

′

V ∗ dt ≤ C2

∫ T

0
ψt
(
duλ
dt

(t)

)
dt+

∫ T

0
a(t)dt,

which together with (2. 22) implies (2. 31).
Since gλ(t) = fλ(t) − λ(duλ(t)/dt) − ηλ(t) and (fλ) is bounded in Lq

′
(0, T ;V ∗), (2. 20)

and (2. 31) yield (2. 32).
In the following lemma, we provide a priori estimates for J tH,λuλ(t).



Lemma 2.15 There exists a constant M3 such that

sup
t∈[0,T ]

|J tH,λuλ(t)|H ≤ M3,(2. 33)

sup
t∈[0,T ]

|ϕt(J tH,λuλ(t))| ≤ M3,(2. 34)

sup
t∈[0,T ]

|J tH,λuλ(t)|X ≤ M3(2. 35)

for all λ ∈ (0, 1].

Proof of Lemma 2.15 By (2. 10) in Lemma 2.7, we see

|J tH,λuλ(t)|H ≤ C (|uλ(t)|H + 1) ∀t ∈ [0, T ].

Therefore it follows from (2. 19) that supt∈[0,T ] |J tH,λuλ(t)|H is bounded for all λ ∈ (0, 1].
Moreover by (2. 18), (2. 19) and (2. 25), we get

sup
t∈[0,T ]

|ϕtH(J tH,λuλ(t))| ≤ sup
t∈[0,T ]

{
|ϕtH,λ(uλ(t))| + C (|uλ(t)|H + 1)

}
(2. 36)

≤ C.

Furthermore (2. 35) follows immediately from (A4), (2. 33) and (2. 34).

Convergence: From a priori estimates established in Lemmas 2.13-2.15, we can take a se-
quence (λn) in (0, 1] such that λn → +0 as n → +∞ and the following Lemmas 2.16 and
2.17 hold.

Lemma 2.16 There exists u ∈ W 1,q(0, T ;V ) such that

uλn → u weakly in W 1,q(0, T ;V ),(2. 37)

λn
duλn

dt
→ 0 strongly in L2(0, T ;H),(2. 38)

J tH,λn
uλn → u strongly in C([0, T ];V )(2. 39)

as λn → 0.

Proof of Lemma 2.16 We can derive (2. 37) and (2. 38) immediately from (2. 19)-(2.
21). Moreover by (2. 21) and Lemma 2.7, we can easily see

|J tH,λuλ(t) − JsH,λuλ(s)|H
≤ |J tH,λuλ(t) − JsH,λuλ(t)|H + |uλ(t) − uλ(s)|H

≤ |J tH,λuλ(t) − JsH,λuλ(t)|H + C

(∫ T

0

∣∣∣∣∣duλdτ (τ)

∣∣∣∣∣
q

V

dτ

)1/q

(t− s)1/q′

≤ |J tH,λuλ(t) − JsH,λuλ(t)|H + CM
1/q
1 (t− s)1/q′ .

Hence by Lemmas 2.9, 2.13 and 2.15, the function t 7→ J tH,λuλ(t) is equi-continuous in
C([0, T ];H) for all λ ∈ (0, 1]. Therefore recalling (2. 35) and using the compact embedding
X ⊂ V , by Theorem 5 of [25], we can assure that there exists v ∈ C([0, T ];V ) such that

J tH,λn
uλn → v strongly in C([0, T ];V ).(2. 40)



Now by (2. 32), we have∫ T

0
|uλn(t) − J tH,λn

uλn(t)|σV ∗dt = λσn

∫ T

0
|gλn(t)|σV ∗dt

≤ λσnM2 → 0 as λn → 0.

Hence it follows from (2. 37) and (2. 40) that v = u, which implies (2. 39).

Lemma 2.17 There exist g, η ∈ Lq
′
(0, T ;V ∗) such that

ηλn → η weakly in Lq
′
(0, T ;V ∗),(2. 41)

gλn → g weakly in Lσ(0, T ;V ∗)(2. 42)

as λn → 0. Moreover we have

η(t) ∈ ∂ψt
(
du

dt
(t)

)
,(2. 43)

g(t) ∈ ∂ϕt(u(t)),(2. 44)

η(t) + g(t) = f(t)(2. 45)

for a.e. t ∈ (0, T ).

Proof of Lemma 2.17 It is easily seen that (2. 31) and (2. 32) imply (2. 41) and (2. 42)
respectively. Moreover we can derive (2. 43) from (2. 37), (2. 41) and (A3). Furthermore by
(2. 39) and (2. 42), the demiclosedness of subdifferentials and Proposition 1.1 of [14] imply
(2. 44). Finally since fλn → f strongly in Lq

′
(0, T ;V ∗), it follows from (CP)λ, (2. 38), (2.

41) and (2. 42) that g = f − η ∈ Lq
′
(0, T ;V ∗).

