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TIME-DEPENDENT CONSTRAINT PROBLEMS
ARISING FROM MACROSCOPIC CRITICAL-STATE

MODELS FOR TYPE-1I SUPERCONDUCTIVITY
AND THEIR APPROXIMATIONS

Dedicated to the memory of Professor Tsutomu Arai

GORO AKAGI* AND MITSUHARU OTANT

Abstract. This paper is concerned with time-dependent constraint problems arising from
macroscopic critical-state models for type-II superconductivity as well as their approximate
problems associated with p-Laplacian for enough large number p.

In order to derive their solvabilities, an abstract framework of doubly nonlinear evolution
equations governed by time-dependent subdifferential operators in reflexive Banach spaces
is established and applied to these problems.

Moreover the convergence of solutions for the approximate problems as p — +oc is also
proved without any explicit error estimates; furthermore a new method of approximation to
the critical-state models is proposed to enable us to derive an explicit error estimate as well
as the convergence of the corresponding approximate solutions.

1 Introduction

In the early 20th century, several macroscopic models for superconductivity were proposed
and some of them succeeded in explaining the structures of various properties of super-
conductivity: no electric resistance, Meissner effect, quantization of magnetic flux and so
on. In particular, F and H. London [18] illustrated the Meissner effect by introducing their
macroscopic model, which is the so-called London model. On the other hand, it seems
to be difficult to give full explanations to all principal properties of superconductivity only
from the macroscopic viewpoint; indeed superconductivity involves several aspects which can
be explained only on the microscopic theory, e.g., BCS (Bardeen-Cooper-Schrieffer) theory.
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However, macroscopic models could be still useful to give intuitive explanations even if they
can not cover the whole picture of superconductivity. In this paper, we focus on a somewhat
intuitive macroscopic model providing the current-voltage law.

In 1960’s, Bean [8] and Kim et al [16] proposed macroscopic critical-state models for
type-II superconductivity. Their models can give a description for the magnetization of
a type-II superconductor placed in a non-stationary external magnetic field. According
to their models, type-II superconductivity is characterized by the following (multi-valued)
relationship between the electric field e and the current density j:

0 if i< Je
B) ecq [0,+00)j if |j|=7e
0 it |j|>Je

In particular, if | j | < j., then the electric current can flow even if the electric field vanishes.
This feature means the non-existence of electric resistance and the existence of persistent
current flow in type-II superconductors. Moreover the strength | j | of the current density
can not exceed the critical value j..

In Bean’s model, the critical current density is homogeneous, i.e., j. does not depend
on space and time. However, in Kim’s model, j. depends on the magnetic field H, which
possibly depends on space and time. On the other hand, it would be natural to consider the
case where j,. depends on space and time but not on the magnetic field such as j. = j.(z,1),
which gives an intermediate model between above two models. In this paper, we consider
such a case that j. = y(z,t) for some given function .

On the other hand, (B) has a high nonlinearity, e.g., e = e(j) becomes a multi-valued
mapping. Therefore the following approximation is often used to simplify the treatment of

(B).

Je Je

B), o=k — \ j

where p is an enough large number. This approximation (B)p is called the power approxi-
mation of (B). By using this approximation, several theoretical and numerical results were
obtained (see e.g. [5], [6]).

Prigozhin investigated the magnetization of type-II superconductors in non-stationary
external magnetic fields for two specific geometrical configurations: a long cylindrical super-
conductor placed in a parallel external magnetic field, and a thin superconductor film in a per-
pendicular external magnetic field (see Prigozhin [20, 21, 22, 23], Barrett and Prigozhin [7])
by using the Bean model or its power approximation. We here follows the setting proposed
in [7].

Let Qp be a bounded domain of R? with smooth boundary 9€), and consider the case of
a long cylindrical superconductor with the cross-section )y (“Long cylinder case”) and the
case of a thin superconductor film with the surface Qy (“Thin film case”).

Let h, := (0,0, he) be a non-stationary external magnetic field, which is orthogonal to 2.
By Faraday’s law of electromagnetic induction, the time variation of the external magnetic



field induces a current flow, which is lying on §29. Moreover according to Ampare’s law, the
current flow induces an internal magnetic field which is orthogonal to the current flow.

Long cylinder case: Denote the current density by j := (ji,j2,0). Moreover let h :=
(0,0,h) and hg := (0,0, hy) be an internal magnetic field and its initial data respectively.

Thin film case: Let j = (ji1,j2) denote the 2-dimensional sheet current density on the
film surface €25. We then denote by h and hg the stream function of the sheet current density
j and an initial data of h.

In both cases, 2y admits a finite number of holes €; (i = 1,2,...,L); then we set
Q := UL Q;, which becomes simply connected in R?. For the sake of the continuity of the
total magnetic field h 4+ h, on 092 and the non-existence of current flow in the holes, the
following conditions are imposed.

h=0 on 02 and |Vh| =0 in @ (i=1,2,...,L).
Hence as in [7], we employ the following function space:
(1. 1) X, = {u e WyP(Q); |Vu(z)| =0 forae. € Q; (i=1,2,... ,L)}

with the norm |-|x, := |V |1»(q) for each p € (1, 4+00). When €y has no hole, we set {2 = €
and X,, coincides with W,?(€). Just as in [7], we can derive the following variational
inequality from the Maxwell system and (B) with j. = v(x, ).

®) b(il;(t), v—h(t)> > —<dCZe(t),v—h(t)>X2 Ywe K" 0<t<T,

h(0) = hy,
where K' := {u € X5(Q) ; |Vu(z)| < j. =7(x,t) for a.e. x € Q} and b(-, ) is given by

/ u(z)v(zr)de (Long cylinder case),
Q
b(u,v) VAR,
/ / Vaul@) - Vool )dxdx' (Thin film case).
olJo  Ar|x — 2|

According to [7], b(-,-) is a symmetric, continuous, coercive bilinear form in Vy x Vj, where
Vb is defined by

{ L3(92) (Long cylinder case),
Vo =

H&éz(Q) (Thin film case),

where

X in €,
Ho?(Q) == {x € HY*(Q); ¥ = e H'?(R?) 3,

0 inR*\Q

equipped with the norm

1/2
|u| 120y = (/ |u(x)\2d:v> (Long cylinder case),
Q

s P\
112 jul@)|t :
‘u’Héé2(Q) = (!u\Hl/g(Q) + /Q dist(w,aQ)dx> (Thin film case).



Furthermore, the Maxwell system and the power approximation (B) , Yield the following
equation.

dh, 1 p—2
b<dt(t), v) +/Q (W’t)) Vi (2, P2V hy (2, 1) - Vo(z)de

dh
(P), :—<e(t),v> weX, 0<t<T,
dt X,

1y (0) = By

For the case where j. is constant, i.e., the Bean model case, Barrett and Prigozhin [7]
proved the existence of the unique solution for (P), and discussed the convergence of h,, as
p — +00. Moreover they proved that the limit of h, gives the unique solution for (P).

On the other hand, for the case where j. depends on space and time, i.e., j. = y(z,1),
(P), and (P) become non-autonomous systems. Because of this, there arise some technical
difficulties and the study on this case is not performed yet. The main purpose of this paper
is to show the existence of unique solutions %, and h for (P), and (P) respectively and to
discuss the convergence of h, to h as p — +o0. To this end, it will be shown that (P), and
(P) are reduced to Cauchy problems for evolution equations governed by two time-dependent
subdifferential operators from a reflexive Banach space V' into its dual space V* such as

(1. 2) o’ (f;;(t)) + 00" (u(t)) 2 f(t) m V¥, 0<t<T,
where ¢! and dp' are the subdifferentials of time-dependent proper lower semicontinuous
convex functionals 1" and ¢" from V into (—o0, +00] respectively and f is a given function
from [0,7] into V* (see Section 3). Hence in order to assure the existence of the unique
solution for (P), or (P), we shall develop an abstract theory concerning the solvability of
Cauchy problem for (1. 2) in Section 2. The scope of our abstract framework developed here
is ample enough not only for (P), and (P) but also for other types of problems, which will
be discussed in forthcoming papers.

