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SUBDIFFERENTIAL CALCULUS AND DOUBLY NONLINEAR EVOLUTION

EQUATIONS IN Lp-SPACES WITH VARIABLE EXPONENTS

GORO AKAGI AND GIULIO SCHIMPERNA

Abstract. This paper is concerned with the Cauchy-Dirichlet problem for a doubly nonlin-
ear parabolic equation involving variable exponents and provides some theorems on existence
and regularity of strong solutions. In the proof of these results, we also analyze the relations
occurring between Lebesgue spaces of space-time variables and Lebesgue-Bochner spaces of
vector-valued functions, with a special emphasis on measurability issues and particularly re-
ferring to the case of space-dependent variable exponents. Moreover, we establish a chain rule
for (possibly nonsmooth) convex functionals defined on variable exponent spaces. Actually,
in such a peculiar functional setting the proof of this integration formula is nontrivial and re-
quires a proper reformulation of some basic concepts of convex analysis, like those of resolvent,
of Yosida approximation, and of Moreau-Yosida regularization.

1. Introduction

Nonlinear parabolic equations of the form

β(∂tu)−∆u = f in Ω× (0, T ), (1. 1)

with a maximal monotone graph β : R → R, a domain Ω of RN , and a given function f = f(x, t) :
Ω × (0, T ) → R, have been studied in various contexts (see, e.g., [26]). The linear Laplacian is
often replaced with nonlinear variants such as the so-called m-Laplacian ∆m given by

∆mu = div
(

|∇u|m−2∇u
)

, 1 < m <∞.

In that case, the equation above is called a doubly nonlinear parabolic equation. Very often, by
setting u(t) := u(·, t), such a nonlinear parabolic equation is interpreted as an abstract evolution
equation, i.e., an ordinary differential equation in an infinite-dimensional space X . Namely, one
has

A(u′(t)) +B(u(t)) = f(t) in X, 0 < t < T, (1. 2)

with unknown function u : (0, T ) → X , two (possibly nonlinear) operators A,B in X , and
f : (0, T ) → X . Therefore, it is natural to build the existence and regularity theory for (1. 2) in
some class of vector-valued functions, like the Lebesgue-Bochner space Lp(0, T ;X).

Indeed, (1. 1) has been studied mostly by following two lines: the first one has been originally
developed by Barbu [7], Arai [5] and Senba [24], who analyze (1. 2) in a Hilbert space L2(0, T ;H)
(H denoting here a Hilbert space of functions of space variables, like for instance H = L2(Ω)).
Their methods is based on a time differentiation of (1. 2), which transforms it into another (more
tractable) type of doubly nonlinear equation, as well as on some peculiar monotonicity condition,
which is, roughly speaking, formulated by asking that

(Bu−Bv,A(u − v))H ≥ 0, (1. 3)
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where (·, ·)H denotes the inner product of H , along with the homogeneity of A. The other
approach has been initiated by Colli-Visintin [12] and Colli [11], and it relies on the assumption
of a power growth for the maximal monotone operator A : X → X∗ (here X is a Banach space,
for example X = Lp(Ω)), e.g., p-power growth given as

|Au|p
′

X∗ ≤ C(|u|pX + 1), c0|u|
p
X ≤ 〈Au, u〉X + C (1. 4)

with constants c0 > 0, C ≥ 0 and p′ := p/(p− 1). Particularly, in [11], equation (1. 2) is analyzed
in the Banach space Lp(0, T ;X). For other results on doubly nonlinear equations of the form
(1. 2), the reader is referred to [1, 3, 4, 6, 9, 16, 17, 18, 21, 22, 23, 25] and references therein.