By Lemma 2.11, the function t 7→ ϕt(u(t)) is differentiable for a.e. t ∈ (0, T ). Moreover
it follows from (2. 22) and (2. 37) that∫ T

0
ψt
(
du

dt
(t)

)
dt ≤ lim inf

λn→0

∫ T

0
ψt
(
duλn

dt
(t)

)
dt ≤M1,(2. 46)

which implies that the function t 7→ ψt(du(t)/dt) is integrable on (0, T ). Consequently u
becomes a strong solution of (CP).

Uniqueness : Let u1 and u2 be strong solutions of (CP). Then there exist gi(t) ∈ ∂ϕt(ui(t))
and ηi(t) ∈ ∂ψt(dui(t)/dt) (i = 1, 2) such that

η1(t) − η2(t) + g1(t) − g2(t) = 0 for a.e. t ∈ (0, T ).(2. 47)

Let w(t) := u1(t)− u2(t) and let ξ(t) := η1(t)− η2(t). Then multiplying (2. 47) by w(t) and
taking account of monotonicity of ∂ϕt, we get

〈ξ(t), w(t)〉 ≤ 0 for a.e. t ∈ (0, T ).(2. 48)

Now since the graph of ∂ψt is linear, it follows that ξ(t) ∈ ∂ψt(dw(t)/dt). Moreover we note
that w(t) ∈ D(∂ψt) since (A3)′ implies u1(t), u2(t) ∈ D(∂ϕt) ⊂ D(∂ψt). Therefore by (A3)′,
we also deduce 〈

ζ(t),
dw

dt
(t)

〉
≤ 0 for a.e. t ∈ (0, T ),(2. 49)



where ζ(t) ∈ ∂ψt(w(t)). Hence by (A2) with a ≡ 0 and (A5)′, Lemma 2.10 yields

d

dt
ψt(w(t)) ≤ |α̇2(t)||ζ(t)|V ∗ψt(w(t))1/q + |β̇2(t)|ψt(w(t))

≤
{
C

1/q′

2 |α̇2(t)| + |β̇2(t)|
}
ψt(w(t)).

Integrating this over (0, t), we get

ψt(w(t)) ≤ ψ0(w(0)) +
∫ t

0

{
C

1/q′

2 |α̇2(τ)| + |β̇2(τ)|
}
ψτ (w(τ))dτ.

Thus Gronwall’s inequality implies

ψt(w(t)) ≤ ψ0(w(0)) exp

(∫ T

0

{
C

1/q′

2 |α̇2(τ)| + |β̇2(τ)|
}
dτ

)
,

which together with the fact that ψ0(w(0)) = ψ0(0) = 0 yields ψt(w(t)) = 0 for all t ∈ [0, T ].
Consequently (A1) with C1 = 0 implies w(t) = 0 for all t ∈ [0, T ], which completes the proof.

3 Existence and Uniqueness of Solutions

In this section, the existence of a unique solution will be verified for (P)p and (P) by using
the preceding abstract theory. We first give a definition of solutions for (P)p or (P) as follows.

Definition 3.1 A function u ∈ W 1,2(0, T ;V0) is said to be a solution of (P)p (resp. (P)), if
the following conditions are all satisfied :

(i) u(t) ∈ Xp (resp. u(t) ∈ Kt) for a.e. t ∈ (0, T ),

(ii) u(t) satisfies (P)p (resp. (P)) for a.e. t ∈ (0, T ),

where Kt := {u ∈ X2; |∇u(x)| ≤ γ(x, t) for a.e. x ∈ Ω} .

Now we summarize useful properties of the bilinear form b(·, ·) (see [7] for more details).

b(u, v) = b(v, u) for all u, v ∈ V0,(3. 1)

C3|u|2V0
≤ b(u, u) for all u ∈ V0,(3. 2)

|b(u, v)| ≤ C4|u|V0 |v|V0 for all u, v ∈ V0,(3. 3)

where Ci > 0 (i = 3, 4).
In the following two subsections, we shall verify the existence of a unique solution for

(P)p or (P) under the following assumptions on Ω, he and γ.

(A)



Ω is a bounded domain in R2 with smooth boundary ∂Ω,
dhe
dt

∈ L2(0, T ;V ∗
0 ),

γ(x, t) = π(x)φ(t), π ∈ L∞(Ω), φ ∈ W 1,2(0, T ),

γ(x, t) ≥ δ0 > 0 for a.e. x ∈ Ω and all t ∈ [0, T ].



3.1 Existence and Uniqueness of Solutions for (P)p

Theorem 3.2 Suppose that (A) is satisfied and let p ∈ [2,+∞). Then for any h0 ∈ Xp,
(P)p has a unique solution.