Furthermore in Section 5, another way of approximations of (B) is proposed from the
viewpoint of convex analysis. As in the case of the power approximation, we derive approx-
imate problems of (P) from the Maxwell system and the new approximation proposed here;
moreover we can show the existence, the uniqueness and the convergence of solutions for the
approximate problems. The advantage of our new approximations of (B) lies in the fact that
it is possible to show the convergence much more easily and estimate the convergence rate
of solutions for the approximate problems towards the solutions of (P).

2 Abstract Theory

Before formulating our problem, we review the definition of subdifferentials. Let ®(F) be
the set of all proper lower semicontinuous convex functions ¢ from a topological linear space
E into (—o0, +00], where “proper” means that the effective domain D(¢) of ¢ defined by
D(¢) :=={u € E;¢(u) < +o0} is not empty. Define the subdifferential Og¢ of ¢ in E by

Opo(u) :={f € E";¢(v) — ¢(u) = (f,v —u)p for all v € D(¢)},



where (-, -) g denotes the natural duality between E and its dual space E*, with its domain
D(0g¢) = {u € E;dpp(u) # 0}. We shall write d¢ and (-,-) simply instead of dg¢ and
(-, ) g respectively when no confusion can arise.

Let V and H be a real reflexive Banach space and a real Hilbert space respectively, and
let V* and H* be their dual spaces respectively. Now suppose that H is identified with H*
and the following embeddings hold true with densely defined continuous injections.

(2. 1) VCH=H*CV*

Let ¢, ¢' belong to ®(V) for all t € [0, T]. Our abstract Cauchy problem is then described
as follows:

(CP) { o’ (Zb(tv + 0 (u(t) 3 f(t) I V*, 0<t<T,
u(0) = uo.

For the case where both ! and ¢! are independent of ¢, such as ¢! = ¢ and ¢! = ¢,
Arai [2] and Colli [13] studied the existence of strong solutions for (CP) in the Hilbert space
setting (i.e., V. = H) and in the reflexive Banach space setting respectively. As for the
time-dependent subdifferential case, Senba [24] extended Arai’s result to the case where "
may depend on ¢t and d¢' = Oy is a positive definite self-adjoint operator independent of t.
However the case where both functionals ¢! and ¢! depend on ¢ has not been studied yet
even for the case where V = H.

Let ¢ € (1,+00) and introduce the following assumptions on 1"

(A1) There exist constants a > 0 and C; > 0 such that

aluld < ' (u)+ Cy for all u € D(¥') and t € [0,T].
(A2) There exist a constant Cy > 0 and a function a € L'(0,T) such that
In|%. < Corpt(u) + a(t) for all [u,n] € OY' and t € [0, T).

Now define the mapping B : L9(0,T;V) — L%(0,T;V*) as follows: for any [u,f] €
LU0, T5V) x LY(0,T; V™),

Bus f & 0v'(u(t) > f(t) forae. te(0,7).

Then B is said to be a weakly closed mapping from L9(0,T;V) into L9 (0,T;V*) if the
following holds true: if w, — u weakly in L9(0,T;V), n, € B(u,) and 7, — n weakly in
L9(0,T;V*), then n € B(u). Now our third assumption on v is as follows.

(A3) B is a weakly closed mapping from L?(0,7; V) into L0, T; V™).

In order to verify the uniqueness of solutions for (CP), we employ the following (A3)" instead
of (A3).
(A3)" For every t € [0,T], D(d¢") C D(dy"), the graph of Oy is linear,
Le., a + fn € O (au + Bv) V[u, &, [v,n] € ', Va, § € R,
and 9v" is symmetric, where “symmetric” means (£,v) = (n, u)

V[, &, [v,n] € D(9Y").



Remark 2.1 (1) Suppose that (A1) with C; = 0 and (A3)" hold. Moreover assume that
Y™ (0) = 0 and D(9y') # {0} for some o € [0,7]. Then ¢ must be equal to 2. Indeed,
by the definition of 9y, we get

(2. 2) POu) < (G u) < [Elv-lulv VIu,g] € v
Hence (A1) with C; = 0 implies
ault, < 9(w) < [€ly-luly.

Let p € (0,400) and let [ug, &] € 0™ be such that ug # 0 and & # 0. Then putting
u = pug and & = p&y, we find that

V*

aﬂq|u0‘(\1/ < :U2|€0 V* u0|V VM € (07+OO)7

which yields g = 2.
(2) The condition (A3) is assured by (A3)'. Actually by (A3)’, we observe that the graph
of B is linear. Moreover by Proposition 1.1 of [14], B is demiclosed in L7(0,7;V) X

L9(0,T;V*); hence by Mazur’s lemma, B becomes a weakly closed mapping from
L9(0,T;V) into L7 (0, T; V™).

As for ¢!, we assume the following condition.
(A4) There exist a Banach space X and a non-decreasing function ¢ defined

on R such that X is compactly embedded in V and |u|x < £(|¢"(u)| + |u|x)
for all u € D(9¢") and t € [0, 7).

From now on, we write {¢'}icjor € ®(V,[0,T); 0, 5, Co, 1) for some functions o, 5 :
[0,7] — R and numbers Cy € R, r € (1, +00) if the following (1) and (2) hold true.

(1) ' € ®(V) for all t € [0,T].
(2) 30 >0, Vty € [0,T], Yup € D(¢™), Ju: Is(ty) = [to — 6,to + 0] N[0, T] — V;

u(t) —uoly < Ja(t) — ato) {|¢" (o) + Co}'",
Pult) < @ (uo) +15(t) — Bto){le" (uo)| + Co} Vit € Ls(to)-
We introduce the following condition to describe the t-smoothness of functionals.
(A5) There exist functions a; € W(0,T) with p = max{q, 2},
as € WH(0,T), B; € WHH0,T) (i = 1,2) and constants Cp € R,
r € (1,+00) such that {¢'} e € D(V,[0,T); o1, B1, Co, p) and
{¢" }eor) € PV, [0, TT; vz, B2, Co, 7).
In order to derive the uniqueness of solutions for (CP), we need to assume the following
(A5)".
(A5)" There exist functions ay, 3, € W(0,T) such that
{W}te[o,T] € ®(V,[0,T]; a2, 32,0, q).

Here and henceforth, we are concerned with strong solutions of (CP) in the following
sense.



Definition 2.2 A function v € C([0,T];V) is said to be a strong solution of (CP), if the
following conditions are satisfied:

(a) wis a V-valued absolutely continuous function on [0,T).
(b) u(0) = up.
(c) wu(t) € D(O¢"), du(t)/dt € D(OY") for a.e. t € (0,T)
and there exist sections g(t) € 0" (u(t)) and n(t) € V' (du(t)/dt) such that

(2. 3) n(t)+g(t) = f(t) inV* for ae te(0,T).
(d) The function t — ¢'(u(t)) is differentiable for a.e. t € (0,T) and the function
t — ' (du(t)/dt) is integrable on (0,T).
Our main theorem in this section is as follows.

Theorem 2.3 Let ¢ € (1,400) and suppose that (A1)-(A5) are all satisfied. Then for all
feLY0,T;V*) and ug € D(¢°), (CP) has at least one strong solution u on [0, T satisfying

(2. 4) we WH(0,T:V), g¢g,nel’0,T;V*),

where g(t) and n(t) denote the sections of Op'(u(t)) and 0P (du(t)/dt) in (2. 3) respectively.
In particular, suppose that (A1) with C; = 0, (A2) with a = 0, (A3) and (A5) are
satisfied and 1°(0) = 0. Then the solution is unique.