In this paper, we are concerned with the following Cauchy-Dirichlet problem for doubly non-
linear parabolic equations with variable exponents :

|∂tu|
p(x)−2∂tu−∆m(x)u = f(x, t) in Q := Ω× (0, T ), (1. 5)

u = 0 on ∂Ω× (0, T ), (1. 6)

u(·, 0) = u0 in Ω, (1. 7)

where 1 < p(x),m(x) <∞ are variable exponents and ∆m(x) stands for the m(x)-Laplacian given
by

∆m(x)u = div
(

|∇u|m(x)−2∇u
)

.

The constant exponent case, i.e., p(x) ≡ p, m(x) ≡ m, can be treated within the classical
frame mentioned above by making appropriate assumptions. However, the variable exponent case
presents a number of peculiarities which do not permit to apply the standard theory. Indeed,
due to the x-dependence of variable exponents, it is difficult to check the monotonicity condition
(1. 3) used in the first approach (e.g., [5]) without taking extra assumptions (e.g., a smooth
dependence of the variable exponent with respect to the space variables). On the other hand,
differently from [12] and [11], here the operator A : u 7→ |u(·)|p(·)−2u(·) with the variable exponent
p(x) does not satisfy any mathematically tractable p-growth condition (1. 4), because the growth
order is inhomogeneous over Ω. For all these reasons, a proper functional setting for addressing
Problem (1. 5)–(1. 7) seems still to be lacking, and, actually, the main aim of this paper consists
exactly in the construction of such a framework.

In order to understand which are our main ideas, we have to focus on the boundedness of the
operator A : u 7→ |u|p(x)−2u from Lp(x)(Q) to the dual space Lp′(x)(Q) = (Lp(x)(Q))∗, where

Lp(x)(Q) and Lp′(x)(Q) stand for variable exponent Lebesgue spaces of space-time variables over
the set Q = Ω × (0, T ) with p′(x) := p(x)/(p(x) − 1). Then, it is easy to notice that this
boundedness cannot be formulated in terms of any Lebesgue-Bochner space of vector-valued
functions with no loss of integrability, due to the presence of variable exponents. To say it in simple
words, the identification Lp(x)(Q) ∼ Lp(x)(0, T ;Lp(x)(Ω)), which is standardly used for constant
exponents p ∈ [1,∞), turns out to be meaningless in the variable-exponent setting; actually, once
one tries to embed Lp(x)(Q) into some vector-valued function space of the time variable, a loss of
integrability occurs. For this reason, we are obliged to address equation (1. 5) by mainly working
in the space Lp(x)(Q), which plays a critical role as far as we need to exploit the fine properties
of the operator A. This functional setting forces us to pay attention to the different measures
and measurability concepts characterizing Lebesgue spaces of space-time variables and Lebesgue-
Bochner spaces of vector-valued functions, particularly in the variable-exponent case. In addition
to this, the monotone structure of the nonlinear operators appearing in equation (1. 5) has to
be properly managed in the setting of the space Lp(x)(Q). Indeed, while for constant exponents
any (maximal) monotone operator acting on Lp(Ω) can be extended to the time-dependent space
Lp(Q) (or, equivalently, to Lp(0, T ;Lp(Ω))) in a straightforward way, here this procedure is far
from being obvious because space and time variables cannot be “decoupled” in the definition
of Lp(x)(Q). In order to overcome this problem, we have to revise some concepts in the theory
of monotone operators and of subdifferentials and adapt them to the variable exponent setting.
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In particular, we need to properly modify the notions of Yosida approximation for monotone
operators and of Moreau-Yosida regularization for convex functionals. This permits us to prove a
chain rule for subdifferentials, extending the classical result [10, Lemme 3.3, p. 76]) to the space
Lp(x)(Q) (cf. Prop. 4.1 below). This chain rule will play a crucial role in the existence proof for
(1. 5)–(1. 7).

It is worth noting that the functional framework and the convex analysis tools developed in
the present paper could also be applied to more general classes of doubly nonlinear parabolic
equations, like for instance

β(x, ∂tu)− div a(x,∇u) = f,

with x-dependent maximal monotone graphs β(x, ·) in R and a(x, ·) in R
N under p(x)- and

m(x)-growth conditions on β(x, ·) and a(x, ·), respectively, at each point x ∈ Ω.