Set V = V0 and H = L2(Ω). Then it is easily seen that V and H satisfy (2. 1). Moreover
we define ϕtp and ψ as follows:

ϕtp(u) :=


1

p

∫
Ω

(
|∇u(x)|
γ(x, t)

)p
dx if u ∈ Xp,

+∞ if u ∈ V \Xp,

(3. 4)

ψ(u) :=
1

2
b(u, u) for all u ∈ V.(3. 5)

Then since 0 < δ0 ≤ γ(x, t) ≤ |π|L∞(Ω)|φ|C([0,T ]) for a.e. x ∈ Ω and all t ∈ [0, T ], it follows
that ϕtp ∈ Φ(V ), D(∂ϕtp) = Xp and D(∂ψ) = V . Moreover ∂ϕtp(u) coincides with

−∇ ·
{(

1

γ(x, t)

)p
|∇u(x)|p−2∇u(x)

}

equipped with the homogeneous Dirichlet boundary condition in the distribution sense. Fur-
thermore we can easily verify

〈∂ψ(u), v〉 = b(u, v) ∀u, v ∈ V,(3. 6)

which together with (3. 3) implies

|∂ψ(u)|V ∗ ≤ C4|u|V ∀u ∈ V.(3. 7)

Therefore (P)p is equivalent to the following Cauchy problem (E)p.

(E)p

 ∂ψ

(
dhp
dt

(t)

)
+ ∂ϕtp(hp(t)) = f(t) in V ∗, 0 < t < T,

hp(0) = h0,

where f(t) := −dhe(t)/dt ∈ L2(0, T ;V ∗).
By (3. 1)-(3. 3) and (3. 7), the next lemma follows immediately.

Lemma 3.3 (A1), (A2) and (A3)′ hold true with q = 2, C1 = 0 and a ≡ 0.

Now we proceed to the proof of Theorem 3.2.
Proof of Theorem 3.2 We first check (A4). To do this, noting that

1

p

(
|π|L∞(Ω)|φ|C([0,T ])

)−p ∫
Ω
|∇u(x)|pdx ≤ ϕtp(u) ∀u ∈ D(ϕtp), ∀t ∈ [0, T ],

and that W 1,p
0 (Ω) is compactly embedded in V , we can deduce that (A4) holds true with

X = W 1,p
0 (Ω) and ϕt = ϕtp respectively.



We next derive (A5) and (A5)′ from (3. 4) and (3. 5). Let t0 ∈ [0, T ] and u0 ∈ D(ϕt0p )
be fixed. Moreover define the function u : [0, T ] → V by

u(t) :=
φ(t)

φ(t0)
u0 for all t ∈ [0, T ].

Since γ(x, t) = π(x)φ(t), we find

∇u(t) =
φ(t)

φ(t0)
∇u0 =

γ(x, t)

γ(x, t0)
∇u0,(3. 8)

which implies u(t) ∈ D(ϕtp) for all t ∈ [0, T ]. Hence since |u|V ≤ C|∇u|H for all u ∈ X2 and

p1/p ≤ e1/e, it follows that

|u(t) − u0|V =

∣∣∣∣∣ φ(t)

φ(t0)
− 1

∣∣∣∣∣ |u0|V(3. 9)

≤ C

δ0
|π|L∞(Ω)|φ(t) − φ(t0)||∇u0|H

≤ C

δ0
|π|2L∞(Ω)|φ|C([0,T ])|φ(t) − φ(t0)||Ω|(p−2)/(2p)

{
pϕtp(u0)

}1/p

≤ Ce1/e

δ0
|π|2L∞(Ω)|φ|C([0,T ])|φ(t) − φ(t0)|(|Ω| + 1)1/2

×
{
ϕtp(u0) + 1

}1/2

≤ |α0(t) − α0(t0)|
{
ϕtp(u0) + 1

}1/2
,

where α0 is given by

α0(t) =
Ce1/e

δ0
|π|2L∞(Ω)|φ|C([0,T ])(|Ω| + 1)1/2φ(t) ∈ W 1,2(0, T ).

Moreover it follows from (3. 8) that

ϕtp(u(t)) =
1

p

∫
Ω

(
|∇u(x, t)|
γ(x, t)

)p
dx =

1

p

∫
Ω

(
|∇u0(x)|
γ(x, t0)

)p
dx = ϕt0p (u0).(3. 10)

Hence, since ψ is independent of t-variable, putting C0 = 1, α1 = α0, α2 = β1 = β2 ≡ 0,
ψt = ψ and ϕt = ϕtp, we find that (A5) and (A5)′ are satisfied.

Therefore using Lemma 3.3 and applying Theorem 2.3 to (E)p, we can assure the existence
of a unique strong solution for (E)p.

3.2 Existence and Uniqueness of Solutions for (P)

Theorem 3.4 Suppose that (A) is satisfied. Then for any h0 ∈ K0 = {u ∈ X2; |∇u(x)| ≤
γ(x, 0) for a.e. x ∈ Ω}, (P) has a unique solution.



Proof of Theorem 3.4 Define

ϕt∞(u) :=

 0 if u ∈ Kt,

+∞ if u ∈ V \Kt.

Then it is easy to see that ϕt∞ ∈ Φ(V ), D(ϕt∞) = Kt for all t ∈ [0, T ] and that (P) is
equivalent to the following Cauchy problem.

(E)

 ∂ψ

(
dh

dt
(t)

)
+ ∂ϕt∞(h(t)) 3 f(t) in V ∗, 0 < t < T,

h(0) = h0.