Throughout the present paper, we denote by C' non-negative constants, which do not
depend on the elements of the corresponding space or set.

2.1 Basic Lemmas

In this subsection, we summarize the relevant materials on subdifferentials which will be
used later without their proofs. Let Fp be the duality mapping from a real reflexive Banach
space F onto its dual space E*. Then we can assume that the duality mapping Fg is
single-valued without any loss of generality (see [4]). To begin with, we give a definition of
the resolvent and the Yosida approximation of a (possibly multi-valued) maximal monotone
operator A : E — 2F7,

Definition 2.4 Let A be a mazimal monotone operator from E into E*. Then the resolvent
Jex: B — D(A) of A is given by Jgu = vy for all u € E, where vy is a unique solution
of the following inclusion:

(2. 5) FE(U)\ — U) + ANAwvy 3 0.
Moreover the Yosida approximation Ay : E — E* of A is given by

Fe(u —v))
—

In particular, if E is a Hilbert space and E is identified with its dual space E*, then we can
take Fg =1 in (2. 5) and (2. 6), where I denotes the identity in E.



For any ¢ € ®(FE), it is well known that dg¢ becomes a maximal monotone operator
from E into E*. Moreover the Yosida approximation (Jg¢)y of dg¢ coincides with the
subdifferential of the Moreau-Yosida regularization ¢y of ¢ given by

veE

(2. 7) ¢x(u) := inf {21)\|u — % +¢(v)} YA >0, Yu € E.

More precisely, the following lemma holds.

Lemma 2.5 Let ¢ € ®(E). Then ¢y is a Gateaur differentiable convex functional from
E into R (in particular, if E is a Hilbert space, then ¢, becomes Fréchet differentiable).
Moreover the infimum in (2. 7) is attained by the JgAu, where Jg)\ denotes the resolvent of
8E¢, z'.e.,

1
oa(u) = —~|u— Jhulh+ o(Jg,u)

2)\
= *|(3E¢)A(u) e+ o(Jhu).

Furthermore the following (1)-(3) hold.
(1) Or(or) = (Op@)x, where Og(¢y) is the subdifferential (Gateauz derivative) of ¢y.

(2) ng(Jg)\u) < pa(u) < ¢(u) for allu € E and A > 0.

(3) oa(u) — d(u) as A — +0 for allu € E.

The theory of subdifferentials of time-dependent functionals in the Hilbert space setting
has been studied in detail by many authors (see e.g. [15], [19] and [26]). In the following
four lemmas, we denote by H a real Hilbert space, which is identified with its dual space;
moreover we suppose that {¢'}e0.r € ®(H, [0,T]; e, 3, Co, q) for some Cy € R, ¢ € (1, +00),
a € Wh(0,T) and 8 € WH(0,T).

The following lemma can be found in Kenmochi [14, Lemma 3.2].

Lemma 2.6 There exists a constant C such that
(2. 8) o'(u) > —C(lulg+1) Yue H, Vtel0,T).

The following lemma is concerned with fundamental estimates relative to the resolvent
of Og¢' and the Moreau-Yosida regularization of ¢'.

Lemma 2.7 The resolvent JltLI,A of Ordt is a non-expansive mapping in H, i.e.,
[Tt — Jyavla < |u—vlg Yu,ve H.

Moreover it follows that Oy ¢} (u) = (u — Jy \u)/A.
Furthermore there exists a constant C' such that

(2. 9) o5 (u) (|u|§q +1) Yue€ H, VA€ (0,1], Vt €[0,T],
(2. 10) [Jgaulg < C(lulg+1) Yue H, VAe(0,1], Vt€[0,T],
( (
( (

VAN VAN
QA>1Q

2. 11) |5 (u)] w)+ C(lulg +1) Yue H, YA€ (0,1], Vt € [0,T],
2.12) @' (Jyau)l u)+C(lulp+1) VYue H, VXe(0,1], Vt € [0,T].

IN

t
)\
t
)\

IN



Proof of Lemma 2.7 As for the first two fundamental properties of Jp , and 9y},
we refer to [11] and [15]. From the fact that {¢'}icjor) € ®(H,[0,77;a, 3,Cy,q), we can
construct a function w : [0, 7] — H such that for a suitable number o > 0 (see Kenmochi [15,
Lemma 1.5.1]),

lwt)|g <ro, O(w(t)) <ry Vtel[0,T].

Then by (2. 7), we have

Sw) < grlu—wdf + 6 w(0) < S (uly +1)

C
A
for all w € H and A € (0, 1], which implies (2. 9).
The proof of (2. 10) can be found in Lemma 1.2.1 of [15].
For the case where ¢%(u) > 0, it is obvious that ¢4 (u) = |¢§(u)|; for the case where
@4 (u) < 0, it follows from (2. 8) that

So(w) — 14w = hw)

2
> ¢ (Jhau) = —C ([T auln +1),
which together with (2. 10) implies (2. 11). Moreover repeating the same argument above,

we can also verify (2. 12). g
The following lemma can be found also in Kenmochi [15, Lemma 1.2.2, 1.2.3].

Lemma 2.8 For allu € L'(0,T; H), the functions t — Ji; u(t) and t — Og ¢l (u(t)) belong
to LY(0,T; H). Moreover the functions t — ¢4 (u(t)) and t — ¢'(u(t)) are measurable on
(0,7).

The next lemma can be proved by the same arguments as in the proof of Proposition 3.1
of [26] with slight modifications.

Lemma 2.9 There exists a positive number § such that for all w € H and s,t € [0, T] with
|t —s| <4, it follows that
t S 2
(2. 13) i — Jiau|
< a(t) = a(s)[ {lu— Tigulm + [u = Ji yul |
x {6 (Tiaw)] + Co}'* + {6 (Jiyau)| + Co}']
FAIB(E) = B(s)| {1 (S| + ¢ (Jiaw)] +2Co }

The following two lemmas are concerned with the differentiability and chain rules for
time-dependent functionals in the reflexive Banach space E; they can be verified by modifying
the proof of Lemma 2.4 and Proposition 2.6 of [19]. In the rest of this subsection, we suppose
that {¢'}epor) € P(E,[0,T]; o, 3, Co, q) for some Cy € R, ¢ € (1,400), « € WH(0,T) and
g e Whi0,T).



Lemma 2.10 Let u be an E-valued absolutely continuous function on [0,T] such that the
Junction t — ¢'(u(t)) is differentiable and u(t) € D(0g¢") for a.e. t € (0,T). Then we have

210 o) - (s0.50)
< [6(0)lo®le- (16 u(e)] + Cal + [30)| {16/ (u(t))] + Ca}.

Vg € L'(0,T; E*) satisfying g(t) € Opd'(u(t)) for a.e. t € (0,7T),
where &(t) == da(t)/dt and 3(t) = dB(t)/dL.

Lemma 2.11 Let u € W'(0,T; E) and let g € L7 (0,T; E*) be such that u(t) € D(0p¢!)
and g(t) € Opd'(u(t)) for a.e. t € (0,T). Then u(t) € D(¢') for all t € (0,T] and the
function t — ¢'(u(t)) is differentiable for a.e. t € (0,T). Moreover the function t +—
det(u(t))/dt is integrable on (0,T).

Now suppose that F and H satisfy (2. 1) with V replaced by E. We then define the
extension ¢y : H — (—00, +00] of ¢ € ®(F) on H as follows.

o(u) ifuekFE,
(2. 15) du(u) = { _
+oo ifue H\E.