Prior to stating main results, let us exhibit our basic assumptions (H):

m ∈ Plog(Ω), p ∈ P(Ω), 1 < p−,m−, p+,m+ <∞, (H1)

ess inf
x∈Ω

(m∗(x) − p(x)) > 0, (H2)

f ∈ Lp′(x)(Q), u0 ∈W
1,m(x)
0 (Ω), (H3)

where Plog(Ω) (resp., P(Ω)) stands for the set of log-Hölder continuous (resp., measurable) expo-
nents 1 ≤ p(x) ≤ ∞ over Ω, p− := ess inf p(x), p+ := ess sup p(x), m± are defined analogously
for m(x), and m∗(x) := (Nm(x))/(N −m(x))+ (see §2 below for more details).

We are concerned with solutions of (1. 5)–(1. 7) defined in the following sense:

Definition 1.1 (Strong solutions). We call u ∈ Lp(x)(Q) a strong solution of (1. 5)–(1. 7) in Q
whenever the following conditions hold true:

(i) t 7→ u(·, t) is continuous with values in Lp(x)(Ω) on [0, T ] and is weakly continuous with

values in W
1,m(x)
0 (Ω) on [0, T ],

(ii) ∂tu ∈ Lp(x)(Q), ∆m(x)u ∈ Lp′(x)(Q),
(iii) equation (1. 5) holds for a.e. (x, t) ∈ Q,
(iv) the initial condition (1. 7) is satisfied for a.e. x ∈ Ω.

Now, our result reads

Theorem 1.2 (Existence of strong solutions). Assume (H). Then the Cauchy-Dirichlet problem
(1. 5)–(1. 7) admits (at least) one strong solution u in the sense of Definition 1.1.

In the case when the forcing term f is more regular, namely

t∂tf ∈ Lp′(x)(Q), (1. 8)

we can also prove parabolic regularization properties of strong solutions:

Theorem 1.3 (Time-regularization of strong solutions). Assume (1. 8) together with (H). Then,
the Cauchy-Dirichlet problem (1. 5)–(1. 7) admits a strong solution u in the sense of Defini-
tion 1.1, which additionally satisfies

ess sup
t∈(δ,T )

‖∂tu(·, t)‖Lp(x)(Ω) <∞ and ess sup
t∈(δ,T )

‖∆m(x)u(·, t)‖Lp′(x)(Ω) <∞ (1. 9)

for any δ ∈ (0, T ).

The remainder of the paper is organized as follows: in Section 2, we summarize some prelimi-
nary material on convex analysis and variable exponent Lebesgue and Sobolev spaces to be used
later. In Section 3, we reduce (1. 5)–(1. 7) to a doubly nonlinear evolution equation and discuss
its representation in a Lebesgue space of space-time variables as well as a pointwise (in time)
one. Moreover, we also provide a summary of the relations occurring between Lebesgue spaces
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of space-time variables and Lebesgue-Bochner spaces of vector-valued functions (see Proposition
3.1). Section 4 is devoted to a proof of Theorem 1.2. Our argument basically relies on a time-
discretization and limiting procedure. In particular, a chain-rule for convex functionals in a mixed
frame turns out to play a crucial role. To prove this chain-rule, we introduce some modified def-
initions for resolvent, Yosida approximation and Moreau-Yosida regularization, which, compared
to the standard ones, are more suitable for working in the variable-exponent setting. In Section
5, we give a proof of Theorem 1.3 by performing a second energy estimate in a discrete level.
Finally, in the Appendix, we present a survey of the theory of Lebesgue-Bochner spaces and see
how this theory can be extended to the variable exponent case. In particular, we give a proof of
Proposition 3.1 of § 3.1.