Let t ∈ [0, T ] be fixed and let u ∈ D(ϕt∞) = Kt. It then follows that

|∇u(x)| ≤ γ(x, t) ≤ |π|L∞(Ω)|φ|C([0,T ]) for a.e. x ∈ Ω.

Hence since H1
0 (Ω) is embedded in V compactly, (A4) holds true with X and ϕt replaced by

H1
0 (Ω) and ϕt∞ respectively. Moreover just as in the proof of Theorem 3.2, we can deduce

that (A5) and (A5)′ are satisfied with ϕt and ψt replaced by ϕt∞ and ψ respectively. Therefore
Lemma 3.3 and Theorem 2.3 ensure the existence of a unique strong solution for (E).

4 Convergence of hp as p→ +∞
In this section, we investigate the convergence of hp as p→ +∞. Our result reads.

Theorem 4.1 Suppose that (A) is satisfied. Let h0 ∈ K0 and let hp be a unique solution of
(P)p for every p ∈ [2,+∞). Then hp converges to h as p→ +∞ in the following sense:

hp → h strongly in C([0, T ];V0),
weakly star in L∞(0, T ;X2),
weakly in W 1,2(0, T ;V0)

(4. 1)

and h is a unique solution of (P). Moreover the following inequality holds.

sup
t∈[0,T ]

|hp(t) − h(t)|V0 ≤ C

{
1

p
+ inf

v∈K
‖hp − v‖L2(0,T ;V0)

}1/2

,(4. 2)

where K := {v ∈ L2(0, T ;V0); v(t) ∈ Kt for a.e. t ∈ (0, T )}.

Proof of Theorem 4.1 Recalling that hp and h become strong solutions of (E)p and (E)
respectively, we establish the following a priori estimates.

Lemma 4.2 There exists a constant M4 such that

sup
t∈[0,T ]

ϕtp(hp(t)) ≤ M4,(4. 3)

∫ T

0

∣∣∣∣∣dhpdτ (τ)

∣∣∣∣∣
2

V

dτ ≤ M4,(4. 4)

∫ T

0

∣∣∣∣∣∂ψ
(
dhp
dτ

(τ)

)∣∣∣∣∣
2

V ∗
dτ ≤ M4.(4. 5)



Proof of Lemma 4.2 Multiplying (E)p by dhp(t)/dt, we get by (3. 2)

C3

∣∣∣∣∣dhpdt (t)

∣∣∣∣∣
2

V

+

〈
∂ϕtp(hp(t)),

dhp
dt

(t)

〉
≤

〈
f(t),

dhp
dt

(t)

〉
.

By Lemma 2.10, it follows from (3. 9) and (3. 10) that

d

dt
ϕtp(hp(t)) ≤

〈
∂ϕtp(hp(t)),

dhp
dt

(t)

〉

+|α̇0(t)||∂ϕtp(hp(t))|V ∗

{
ϕtp(hp(t)) + 1

}1/2
.

Therefore (3. 7) implies

C3

∣∣∣∣∣dhpdt (t)

∣∣∣∣∣
2

V

+
d

dt
ϕtp(hp(t))

≤ |α̇0(t)||∂ϕtp(hp(t))|V ∗

{
ϕtp(hp(t)) + 1

}1/2
+ |f(t)|V ∗

∣∣∣∣∣dhpdt (t)

∣∣∣∣∣
V

≤ C3

2

∣∣∣∣∣dhpdt (t)

∣∣∣∣∣
2

V

+ C
{
|f(t)|2V∗ + |α̇0(t)|2 + |α̇0(t)|2ϕtp(hp(t))

}
,

since ∂ϕtp(hp(t)) = f(t) − ∂ψ(dhp(t)/dt). Integrating this over (0, t), we obtain

C3

2

∫ t

0

∣∣∣∣∣dhpdτ (τ)

∣∣∣∣∣
2

V

dτ + ϕtp(hp(t))(4. 6)

≤ ϕ0
p(h0) + C

{∫ T

0
|f(τ)|2V∗dτ +

∫ T

0
|α̇0(τ)|2dτ

}

+C
∫ t

0
|α̇0(τ)|2ϕτp(hp(τ))dτ.

From the fact that h0 ∈ K0, we notice

ϕ0
p(h0) =

1

p

∫
Ω

(
|∇h0(x)|
γ(x, 0)

)p
dx ≤ |Ω|.

Thus by Gronwall’s inequality, (4. 6) implies (4. 3). Moreover (4. 4) follows immediately
from (4. 3) and (4. 6). Furthermore (3. 7) and (4. 4) yield (4. 5).

By the definition of ϕtp, it follows from (4. 3) that

sup
t∈[0,T ]

{
1

p

∫
Ω

(
|∇hp(x, t)|
γ(x, t)

)p
dx

}
≤ M4.(4. 7)

Hence we obtain

1

|π|L∞(Ω)|φ|C([0,T ])

(∫
Ω
|∇hp(x, t)|qdx

)1/q

(4. 8)

≤
{∫

Ω

(
|∇hp(x, t)|
γ(x, t)

)q
dx

}1/q

≤
{∫

Ω

(
|∇hp(x, t)|
γ(x, t)

)p
dx

}1/p

|Ω|(p−q)/(pq) ≤ (pM4)
1/p |Ω|(p−q)/(pq)



for each q ∈ [2, p]. In particular, if q = 2, then

sup
t∈[0,T ]

|hp(t)|X2 is bounded for all p ∈ [2,+∞).(4. 9)

Consequently we can take a sequence (pn) such that pn → +∞ as n → +∞ and the
following lemma holds.