It is obvious that ¢y is convex and proper in H. Moreover if ¢ possesses some suitable
property, e.g., coerciveness, then ¢y becomes lower semicontinuous in H.

Now we suppose that (A4) is satisfied with ' and V replaced by ¢' and E respec-
tively. Then we can verify that ¢ becomes lower semicontinuous in H for every t € [0, T]
(see [1]). Moreover it is easily seen that {¢%; }iepo,r) € P(H, [0,T7; o, 3, Co, q), D(¢) = D(¢),
D(0u¢ly) C D(0r¢") and Oy ¢ly(u) C Ordt(u) for all u € D(On¢ly) and ¢ € [0,T).

The next lemma gives an information on the chain rule of the Moreau-Yosida regulariza-
tion ¢f; , of ¢}, which can be proved by the same arguments with obvious modifications as
in the proof of Lemma 2.5 of [19].

Lemma 2.12 Let u be an H-valued absolutely continuous function on [0, T| such that u(t) €
E for allt € [0,T]. Then the function t — ¢f; ,(u(t)) is differentiable for a.e. t € (0,T) and
its derivative is integrable on (0,T). Moreover the following inequality holds true.

(2. 16) ’ 4

7 a(u(t)) — (8H¢3{,,\(U(t))v du(t)>

dt
< [a(®)0m ¢k A (u(t)| 5 {105 (T pu(®)] + Co} /e

HBO K05 (Tiau®)] + Co}  for a.e. t € (0,T),

where Jy; , denotes the resolvent of O Y.




2.2 Proof of Theorem 2.3

The proof is divided into 4 steps.

Approzimation: To construct a strong solution of (CP), we introduce the following approx-
imate problems for (CP) in the Hilbert space H.

ey

dt
d
(0 oty (0. 00 =

(t) + ma(t) + Oy a(ua(t)) = falt) in H, 0<t<T,
(CP),

where 1%, (resp. !;) denotes the extension of ¥ (resp. ¢') on H defined as in (2. 15) and
(f») denotes a sequence in C([0, T]; H) such that fy — f strongly in L9 (0,T;V*) as A — 0.
Moreover dg @y denotes the Yosida approximation of 0.

Since (A + 0g1ply) ™" and Ou @y, become Lipschitz continuous in H with Lipschitz con-
stants 1/X and 2/X respectively, the mapping u — A(t,u) := (A + dgt) " {fa(t) —
On@ia(u)} becomes Lipschitz continuous with respect to u for each t € [0,77], where I
denotes the identity in H. Moreover from the fact that (Al + Oxtl) tu = J}gfl//\(u/)\), we

have
t 1 U—Jt u
At = T (5 {p0 - ),

where J}@f/\ and J; , denote the resolvents of g1V} and Og Yy respectively. Therefore (CP),
is equivalent to the following:

dt

{ dux (t) = A(t,ur(t)) in H, 0<t<T,
ux(0) = ug.

Now by Lemmas 2.7 and 2.9, we note that

u—Jhu

Oniaa(ln = |~

and

|A(t,u) — A(s,u)|p

t t —8 ¢ s t _a t

< JEJ/A <f/\( ) f¢HA<u)> — J}ﬁg/A (f,\( ) /\H@H/\(u)> )
+|fA(t) —)\fx(s)|H N | Jh au ;\2‘]15—1,,\“|H

< (), Z {|Oéz(t) — 052‘(3)‘ + ‘ﬁz(t) _ ﬁi(5>|}1/2 4 |f)\(t) —)\f)\(s)|H7

i=1,2

where C) denotes a constant depending on A, [u|g and sup;ep 7y |fa(t)|r. Therefore the
function t — A(t,u) belongs to C([0,T; H) for each u € H. Consequently Theorem 1.4 of [9]



assures the existence of a unique strong solution uy for (CP), satisfying uy € C*([0,T]; H)
and duy(t)/dt € D(Oyyly) for all t € [0,T]. Moreover by Lemma 2.12, the function ¢ +—
@ a(ur(t)) is differentiable for a.e. ¢t € (0,T) and sup;cj 1y @ »(ua(t)) < +00. Now letting
ga(t) := Oy \(ua(t)), we find, by Lemma 2.7,

1

90 = nG)ln < 5 (130 = wa($)lar + | Thaun(t) = Jigaea(s)ln)

< i (2|u)\(t) —ux(s)|m + | Jhaun(t) — JE,AUA(WH) :

Hence by Lemmas 2.7 and 2.9, gy belongs to C([0,T]; H); therefore (CP), implies 1, €
c([0,T]; H).
We now claim that

(2. 17) Yiu) < (n,u) + C(ln

Indeed by (A5), we can choose a function w : [0,7] — V and a constant ry such that
lw(t)|y < ro and Y (w(t)) < 1o for all ¢ € [0,T]. Then by the definition of d¢f, we have

Yiw) < Y (w(t) + (nu—w(t))
(n,u) +ro([nly- + 1) VIu,n] € 0¥', vt € [0, 7).

Therefore putting u = dux(t)/dt and n = nx(t) in (2. 17), we have supc( 7 ' (dus(t)/dt) <
+00, which together with (A1) implies sup,¢o ) [dux(t)/dt|y < +o0o. Hence combining this
with the fact that duy/dt € C([0,T]; H), we conclude that du,/dt € C,([0,T];V), where
Cw([0,T]; V) denotes the set of all weakly continuous functions from [0, 7 into V.

ve+1) V) € ov', vt € [0,T).

<
<

A priori estimates: We first establish the following a priori estimates for uy(¢).

Lemma 2.13 There exists a constant M, such that

(2. 18) sup |opa(ua(t))] < M,
te[0,7]
(2. 19) sup [ux(t)ly < My,
te[0,7)
T 2
(2. 20) A / W@t <,
o | dt I
iy a
(2. 21) / ol @t < My,
0o | dt v
T (d
(2. 22) / e (“Vt)) dit < M,
0 dt

for all X € (0,1].
Proof of Lemma 2.13 Multiplying (CP), by du,(t)/dt and recalling (2. 17), we get

vt (520) + (0. % 0)

< (0. 520) + ¢ o)

dU)\

2.2 -2
(2. 23) 7

(t)

ve+1)



for a.e. t € (0,T), where g(t) := Oy \(ua(t)). Now by (A5) and Lemma 2.12, it follows
that

2. 24 ()~ (0. %20
< @llgr®)lv- {16 (T 0] + o}
A0 {16k (T aua(t)] + Co}
Moreover by (2. 12) in Lemma 2.7, we notice that
(2. 25) |05 (Traua®)] < @ya(ua(t)) + Clux(t) g + 1)
< Jehalua(®)] + lua@®)f + .

where we note that V' is continuously embedded in H. Hence combining these inequalities,
we get by (Al) and (CP),,

dU)\
— t
o (t)

< laa(®)llga®lv- {Iehn )] + lua@)lf + €}
HB{l e (ua()] + lua(B)ff + C'

o | duy

2.2
(2. 26) A o

(t)

1 1 t dU)\ d t
50 (G0) + et

A d(ZW +C(mh-+1) + 5

[0+ IOl €}

. du
HAOH{Ieha (O] + 1O + €} + 160l GO
C
+C (Ina(®)ly- +1) + 5
Therefore by Young’s inequality, since p = max{q, 2}, it follows from (A2) that
Aduy [P alduy . du,\ d ,
2. 27 —|—=(t t - — t
(2. 27) 70| +3 dt<> (52 0) + Soalm )

< C{la@F + |6 >| + (1) qw +la(t)] + 1}
+C {lean ()17 + 1B} {lhn(a(®)] + fua®)]E } -

We here prepare the following three inequalities; the first one is derived immediately from

Lemma 2.6.
o (Go) = (%0) = (|G| +1)

d q
Myl —c
a |,

du,\

v




The second one is as follows.

d  d
(2. %) 25Ol = 20l O Ll Oy
_ dU)\
< 2un(®)|F =2
< 2l 50|
alduy , |
< 94 |2 .
< C’\uA(t)|V+4 L (t)v

Furthermore (2. 11) in Lemma 2.7 implies

[Pa(ua(®)] < @lya(uat)) + Cllua(t)m +1)
< Palua(®) + [ua(®)f + C.