Notation. We write Q = Ω× (0, T ). For vector-valued functions u : (0, T ) → X , we denote by
u′ the X-valued derivative of u in time. For u : Q → R, the partial derivative of u in time is
denoted by ∂tu.

2. Preliminaries

This section is devoted to recall some preliminary results on convex analysis and on Lebesgue
and Sobolev spaces with variable exponents.

2.1. Convex analysis. Let E be a reflexive Banach space with a norm | · |E , a dual space E∗

(with a norm | · |E∗), and a duality pairing 〈·, ·〉E (or 〈·, ·〉 for short) between E and E∗. Let
ϕ : E → (−∞,∞] be a proper (i.e., ϕ 6≡ ∞), lower semicontinuous convex function with the
effective domain

D(ϕ) := {u ∈ E : ϕ(u) <∞} .

The subdifferential operator ∂ϕ : E → 2E
∗

associated with ϕ is defined by

∂ϕ(u) := {ξ ∈ E∗ : ϕ(v) − ϕ(u) ≥ 〈ξ, v − u〉 for all v ∈ D(ϕ)} ,

for u ∈ D(ϕ), with the domain D(∂ϕ) := {u ∈ D(ϕ) : ∂ϕ(u) 6= ∅}. It is well known that the
subdifferential of any convex functional is a maximal monotone operator in E×E∗. Furthermore,
ϕ is said to be Fréchet differentiable in E if, for any u ∈ E, there exists ξu ∈ E∗ such that

∣

∣

∣

∣

ϕ(u+ v)− ϕ(u)− 〈ξu, v〉

|v|E

∣

∣

∣

∣

→ 0, whenever v → 0 strongly in E.

Then dϕ : E → E∗, dϕ : u 7→ ξu is called a Fréchet derivative of ϕ. In particular, if ϕ is convex
and Fréchet differentiable in E, then ∂ϕ = dϕ.

Moreover, the convex conjugate ϕ∗ : E∗ → (−∞,∞] of ϕ is defined as

ϕ∗(ξ) := sup
u∈E

(〈ξ, u〉 − ϕ(u)) for ξ ∈ E∗.

It particularly holds that ∂ϕ∗ = (∂ϕ)−1, that is, ξ ∈ ∂ϕ(u) if and only if u ∈ ∂ϕ∗(ξ).

2.2. Variable exponent Lebesgue and Sobolev spaces. In this subsection, we briefly review
the theory of Lebesgue and Sobolev spaces with variable exponent to be used later. The reader
is referred to [13] for a more detailed survey of this field. Let O be a domain in R

N . We denote
by P(O) the set of all measurable functions p : O → [1,∞]. For p ∈ P(O), we write

p+ := ess sup
x∈O

p(x), p− := ess inf
x∈O

p(x).

Throughout this subsection, we assume that p ∈ P(O). Then, for p+ < +∞, the Lebesgue space
with a variable exponent p(x) is defined as follows:

Lp(x)(O) :=

{

u : O → R : measurable in O and

∫

O

|u(x)|p(x)dx <∞

}
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with a Luxemburg-type norm

‖u‖Lp(x)(O) := inf

{

λ > 0:

∫

O

∣

∣

∣

∣

u(x)

λ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

.

Then Lp(x)(O) is a special sort of Musielak-Orlicz space (see [20]) and is sometimes called Nakano

space. For p+ <∞, the dual space of Lp(x)(O) is identified with Lp′(x)(O) with the dual variable
exponent p′ ∈ P given by

1

p(x)
+

1

p′(x)
= 1 for a.e. x ∈ O,

where we write 1/∞ = 0. In the case when p+ = +∞ the above definition can be adapted with
minor changes (see, e.g., [13, Chap. 3]).