Lemma 4.3 There exists h ∈ L∞(0, T ;X2) ∩W 1,2(0, T ;V ) such that

hpn → h weakly in W 1,2(0, T ;V ),

weakly star in L∞(0, T ;X2),

strongly in C([0, T ];V )

as pn → +∞ and h is a unique solution of (E).

Proof of Lemma 4.3 By (4. 4) and (4. 9), there exists h ∈ L∞(0, T ;X2) ∩W 1,2(0, T ;V )
such that

hpn → h weakly in W 1,2(0, T ;V ),(4. 10)

hpn → h weakly star in L∞(0, T ;X2).(4. 11)

Now by Mazur’s lemma, it follows from (4. 5) and (4. 10) that

∂ψ

(
dhpn

dt
(·)
)
→ ∂ψ

(
dh

dt
(·)
)

weakly in L2(0, T ;V ∗).(4. 12)

Moreover, since (hp) is bounded in L∞(0, T ;X2) ∩W 1,2(0, T ;V ) and X2 is embedded in V
densely and compactly, the Aubin-Lions type compactness lemma (see e.g. [25, Corollary 4])
implies

hpn → h strongly in C([0, T ];V ).(4. 13)

Finally we claim that h is a unique strong solution of (E). To this end, we first show that
h(t) ∈ Kt for a.e. t ∈ (0, T ). By (4. 8), we can take a subsequence (pnq) of (pn) such that
∇hpnq

→ ∇h weakly star in L∞(0, T ;Lq(Ω)), which together with the fact that 0 < δ0 ≤ γ
implies ∇hpnq

/γ → ∇h/γ weakly star in L∞(0, T ;Lq(Ω)) for each q < +∞. For simplicity,
we use the same letter pn for pnq . Hence it follows that

{∫ T

0

∫
Ω

(
|∇h(x, t)|
γ(x, t)

)q
dxdt

}1/q

≤ lim inf
pn→+∞

{∫ T

0

∫
Ω

(
|∇hpn(x, t)|
γ(x, t)

)q
dxdt

}1/q

≤ lim inf
pn→+∞

{∫ T

0

∫
Ω

(
|∇hpn(x, t)|
γ(x, t)

)pn

dxdt

}1/pn

(T |Ω|)(pn−q)/(pnq)

≤ lim
pn→+∞

(TpnM4)
1/pn (T |Ω|)(pn−q)/(pnq) = (T |Ω|)1/q → 1 as q → +∞.



Therefore we can verify that

|∇h(x, t)|
γ(x, t)

≤ 1 for a.e. (x, t) ∈ Ω × (0, T ),(4. 14)

which implies that h(t) ∈ Kt for a.e. t ∈ (0, T ).
For any w ∈ L2(0, T ;V ) satisfying w(t) ∈ Kt for a.e. t ∈ (0, T ), by (E)pn

and the
definition of subdifferentials, it follows that∫ T

0

〈
∂ψ

(
dhpn

dτ
(τ)

)
− f(τ), hpn(τ) − w(τ)

〉
dτ(4. 15)

=
∫ T

0

〈
−∂ϕτpn

(hpn(τ)), hpn(τ) − w(τ)
〉
dτ

≤
∫ T

0
ϕτpn

(w(τ))dτ −
∫ T

0
ϕτpn

(hpn(τ))dτ

≤ 1

pn

∫ T

0

∫
Ω

(
|∇w(x, τ)|
γ(x, τ)

)pn

dxdτ

≤ T

pn
|Ω| → 0 as pn → +∞,

since |∇w(x, τ)| ≤ γ(x, τ) for a.e. (x, τ) ∈ Ω × (0, T ). By (4. 12) and (4. 13), we deduce∫ T

0

〈
∂ψ

(
dh

dτ
(τ)

)
− f(τ), h(τ) − w(τ)

〉
dτ ≤ 0,

which together with the fact that ϕt∞(h(t)) = ϕt∞(w(t)) = 0 for a.e. t ∈ (0, T ) implies∫ T

0

〈
∂ψ

(
dh

dτ
(τ)

)
− f(τ), h(τ) − w(τ)

〉
dτ(4. 16)

≤ 0 =
∫ T

0
ϕt∞(w(τ))dτ −

∫ T

0
ϕt∞(h(τ))dτ.

Hence by Proposition 1.1 in [14], it follows that

f(t) − ∂ψ

(
dh

dt
(t)

)
∈ ∂ϕt∞(h(t)) in V ∗, for a.e. t ∈ (0, T ).