Now integrating (2. 27) over (0,t) and combining the inequalities stated above, we have
du i q t
Brm)| dr + lua )L+ I r(6)

H

(2. 29) A/Ot

T T .
S 2’uO|(‘Z/+(PO<U0)+C{/O |C.‘41(T)‘pd7'—|—/0 |ﬁl(7’)’d7'

—l—/OT | fa(7) ?,/*dT%—/OT la(7)|dT + 1}

t .
+C /0 {lan(m)? + 18P + 1} {l @ (ua ()] + [ua(7)]§ } dr
for all t € [0, T]. Thus Gronwall’s inequality implies

(2. 30) sup {Jux(®)[% + [l (wa@®)]} < C,
te[0,T

which yields (2. 18) and (2. 19). Moreover (2. 20) follows immediately from (2. 29) and (2.
30). Furthermore integrating both sides of (2. 27) over (0,7), by (2. 30) we obtain (2. 21)
and (2. 22). y

Lemma 2.14 There exists a constant My such that

(2. 31) JNING

T
(2. 32) /0 oA (D)0 dt < M,
for all A € (0,1], where 0 = min{2,¢'}.

Proof of Lemma 2.14 By (A2), we get

: d
/OTlm(t) Todt < Gy /OTW (;?(ﬂ) dt+/0Ta(t)dt,

which together with (2. 22) implies (2. 31).

Since gx(t) = fa(t) — A(dux(t)/dt) — na(t) and (fy) is bounded in L¢(0,T;V*), (2. 20)
and (2. 31) yield (2. 32). g

In the following lemma, we provide a priori estimates for Jp yux(t).

1\1/* dt S M27




Lemma 2.15 There exists a constant M3 such that

(2. 33) sup |Jyaua(t)|g < Ms,
te[0,7)
(2. 34) sup o' (S ua(t)| < Mg,
t€[0,T]
(2. 35) sup [Ji ua(t)|x < Ms
te[0,7)

for all X € (0,1].
Proof of Lemma 2.15 By (2. 10) in Lemma 2.7, we see

Therefore it follows from (2. 19) that sup,co 7y [Jp\ua(t)|# is bounded for all A € (0, 1].
Moreover by (2. 18), (2. 19) and (2. 25), we get

(2.36)  sup [l (Jiam®)] < sup {J@ha(ua(®)] + C (Jua®)lu + 1)}
te[0,T) te[0,T]
< C.

Furthermore (2. 35) follows immediately from (A4), (2. 33) and (2. 34). g

Convergence: From a priori estimates established in Lemmas 2.13-2.15, we can take a se-
quence (A\,) in (0,1] such that A\, — 40 as n — +oo and the following Lemmas 2.16 and
2.17 hold.

Lemma 2.16 There exists u € WH4(0,T; V) such that

(2. 37) uy, — u  weakly in WH(0,T;V),
d

(2. 38) An ZQ” — 0 strongly in L*(0,T; H),

(2. 39) Jhatxn, — u  strongly in C([0,T];V)

as A\, — 0.

Proof of Lemma 2.16 We can derive (2. 37) and (2. 38) immediately from (2. 19)-(2.
21). Moreover by (2. 21) and Lemma 2.7, we can easily see

| Jhaua(t) — Ji aua(s)|
< | Tgaua(t) = Jaua ()| + [ua(t) — ua(s)|a

T
< Whaan®) = n(0ln + € (
.

< [ haua(t) = Tigaua()li + CM; (8 = )7

dU)\ 1

1/q
ﬁ(T) dT) (t — s)l/ql

Hence by Lemmas 2.9, 2.13 and 2.15, the function ¢ — Jj  ux(t) is equi-continuous in
C([0,T]; H) for all A € (0, 1]. Therefore recalling (2. 35) and using the compact embedding
X C V, by Theorem 5 of [25], we can assure that there exists v € C([0,T]; V') such that

(2. 40) iy, — v strongly in C([0,T];V).



Now by (2. 32), we have

T
Gt = X [ 1o, ()
< MMy —0 asA\,—0.

[ a6 = T, (0

o.dt

Hence it follows from (2. 37) and (2. 40) that v = u, which implies (2. 39). g
Lemma 2.17 There exist g,n € Lq/(O,T; V*) such that

(2. 41) m, — 1 weakly in LY (0,T; V"),
(2. 42) gr, — g weakly in L°(0,T;V™)
as A\, — 0. Moreover we have

2. 13) o0 e ot (G0),
(2. 44) g(t) € 0o (u(t)),

(2. 45) n) +g(t) = [f(t)

for a.e. t € (0,T).

Proof of Lemma 2.17 It is easily seen that (2. 31) and (2. 32) imply (2. 41) and (2. 42)
respectively. Moreover we can derive (2. 43) from (2. 37), (2. 41) and (A3). Furthermore by
(2. 39) and (2. 42), the demiclosedness of subdifferentials and Proposition 1.1 of [14] imply
(2. 44). Finally since f\, — f strongly in L9 (0,7;V*), it follows from (CP),, (2. 38), (2.
41) and (2. 42) that g = f —n € LY(0,T;V*). y

By Lemma 2.11, the function ¢ — ¢ (u(t)) is differentiable for a.e. ¢ € (0,7). Moreover
it follows from (2. 22) and (2. 37) that

(2. 46) /OTW (ﬁ(t)) dt < liminf @bt (duA (t )) dt < My,

An—0

which implies that the function ¢ — *(du(t)/dt) is integrable on (0,7"). Consequently u
becomes a strong solution of (CP).

Uniqueness: Let u; and us be strong solutions of (CP). Then there exist ¢;(t) € d¢"(u;(t))
and n;(t) € oY (du,(t)/dt) (i = 1,2) such that

(2. 47) m(t) —ma(t) + g1(t) —g2(t) = 0 forae. te (0,7).
)-

Let w(t) := uy(t) — uo(t) and let £(t) := n1(t) — n2(t). Then multiplying (2. 47) by w(t) and
taking account of monotonicity of dpt, we get

(2. 48) €),w(t) < 0 forae te(0,7).

Now since the graph of 9y is linear, it follows that £(t) € dv*(dw(t)/dt). Moreover we note
that w(t) € D(9y?) since (A3)" implies uy (t), ua(t) € D(9¢?) C D(0!). Therefore by (A3)',

we also deduce

(2. 49) <C(t),?;(t)> < 0 forae te(0,7),



where ((t) € Ot(w(t)). Hence by (A2) with @ = 0 and (A5)’, Lemma 2.10 yields

jtw%wa)) < NSOV (w(®) V7 + B (0] (w(?))
< {G @ (0)] + 16:(0)]} ¢ (w(?)).

Integrating this over (0,t), we get

Viw(t) < POw(0) + /0 O o) + 1601} 7 (7))

Thus Gronwall’s inequality implies
T , .
o) < o) e ([ {01 laa] + il ar),

which together with the fact that ¢°(w(0)) = ¥°(0) = 0 yields ¥ (w(t)) = 0 for all t € [0, T.
Consequently (A1) with C = 0 implies w(t) = 0 for all ¢ € [0, T], which completes the proof.
1

3 Existence and Uniqueness of Solutions

In this section, the existence of a unique solution will be verified for (P), and (P) by using
the preceding abstract theory. We first give a definition of solutions for (P) , or (P) as follows.