Hölder’s inequalities also hold for variable exponent Lebesgue spaces (cf. [13, Lemma 3.2.20]):

Proposition 2.1 (Hölder’s inequality). For s, p, q ∈ P(O), it holds that

‖fg‖Ls(x)(O) ≤ 2‖f‖Lp(x)(O)‖g‖Lq(x)(O) for all f ∈ Lp(x)(O), g ∈ Lq(x)(O),

provided that
1

s(x)
=

1

p(x)
+

1

q(x)
for a.e. x ∈ O.

In particular, if O is bounded and p(x) ≤ q(x) for a.e. x ∈ O, then Lq(x)(O) is continuously
embedded in Lp(x)(O).

The following proposition plays an important role to establish energy estimates (see, e.g.,
Theorem 1.3 of [14] for a proof).

Proposition 2.2. Let p+ <∞. Then, we have

σ−
p(·)(‖w‖Lp(x)(O)) ≤

∫

O

|w(x)|p(x)dx ≤ σ+
p(·)(‖w‖Lp(x)(O)) for all w ∈ Lp(x)(O)

with the strictly increasing functions

σ−
p(·)(s) := min{sp

−

, sp
+

}, σ+
p(·)(s) := max{sp

−

, sp
+

} for s ≥ 0.

We next define variable exponent Sobolev spaces W 1,p(x)(O) as follows:

W 1,p(x)(O) :=

{

u ∈ Lp(x)(O) :
∂u

∂xi
∈ Lp(x)(O) for all i = 1, 2, . . . , N

}

with the norm

‖u‖W 1,p(x)(O) :=
(

‖u‖2Lp(x)(O) + ‖∇u‖2Lp(x)(O)

)1/2

,

where ‖∇u‖Lp(x)(O) denotes the Lp(x)(O)-norm of |∇u|. Furthermore, let W
1,p(x)
0 (O) be the

closure of C∞
0 (O) in W 1,p(x)(O). Here we note that, usually, the space W

1,p(x)
0 (O) is defined in

a slightly different way for the variable exponent case. However, both definitions are equivalent
under the regularity assumption (2. 1) given below.

The following proposition is concerned with the uniform convexity of Lp(x)- andW 1,p(x)-spaces.

Proposition 2.3 ([13]). If p+ < ∞, then Lp(x)(O) is a separable Banach space. If p− > 1 and
p+ <∞, then Lp(x)(O) and W 1,p(x)(O) are uniformly convex. Hence they are reflexive.

Let us exhibit the Poincaré and Sobolev inequalities. To do so, we introduce the log-Hölder
condition:

|p(x) − p(x′)| ≤
A

log(e+ 1/|x− x′|)
for all x, x′ ∈ O (2. 1)
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with some constant A > 0 (see [13]). This condition is weaker than the Hölder continuity of p
over O and it implies p ∈ C(O) and p+ < ∞. We denote by Plog(O) the set of all p ∈ P(O)
satisfying the log-Hölder condition (2. 1).

Then the following properties hold:

Proposition 2.4 ([13]). Let O be a bounded domain in R
N with smooth boundary ∂O and let

p ∈ Plog(O).

(i) There exists a constant C ≥ 0 such that

‖w‖Lp(x)(O) ≤ C‖∇w‖Lp(x)(O) for all w ∈W
1,p(x)
0 (O).

In particular, the space W
1,p(x)
0 (O) has a norm ‖ · ‖1,p(x) given by

‖w‖1,p(x) := ‖∇w‖Lp(x)(O) for w ∈ W
1,p(x)
0 (O),

which is equivalent to ‖ · ‖W 1,p(x)(O).

(ii) Let q : O → [1,∞) be a measurable and bounded function and suppose that

q(x) ≤ p∗(x) := Np(x)/(N − p(x))+ for a.e. x ∈ O,

where (s)+ := max{s, 0} for s ∈ R. Then W 1,p(x)(O) is continuously embedded in
Lq(x)(O).

In addition, assume that

ess inf
x∈O

(

p∗(x)− q(x)
)

> 0.

Then the embedding W 1,p(x)(O) →֒ Lq(x)(O) is compact.