Therefore we can deduce that h is a unique strong solution of (E).
Since the limit is unique, we have the same conclusion as in Lemma 4.3 for an arbitrary

sequence (pn) satisfying pn → +∞. Finally we verify (4. 2). To do this, recalling (4. 15)
with T,w and pn replaced by t, h and p respectively, we obtain∫ t

0

〈
∂ψ

(
dhp
dτ

(τ)

)
− f(τ), hp(τ) − h(τ)

〉
dτ ≤ T

p
|Ω|.(4. 17)

Moreover for all w ∈ L2(0, T ;V ) satisfying w(t) ∈ Kt for a.e. t ∈ (0, T ), we have∫ t

0

〈
∂ψ

(
dhp
dτ

(τ)

)
− f(τ), hp(τ) − h(τ)

〉
dτ



≥ C3

2
|hp(t) − h(t)|2V +

∫ t

0

〈
∂ψ

(
dh

dτ
(τ)

)
− f(τ), hp(τ) − h(τ)

〉
dτ

=
C3

2
|hp(t) − h(t)|2V −

∫ t

0
〈g∞(τ), hp(τ) − w(τ)〉 dτ

+
∫ t

0
〈g∞(τ), h(τ) − w(τ)〉 dτ

≥ C3

2
|hp(t) − h(t)|2V −

∫ t

0
|g∞(τ)|V ∗|hp(τ) − w(τ)|V dτ,

where g∞(t) = f(t) − ∂ψ(dh(t)/dt) ∈ ∂ϕt∞(h(t)). Therefore it follows that

C3

2
|hp(t) − h(t)|2V(4. 18)

≤ T

p
|Ω| +

∫ T

0
|g∞(τ)|V ∗ |hp(τ) − w(τ)|V dτ for all t ∈ [0, T ],

which implies (4. 2).

5 Another Approximation and Its Convergence

In this section, we introduce another approximation of (B) from the view point of convex
analysis. Our new approximation is characterized through the Moreau-Yosida regularization
of ϕt∞ in X2. More precisely, define

ϕtX2,λ
(u) := inf

v∈X2

{
1

2λ
|∇u−∇v|2L2(Ω) + ϕt∞(v)

}
.(5. 1)

Then by Lemma 2.5, we have

ϕtX2,λ
(u) =

1

2λ
|∇u−∇J tX2,λ

u|2L2(Ω),(5. 2)

where J tX2,λ
denotes the resolvent of ∂X2(ϕ

t
∞|X2). We here remark that J tX2,λ

u is the unique
minimizer of the functional of v appearing in the right-hand side of (5. 1). Now the extension
ϕtλ of ϕtX2,λ

to V0 is defined as follows.

ϕtλ(u) :=

 ϕtX2,λ
(u) if u ∈ X2,

+∞ if u ∈ V0 \X2.

We also follow the same setting for V and H as in §3. Now by (5. 2), we obtain

|u|X2 = |∇u|H ≤
√

2λϕtX2,λ
(u) + |∇J tX2,λ

u|H(5. 3)

≤
√

2λϕtX2,λ
(u) + |π|H |φ|C([0,T ])

∀u ∈ D(ϕtλ), ∀t ∈ [0, T ],

where we used the fact that

|∇J tX2,λ
u(x)| ≤ γ(x, t) ≤ |π(x)||φ|C([0,T ]) for a.e. x ∈ Ω.



Hence (5. 3) implies that ϕtX2,λ
is coercive in X2. Hence from the fact that ϕtX2,λ

∈ Φ(X2),
we can derive ϕtλ ∈ Φ(V ) for all t ∈ [0, T ]. Moreover it follows that D(ϕtλ) = D(∂ϕtλ) = X2

for all t ∈ [0, T ].
Now we introduce the following Cauchy problem as our new approximation to (E).

(E)λ

 ∂ψ

(
dhλ
dt

(t)

)
+ ∂ϕtλ(hλ(t)) = f(t) in V ∗, 0 < t < T,

hλ(0) = h0.

As for the existence of a unique strong solution for (E)λ, we have

Theorem 5.1 Suppose that (A) is satisfied and let λ ∈ (0, 1]. Then for any h0 ∈ X2, (E)λ
has a unique strong solution.

Proof of Theorem 5.1 Since H1
0 (Ω) is compactly embedded in V , (5. 3) implies (A4)

with X and ϕt replaced by H1
0 (Ω) and ϕtλ respectively.

Moreover just as in the proof of Theorem 3.2, we can show that (A5) and (A5)′ are
satisfied with ϕt and ψt replaced by ϕtλ and ψ respectively. Indeed, let t0 ∈ [0, T ] and
u0 ∈ D(ϕt0λ ) = X2 be fixed. Define u(t) := {φ(t)/φ(t0)}u0 for all t ∈ [0, T ]. Then just as in
(3. 9), it follows from (5. 3) that

|u(t) − u0|V ≤
∣∣∣∣∣ φ(t)

φ(t0)
− 1

∣∣∣∣∣ |u0|V

≤
∣∣∣∣∣ φ(t)

φ(t0)
− 1

∣∣∣∣∣C
{√

2λϕt0λ (u0) + |π|H |φ|C([0,T ])