Definition 3.1 A function w € W*(0,T;Vg) is said to be a solution of (P), (resp. (P)), if
the following conditions are all satisfied:

(i) wu(t) € X, (resp.u(t)€ K" forae te(0,T),

(ii) w(t) satisfies (P) ~ (resp. (P)) for a.e. t € (0,7T),

p
where K' .= {u € Xy; |Vu(z)| <~v(z,t) for a.e. z € QN}.

Now we summarize useful properties of the bilinear form b(-,-) (see [7] for more details).

(3. 1) bu,v) = blv,u) forall u,v € Vj,
(3. 2) Csluly, < blu,u) for all u € Vp,
(3. 3) [b(u, v)] < Calulw|vlv,  for all u,v e W,

where C; > 0 (i = 3,4).
In the following two subsections, we shall verify the existence of a unique solution for
(P), or (P) under the following assumptions on 2, h, and 7.

Q) is a bounded domain in R? with smooth boundary 052,

dhe
- € L*(0,T;Vy),

Yz, t) =m(z)o(t), € L*(Q), ¢ € WH(0,T),
Y(z,t) > 9 >0 forae xe€Qandalltel0T]

(A)



3.1 Existence and Uniqueness of Solutions for (P),

Theorem 3.2 Suppose that (A) is satisfied and let p € [2,400). Then for any hy € X,
(P), has a unique solution.

Set V' =Vy and H = L*(2). Then it is easily seen that V and H satisfy (2. 1). Moreover
we define ¢! and 1 as follows:

L ([Vu(@)]\" .
(3. 4) op(u) = { p/Q ( e ) dr if ue X,
+00 if weV\X,,
(3. 5) Y(u) = ;b(u, u) forallueV.

Then since 0 < 0y < y(z,t) < |7|L(0)|d|c(o,m) for a.e. x € Q and all t € [0,T], it follows
that ! € ®(V), D(d¢}) = X, and D(dv) = V. Moreover 0¢!(u) coincides with

(gt o)

equipped with the homogeneous Dirichlet boundary condition in the distribution sense. Fur-
thermore we can easily verify

(3. 6) (OY(u),v) = blu,v) Yu,v €V,
which together with (3. 3) implies

(3.7) |09 (u)

Therefore (P),, is equivalent to the following Cauchy problem (E)

ve < C4|U|V YueV.

o0 (o)) £ ast(h (1) = f(1) V', 0<t<T

(E), dt Fp) = / !
hp(o):h07

where f(t) := —dh(t)/dt € L*(0,T;V*).
By (3. 1)-(3. 3) and (3. 7), the next lemma follows immediately.

Lemma 3.3 (A1), (A2) and (A3)" hold true with ¢ =2, C; =0 and a = 0.

Now we proceed to the proof of Theorem 3.2.
Proof of Theorem 3.2 We first check (A4). To do this, noting that

1 —-p
];(!W|Lw<ﬂ>\¢lc([o,ﬂ>) /Q]Vu(x)|pd:1: < py(u) Yu€ D(py), Vit €[0,T],

and that W, (Q) is compactly embedded in V, we can deduce that (A4) holds true with
X = WyP(Q) and ¢! = ¢! respectively.



We next derive (A5) and (A5)" from (3. 4) and (3. 5). Let ¢y € [0,7] and ug € D(gl)
be fixed. Moreover define the function « : [0,7] — V by

= ¢(t) U or a

Since y(z,t) = w(x)¢(t), we find
¢(t)
¢(to)

which implies u(t) € D(y}) for all t € [0,T]. Hence since |u|y < C|Vu|y for all u € X, and
p'/P < el/e it follows that

V(z,)
~v(z, to)

e = e
(3.9)  Ju(t) ~ woly ’WO) :
=l @lo(8) = o(to) [Vl

|U0|v

IN

1/p

IN

C _
5 Il @ldleqomlo(t) — o)l "/ {pp, (uo)

Cel/e

TO|7T|%oo(m|¢|0([o,T1>|¢(t) — o(to) (|92 + 1)V/2

X {QD;(U[)> + 1}1/2
1/2

o (t) = ao(to)| {pp(uo) + 1},

IN

IN

where «q is given by

Cel/e
ag(t) = 5 ‘W|im(9)|¢10([0,T])(|Q| + 1)1/2¢(t) e W2(0,7).

Moreover it follows from (3. 8) that

(3.10)  (u(t) = - / <W>pdx: ! / (M>pdx:¢;o(uo).

p v(z,t) p v(2, to)

Hence, since 1 is independent of ¢-variable, putting Cp = 1, oy = ap, a0 = 1 = B2 = 0,
P! =1 and @' = ¢!, we find that (A5) and (A5)" are satisfied.

Therefore using Lemma 3.3 and applying Theorem 2.3 to (E) > We can assure the existence
of a unique strong solution for (E), . s

3.2 Existence and Uniqueness of Solutions for (P)

Theorem 3.4 Suppose that (A) is satisfied. Then for any hy € K° = {u € Xy; |[Vu(z)| <
Y(z,0) for a.e. x € Q}, (P) has a unique solution.



Proof of Theorem 3.4 Define
() = { 0 if uwe K¢,
+oo if weV\ K"
Then it is easy to see that ¢, € ®(V), D(¢',) = K for all t € [0,T] and that (P) is
equivalent to the following Cauchy problem.
oY <(Zl(t)> + 0o (R(t)) D f(t) ImV* 0<t<T,
h(0) = ho.
Let t € [0, 7] be fixed and let u € D(¢’,) = K*. It then follows that

(E)

Vu(z)] < ~y(x,t) < |7|pe@)|dleqor) —for ae z €.

Hence since H} () is embedded in V' compactly, (A4) holds true with X and ' replaced by
H(Q) and ¢! respectively. Moreover just as in the proof of Theorem 3.2, we can deduce
that (A5) and (A5)" are satisfied with (! and 1! replaced by ¢!_ and 1 respectively. Therefore
Lemma 3.3 and Theorem 2.3 ensure the existence of a unique strong solution for (E). g

4 Convergence of h, as p — 400

In this section, we investigate the convergence of h, as p — +00. Our result reads.

Theorem 4.1 Suppose that (A) is satisfied. Let hg € K° and let h, be a unique solution of
(P), for every p € 2, +00). Then h, converges to h as p — 400 in the following sense:

h, — h  strongly in C([0,T]; Vo),
(4. 1) weakly star in L>(0,T; X3),
weakly in W20, T; Vo)

and h is a unique solution of (P). Moreover the following inequality holds.
1 1/2
(4. 2) sup |hy(t) —h(t)]y, < C { + inf ||h, — ’UHL2(07T;VO)} ,
te[0,1) p vek
where K := {v € L*(0,T;Vy); v(t) € K* for a.e. t € (0,T)}.

Proof of Theorem 4.1 Recalling that h, and & become strong solutions of (E), and (E)
respectively, we establish the following a priori estimates.

Lemma 4.2 There exists a constant My such that

(4. 3) sup ¢, (hy(t)) < My,
te[0,T
T|dh, |
. — <
(4. 4) /0 - (T)VdT < My,
T dh 2
4. —r < My,
(4. 5) / %(dT(”)V*dT < M




Proof of Lemma 4.2 Multiplying (E), by dhy(t)/dt, we get by (3. 2)
dh,

. dh, dh,
Dot + (oo Do) < (s0.%0),
By Lemma 2.10, it follows from (3. 9) and (3. 10) that

jtgp;(hp(t)) < <8w2(hp(t)),cg?<t)>

+ewo(t)]10¢, (hp(t)) v+

Cs

1/2

{ebhn(t)) + 1}
Therefore (3. 7) implies

dh,,
dt()

< lao(t)]|0%} (hy(t))
dh

2
% J(t)
14

Cs + oy (1))

1/2

ve @) + 1} + £ ()]

dh,

o)
< D]+ {IFOR + o + o) P}

since 0}, (hy(t)) = f(t) — 0Y(dhy(t)/dt). Integrating this over (0,t), we obtain

C’g t1dh,,
dr (T>

dr + ¢y, (hy(t))

<+ o{ [ 1Rdr + [ P

+C [ Vao(r) Py (hy ()

From the fact that hg € K°, we notice

ko) = p/ <’V<ho(:r:>)\>pd$§ Q.

Thus by Gronwall’s inequality, (4. 6) implies (4. 3). Moreover (4. 4) follows immediately
from (4. 3) and (4. 6). Furthermore (3. 7) and (4. 4) yield (4. 5). y
By the definition of ¢!, it follows from (4. 3) that

(4. 6)

1 h b
(4. 7) sup {/ <W> dx} < M.
e (P Ja | v(x,t)
Hence we obtain
(@ 9 L ([ oyt tpar)
. x,t)|"dx
7| oo )| @] 0,1 b

< (L)

1/p
h t)
{ ) <|V z, ‘) dx} |Q|(p—q)/(pq) < (pM4)1/p|Q’(P—Q)/(PQ)



for each ¢ € [2,p]. In particular, if ¢ = 2, then

(4. 9) sup |hy(t)|x, is bounded for all p € [2,+00).
te[0,7

Consequently we can take a sequence (p,) such that p, — 400 as n — +oo and the
following lemma holds.

Lemma 4.3 There exists h € L>(0,T; Xo) N WH2(0,T; V) such that

hy, — h weakly in W20, T; V),
weakly star in L>(0,T; X5),
strongly in C([0,T]; V)
as pn, — 400 and h is a unique solution of (E).

Proof of Lemma 4.3 By (4. 4) and (4. 9), there exists h € L>(0,T; Xo) N W12(0,T;V)
such that

(4. 10) hy, — h weakly in Wh2(0,T;V),
(4. 11) hy, — h weakly star in L>°(0,T; X5).

Now by Mazur’s lemma, it follows from (4. 5) and (4. 10) that

(4. 12) oY (dhp" ()> — Oy <CZL()> weakly in L*(0,T; V™).

Moreover, since (h,) is bounded in L>(0,T; X5) N W2(0,T;V) and X, is embedded in V
densely and compactly, the Aubin-Lions type compactness lemma (see e.g. [25, Corollary 4])
implies

(4. 13) hy, — h strongly in C([0,T7; V).

Finally we claim that h is a unique strong solution of (E). To this end, we first show that
h(t) € K* for a.e. t € (0,T). By (4. 8), we can take a subsequence (p,,) of (p,) such that
Vhy,, — Vh weakly star in L>(0, 7T L(£2)), which together with the fact that 0 < Jo <
implies Vh,,, /v — Vh/y weakly star in L>(0,T; L9(£2)) for each ¢ < +oo. For simplicity,
we use the same letter p, for p,,. Hence it follows that

(LS )

o

1/q
< hmmf{ <|Vhp"(x t)|> dx dt}
Pn—1+00 l’ t)
1/pn
< hmlnf{ (’Vhpn(x t)') dr dt} (T|Q|)(pn—Q)/(PnQ)
Pn—+00 l’ t)
< lm (Tp, M) ™ (TIQ]) =0 = (TIQ)" — 1 as g — +oo.

Pn—+00



Therefore we can verify that
|Vh(zx,t)|
v(z,1)
which implies that h(t) € K* for a.e. t € (0,7).

)
For any w € L*(0,T;V) satistying w(t) € K' for a.e. t € (0,7), by (E),, and the
definition of subdifferentials, it follows that

(4. 14) < 1 forae (x,t)€Qx(0,71),

(@19 [ (o0 (%20) = 500t (r) = i)
= [ {085, (i (1), By (1) ()Y dr

0

< /OT . (w(r)dr - /OT g (7))r

/ /('wa T )pndxdT

< Q=0 as p— +oo,

IN

since |Vw(z,7)| < y(z,7) for a.e. (z,7) € Q2 x (0,7). By (4. 12) and (4. 13), we deduce

[ (o0 (70) - s —wim)ar < 0

which together with the fact that % (h(t)) = L (w(t)) =0 for a.e. t € (0,T) implies

(4. 16) /0 ! <a¢ (me) — F(r), h(r) — w(T)> dr

T T

< 0= [ )i = [ g (h(r)r

0 0

Hence by Proposition 1.1 in [14], it follows that

dh ¢ R

f(t) — oy a(t) € dp. (h(t)) in V*  forae. t€ (0,T).
Therefore we can deduce that h is a unique strong solution of (E). g
Since the limit is unique, we have the same conclusion as in Lemma 4.3 for an arbitrary

sequence (p,) satisfying p, — +o0o. Finally we verify (4. 2). To do this, recalling (4. 15)
with T, w and p,, replaced by ¢, h and p respectively, we obtain

(4. 17) /Ot <a¢ (?f@)) — F(r), h(7) — h(T)>dT < zmy.

Moreover for all w € L*(0,T;V) satisfying w(t) € K* for a.e. t € (0,T), we have

/ot <8w (?(TO = J(7) (1) = h(7)> dr



v

0+ [ (00 (0 = F0tntr) b)) ar

= Slhlt) = (0) - /0 (g (), () — i)}

Vv« |hy(7) — w(T)|vdr,

0
2 |h |V / |goo

where g (t) = f(t) — OY(dh(t)/dt) € Ot (h(t)). Therefore it follows that

@18 Dkl -
:£|Q|+/OT (o (Pl |y (7) — w(r)ydr  for all £ € 0,7,

which implies (4. 2). g

5 Another Approximation and Its Convergence

In this section, we introduce another approximation of (B) from the view point of convex
analysis. Our new approximation is characterized through the Moreau-Yosida regularization
of ¢!, in X,. More precisely, define

) 1
6. 1 Proa) = inf {5IVu— Vol + o).

vEXo

Then by Lemma 2.5, we have

1
(5. 2) WE(Q,A(U) = ﬁ’vu—vt&w\u’%%ﬂ)?

where J%, \ denotes the resolvent of dx, (¢l |x,). We here remark that J5, yu is the unique
minimizer of the functional of v appearing in the right-hand side of (5. 1). Now the extension
o of ¥k, y to Vg is defined as follows.

. @&27)\(11) if ue Xy,
P\(u) = .
+o0 if uwelVp\ Xo.

We also follow the same setting for V' and H as in §3. Now by (5. 2), we obtain
(5. 3) lulx, = [Vulg < \[2Xp%, 5 (u) + [V Iy, zuln

< 205, () + [l mldle o)
Vu € D(}), Vt € 10,7,

A

where we used the fact that

|VJ§(27>\U(33)‘ < y(z,t) < |7 (@)||dlcqory for ae. x €.



Hence (5. 3) implies that ¢, y is coercive in X,. Hence from the fact that of, \ € ®(X>),
we can derive @§ € ®(V) for all ¢ € [0,T]. Moreover it follows that D(¢}) = D(d¢}) = X
for all ¢t € [0, T7.

Now we introduce the following Cauchy problem as our new approximation to (E).

), { o (ﬁ?(t)) Lo ((®) = f(f) mVF, 0<t<T
ha(0) = ho

As for the existence of a unique strong solution for (E),, we have

Theorem 5.1 Suppose that (A) is satisfied and let A € (0,1]. Then for any hy € Xs, (E),
has a unique strong solution.

Proof of Theorem 5.1 Since H}() is compactly embedded in V, (5. 3) implies (A4)
with X and ¢’ replaced by H} () and ¢} respectively.