}
≤ C(|φ|C([0,T ]), |π|L∞(Ω), |Ω|, δ0)|φ(t) − φ(t0)|

{
ϕt0λ (u0) + 1

}1/2
,

where C(|φ|C([0,T ]), |π|L∞(Ω), |Ω|, δ0) denotes a constant depending only on |φ|C([0,T ]), |π|L∞(Ω),
|Ω| and δ0. Moreover we have

ϕtλ(u(t)) = inf
v∈X2

 1

2λ

∣∣∣∣∣ φ(t)

φ(t0)
∇u0 −∇v

∣∣∣∣∣
2

H

+ ϕt∞(v)


= inf

w∈X2


(
φ(t)

φ(t0)

)2
1

2λ
|∇u0 −∇w|2H + ϕt0∞(w)

 ,
where we put w = {φ(t0)/φ(t)}v. Hence it follows that

ϕtλ(u(t)) = inf
w∈X2

 1

2λ
|∇u0 −∇w|2H + ϕt0∞(w) +


(
φ(t)

φ(t0)

)2

− 1

 1

2λ
|∇u0 −∇w|2H


≤ ϕt0λ (u0) +


(
φ(t)

φ(t0)

)2

− 1

ϕt0λ (u0)

≤ ϕt0λ (u0) +
2

δ2
0

|φ|C([0,T ])|π|2L∞(Ω)|φ(t) − φ(t0)|ϕt0λ (u0).



Therefore setting

γ0(t) := C(|φ|C([0,T ]), |π|L∞(Ω), |Ω|, δ0)φ(t) ∈ W 1,2(0, T ),

β0(t) :=
2

δ2
0

|φ|C([0,T ])|π|2L∞(Ω)φ(t) ∈ W 1,2(0, T ),

we conclude that {ϕtλ}t∈[0,T ] belongs to Φ(V, [0, T ]; γ0, β0, 1, 2). Hence by Lemma 3.3 and
Theorem 2.3, we can verify the existence of a unique strong solution for (E)λ.

As for the convergence of hλ as λ→ +0, our result is stated as follows.

Theorem 5.2 Suppose that (A) is satisfied. Let h0 ∈ K0 and let hλ be a unique strong
solution of (E)λ for every λ ∈ (0, 1]. Then hλ → h as λ→ +0 in the following sense:

hλ → h strongly in C([0, T ];V0),

weakly star in L∞(0, T ;X2),

weakly in W 1,2(0, T ;V0)

and h is a unique strong solution of (E). Moreover the following error estimate holds.

sup
t∈[0,T ]

|hλ(t) − h(t)|V0 ≤ C
√
λ.(5. 4)

Proof of Theorem 5.2 Multiplying (E)λ − (E) by hλ(t) − h(t), we get〈
∂ψ

(
d

dt
{hλ(t) − h(t)}

)
, hλ(t) − h(t)

〉
(5. 5)

+
〈
∂ϕtλ(hλ(t)) − g∞(t), hλ(t) − h(t)

〉
= 0,

where g∞(t) = f(t) − ∂ψ(dh(t)/dt) ∈ ∂ϕt∞(h(t)). We then observe

∂ϕt∞(h(t)) ⊂ ∂X2(ϕ
t
∞|X2)(h(t)),

∂ϕtλ(hλ(t)) = ∂X2ϕ
t
X2,λ

(hλ(t))

=
FX2(hλ(t) − J tX2,λ

hλ(t))

λ
∈ ∂X2(ϕ

t
∞|X2)(J

t
X2,λ

hλ(t)),

where FX2 denotes the duality mapping from X2 into its dual space X∗
2 . Hence we have〈

∂ϕtλ(hλ(t)) − g∞(t), hλ(t) − h(t)
〉

(5. 6)

=
〈
∂X2ϕ

t
X2,λ

(hλ(t)) − g∞(t), λF−1
X2

(
∂X2ϕ

t
X2,λ

(hλ(t))
)〉

X2

+
〈
∂X2ϕ

t
X2,λ

(hλ(t)) − g∞(t), J tX2,λ
hλ(t) − h(t)

〉
X2

≥ λ|∂X2ϕ
t
X2,λ

(hλ(t))|2X∗
2
− λ

〈
g∞(t), F−1

X2

(
∂X2ϕ

t
X2,λ

(hλ(t))
)〉

X2

≥ λ

2
|∂X2ϕ

t
X2,λ

(hλ(t))|2X∗
2
− λ

2
|g∞(t)|2X∗

2
.

Therefore it follows from (5. 5) and (5. 6) that

1

2

d

dt
b (hλ(t) − h(t), hλ(t) − h(t)) ≤ λ

2
|g∞(t)|2X∗

2
for a.e. t ∈ (0, T ).



Integrating this over (0, t), we get by (3. 2),

C3

2
|hλ(t) − h(t)|2V ≤ λ

2

∫ T

0
|g∞(τ)|2X∗

2
dτ for all t ∈ [0, T ],

which implies (5. 4) and that hλ → h strongly in C([0, T ];V ) as λ→ 0.
Repeating the same argument as in the proof of Lemmas 4.2 and 4.3, we can also verify

hλ → h weakly in W 1,2(0, T ;V ),

weakly star in L∞(0, T ;X2) as λ→ 0.