Moreover just as in the proof of Theorem 3.2, we can show that (A5) and (A5)" are
satisfied with ' and ¢* replaced by % and v respectively. Indeed, let to € [0,7] and
ug € D(¢Y) = X, be fixed. Define u(t) := {¢(t)/o(to) }uo for all t € [0,T]. Then just as in
(3.9), it follows from (5. 3) that

ult) — woly < ‘%—1‘|UO|V

()
= |¢(to>

< Clloqos Imlz=@ 121, 0)16(t) - olto)] {0 (o) + 1},

— 1' C{ 2205 (ug) + |7T|H|¢>|c<[o,T]>}

where C(|¢|cqo,17), |7z, |€2], do) denotes a constant depending only on |p|c(jo,r))s |7|L~ (@),
|2 and &y. Moreover we have

M) = inf {2& FANCRAC IR (v)}
ol { (f(i?)) 21>\ Vo = Vuly + soi%(w)} ,

where we put w = {¢(to)/p(t) }v. Hence it follows that

weXo ¢(t0)

< o) + { (%)2 - 1} 74 (o)

2
< ¥ (uo) + %|¢|C([0,T})|W|%M(Q)|¢(t) — ¢(to) | (uo).

o\ (u(t)) = inf [2& Vug — Vwl?, + ¢ (w) + {( (1) ) - 1} ;A Vg — Vwﬁq]




Therefore setting

() = Cldleqom). ITLe@) 12, d0)o(t) € WH(0,T),
2
Bo(t) = 5*(2)|¢10([0,T})|7T|%oo(g)¢(t) e W20, 7),

we conclude that {¢}}iepm belongs to ®(V,[0,T]; 70, 5o, 1,2). Hence by Lemma 3.3 and
Theorem 2.3, we can verify the existence of a unique strong solution for (E),. y
As for the convergence of hy as A — +0, our result is stated as follows.

Theorem 5.2 Suppose that (A) is satisfied. Let hg € K° and let hy be a unique strong
solution of (E), for every A € (0,1]. Then hy — h as A — +0 in the following sense:

hy — h strongly in C([0,T); Vo),
weakly star in L>(0,T; X>),
weakly in W20, T; Vp)

and h is a unique strong solution of (E). Moreover the following error estimate holds.

(5. 4) sup |ha(t) — h(t)]y, < CVA.

te[0,7

Proof of Theorem 5.2 Multiplying (E), — (E) by hx(¢) — h(t), we get

5. 5) (00 (500 10} ) ) - 1) )
4 {0 (1)) — geelt), h(t) — (1)) =
where g (t) = f(t) — 0Y(dh(t)/dt) € Ot (h(t)). We then observe

0ps(h(t)) C Ox,(elxa)(R(t),
05 (ha(t)) = Ox,¥k, A (ha(1))

_ Fr() —AJXMhA(t)) € O, (0h|xa) (T, aha (1)),

where Fly, denotes the duality mapping from X, into its dual space X;. Hence we have
(5. 6) (025((1)) = goo (), ha() = (8))
= (Ox, P n(Ba(1) = goo(t), AFx, (3X290§(2,A(hA(t)))>X2
+(0x,0% A (I (£) = goo (£), The, aha(£) — B(2)) <
> Mol (1) B — M {goo(0). Fie! (rapleoa (1))
A A
> S10x, 0, A (P (0))3; = 51900(1)
2 2 2
Therefore it follows from (5. 5) and (5. 6) that

1d

S (ha(®) = h(t). ha(8) = h(t)) < ;|goo<t)

2
X5

§q for a.e. t € (0,7).



Integrating this over (0,t), we get by (3. 2),
C AT
D = hOR < 5 [ lgn(m)igdr foralte 0,7)
0

which implies (5. 4) and that hy — h strongly in C'([0,7]; V) as A — 0.
Repeating the same argument as in the proof of Lemmas 4.2 and 4.3, we can also verify

hy — h weakly in W'2(0,T;V),
weakly star in L>(0,7; Xs) as A — 0.y

Remark 5.3 In Section 4, we could not estimate the error h, — h explicitly; indeed there
is no knowing how to evaluate the term inf,ex ||y — V|| 22(0,7,15) in (4. 2). However our new
approximation enables us to control the error hy —h. More precisely, the error |hy(t) —h(t)|y,
is estimated above by Cv/A for all t € [0, 7] in Theorem 5.2. In this sense, o} gives a better
approximation of ¢f_ than .

Finally we discuss the representation of our approximation as a current-voltage law. For
simplicity, we suppose that j. =~ = 1 in the rest of this section; moreover we denote gpz, o
and gotXM simply by ¢,, po and @x, x respectively. We first remark that the leading term
of (P), (or (E),), which is derived from (B),, can be described as follows:

(Ox, (erlx )@ m)x, = [ K(Vu(@)) - Vn(@)de Yu.n € X,

where k,(v) = |v[P7?v for all v € R?. On account of the above remark, we should find a
function k) : R? — R? such that

(5. 7) (Ox, 03 (U), M) x, = /QkA(Vu(:U))-Vn(:c)d:U Yu,n € Xs.

We here simplify the problem above as follows: let Q = Qj := {z € R?;|z| < R} and
find a function k) : R* — R? such that (5. 7) is satisfied with X5 and ¢y, replaced
by Xpeq := {u € H}(Q);3Ja € HY(0,R) s.t. u(z) = u(|z]) Vo € Q and a(R) = 0} and
oy respectively, where ¢, is defined by (5. 1) with X, and ¢! replaced by X,.q and ¢
respectively.

Now let u € X,q4 be fixed. Then there exists a function @ € H'(0, R) such that u(x) =
a(]z]) for all z € Q and a(R) = 0. Moreover we see

Vu(e) = (cost,sind)"d(jz]), [Vu(z)| =I|@(|2])],

where § = tan~!(y/x) and @ denotes the derivative of . Now define

1 ifr>1,
p(r) = r if [r] <1,
-1 ifr<-—1

and

6. 9) o) = [ plat(©))de



Then it is easily seen that © € W1*°(0, R) and 9(R) = 0. Moreover letting v(z) := 9(|z|) for
all z € ), we observe

(5. 9) Vo(zr) = (cos®,sin®) p(@(|z])) for ae z€Q,

which implies

Vu(z) - Vo(@)| = |(cosb, sin6)7 {i(|al) — p(@ (2]}
= Vefr{gli‘rvl‘<1 |Vu(z) —v| for ae. z €.

Furthermore it follows from (5. 8) and (5. 9) that v € K = {u € X,uq; |Vu(z)] <
1 for a.e. x € Q}. Therefore noting that

min  |Vu(-) —v|

veR?,|v|<1 L2(9)
we have
Vu — Vol = Jg}f{ |Vu — Vw| 2,
which yields
: 1 2
oaw) = it {[Vu = Vullg + omlw)}

(1 ) 1 )
= 111}2;{{2)\|VU — Vw|L2(Q)} = 5|Vu — VU|L2(Q).

Hence it follows from (5. 2) that Jyu = v, where J, denotes the resolvent of dx,_,(¢Yoo|x,.4)-
Therefore by Definition 2.4, it follows that

Fx . (u— Jyu) _ Fx  ,(u—0v)
A A ’

where F¥,,, denotes the duality mapping from X4 into its dual. Therefore since Fy,,, =
—A, we have for all w € X,4q,

8de o5 (u) =

(0x,0aPr(u), W)X, 00 = /Q (Vu(x) ; Vv(:z:)) - Vw(z)dz

_ /Q ky(Vu(z)) - Vw(z)dr,

where k) is given by

0 ifv=0.

V(MDY
ky(v) = {v|< A ) fv#0,

Consequently our approximation can be characterized by the following current-voltage law.

e = k)\(J)
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