Remark 5.3 In Section 4, we could not estimate the error hp − h explicitly; indeed there
is no knowing how to evaluate the term infv∈K ‖hp − v‖L2(0,T ;V0) in (4. 2). However our new
approximation enables us to control the error hλ−h. More precisely, the error |hλ(t)−h(t)|V0

is estimated above by C
√
λ for all t ∈ [0, T ] in Theorem 5.2. In this sense, ϕtλ gives a better

approximation of ϕt∞ than ϕtp.

Finally we discuss the representation of our approximation as a current-voltage law. For
simplicity, we suppose that jc = γ ≡ 1 in the rest of this section; moreover we denote ϕtp, ϕ

t
∞

and ϕtX2,λ
simply by ϕp, ϕ∞ and ϕX2,λ respectively. We first remark that the leading term

of (P)p (or (E)p), which is derived from (B)p, can be described as follows:

〈∂Xp(ϕp|Xp)(u), η〉Xp =
∫
Ω
kp(∇u(x)) · ∇η(x)dx ∀u, η ∈ Xp,

where kp(v) = |v|p−2v for all v ∈ R2. On account of the above remark, we should find a
function kλ : R2 → R2 such that

〈∂X2ϕX2,λ(u), η〉X2 =
∫
Ω
kλ(∇u(x)) · ∇η(x)dx ∀u, η ∈ X2.(5. 7)

We here simplify the problem above as follows: let Ω = Ω0 := {x ∈ R2; |x| < R} and
find a function kλ : R2 → R2 such that (5. 7) is satisfied with X2 and ϕX2,λ replaced
by Xrad := {u ∈ H1

0 (Ω);∃ũ ∈ H1(0, R) s.t. u(x) = ũ(|x|) ∀x ∈ Ω and ũ(R) = 0} and
φλ respectively, where φλ is defined by (5. 1) with X2 and ϕt∞ replaced by Xrad and ϕ∞
respectively.

Now let u ∈ Xrad be fixed. Then there exists a function ũ ∈ H1(0, R) such that u(x) =
ũ(|x|) for all x ∈ Ω and ũ(R) = 0. Moreover we see

∇u(x) = (cos θ, sin θ)T ũ′(|x|), |∇u(x)| = |ũ′(|x|)|,

where θ = tan−1(y/x) and ũ′ denotes the derivative of ũ. Now define

ρ(r) :=


1 if r > 1,
r if |r| ≤ 1,
−1 if r < −1

and

ṽ(r) := −
∫ R

r
ρ(ũ′(ξ))dξ.(5. 8)



Then it is easily seen that ṽ ∈ W 1,∞(0, R) and ṽ(R) = 0. Moreover letting v(x) := ṽ(|x|) for
all x ∈ Ω, we observe

∇v(x) = (cos θ, sin θ)Tρ(ũ′(|x|)) for a.e. x ∈ Ω,(5. 9)

which implies

|∇u(x) −∇v(x)| =
∣∣∣(cos θ, sin θ)T {ũ′(|x|) − ρ(ũ′(|x|))}

∣∣∣
= min

v∈R2,|v|≤1
|∇u(x) − v| for a.e. x ∈ Ω.

Furthermore it follows from (5. 8) and (5. 9) that v ∈ K := {u ∈ Xrad; |∇u(x)| ≤
1 for a.e. x ∈ Ω}. Therefore noting that∣∣∣∣∣ min

v∈R2,|v|≤1
|∇u(·) − v|

∣∣∣∣∣
L2(Ω)

≤ inf
w∈K

|∇u−∇w|L2(Ω),

we have

|∇u−∇v|L2(Ω) = inf
w∈K

|∇u−∇w|L2(Ω),

which yields

φλ(u) = inf
w∈Xrad

{
1

2λ
|∇u−∇w|2L2(Ω) + ϕ∞(w)

}
= inf

w∈K

{
1

2λ
|∇u−∇w|2L2(Ω)

}
=

1

2λ
|∇u−∇v|2L2(Ω).

Hence it follows from (5. 2) that Jλu = v, where Jλ denotes the resolvent of ∂Xrad
(ϕ∞|Xrad

).
Therefore by Definition 2.4, it follows that

∂Xrad
φλ(u) =

FXrad
(u− Jλu)

λ
=
FXrad

(u− v)

λ
,

where FXrad
denotes the duality mapping from Xrad into its dual. Therefore since FXrad

=
−∆, we have for all w ∈ Xrad,

〈∂Xrad
φλ(u), w〉Xrad

=
∫
Ω

(
∇u(x) −∇v(x)

λ

)
· ∇w(x)dx

=
∫
Ω
kλ(∇u(x)) · ∇w(x)dx,

where kλ is given by

kλ(v) :=


v

|v|

(
|v| − ρ(|v|)

λ

)
if v 6= 0,

0 if v = 0.

Consequently our approximation can be characterized by the following current-voltage law.

e = kλ(j).
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