Remark 2.5. In [19], it is proved that the embedding W
1,p(x)
0 (O) →֒ Lq(x)(O) is compact when

p∗(x) coincides with q(x) on some thin part of O and the difference between the two variable
exponents is appropriately controlled on the other part (see also [15]).

Finally we give a variant of Young’s inequality with variable exponents. Let p ∈ P(O) with
p+ <∞. For any ε > 0, there exists a constant Cε ≥ 0 independent of x such that

ab ≤ εap(x) + Cεb
p′(x) for all a, b ≥ 0 and for a.e. x ∈ O. (2. 2)

Indeed, let δ ∈ (0, 1) be arbitrarily given. Then, from the standard form of Young’s inequality,
we have

ab = (δa)
b

δ
≤
δp(x)

p(x)
ap(x) +

1

p′(x)δp′(x)
bp

′(x)

≤
δp

−

p−
ap(x) +

1

(p+)′δ(p−)′
bp

′(x).

For each ε > 0, take a constant δε ∈ (0, 1) such that ε ≥ δp
−

ε /p−. Then (2. 2) follows with a

constant Cε := ((p+)′δ
(p−)′

ε )−1 ≥ 0.

3. Reduction to an abstract evolution equation

3.1. Setting of spaces and potentials. We set V = Lp(x)(Ω) and X =W
1,m(x)
0 (Ω) with norms

‖u‖V := ‖u‖Lp(x)(Ω) and ‖u‖X := ‖∇u‖Lm(x)(Ω), respectively. Moreover, we write

〈v, u〉V =

∫

Ω

u(x)v(x) dx for all u ∈ V, v ∈ V ∗ = Lp′(x)(Ω).

By assumption (H2) along with Proposition 2.4, it follows that

X →֒ V and V ∗ →֒ X∗
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where the embeddings are continuous and, in view of [13, Thm. 3.4.12, p. 90], they are also dense.

Define functionals ψ and φ on V by

ψ(u) :=

∫

Ω

1

p(x)
|u(x)|p(x)dx for u ∈ V

and

φ(u) :=







∫

Ω

1

m(x)
|∇u(x)|m(x)dx if u ∈ X,

∞ if u ∈ V \X.

Here and henceforth, we use ∂Ω for the subdifferential in V = Lp(x)(Ω) and ∂Q for the subdiffer-

ential in Lp(x)(Q) when any confusion may arise.

Then, ψ is Fréchet differentiable on V and we find that ∂Ωψ(u) = dψ(u) = |u|p(x)−2u for any
u ∈ V .

On the other hand, φ is proper, lower semicontinuous and convex in V . The lower semi-
continuity can be proved in a standard way (see Lemma 3.2 of [2]). Moreover, it holds that
∂Ωφ(u) = −∆m(x)u with the domain

D(∂Ωφ) =
{

u ∈ X : −∆m(x)u ∈ Lp′(x)(Ω)
}

incorporating the boundary condition (1. 6) in the sense of traces. Actually, the restriction φ|X
of φ to X is also Fréchet differentiable in X with the representation d(φ|X)(u) = −∆m(x)u;
moreover, ∂Ωφ(u) = d(φ|X)(u) for any u ∈ D(∂Ωφ).

The above defined operators permit to reduce (1. 5)–(1. 7) into the following doubly nonlinear
evolution equation:

∂Ωψ(u
′(t)) + ∂Ωφ(u(t)) = Pf(t) in V ∗, 0 < t < T, (3. 1)

u(0) = u0. (3. 2)

The operator P represents pointwise in time evaluation for functions of space-time variables and
will be more precisely defined later on. Here, we notice that Pf(t) := f(·, t) ∈ V ∗ for a.e. t ∈ (0, T )
(this follows from (H3) and Proposition 3.1 below).

As mentioned in the Introduction, we shall work in a mixed frame of Lebesgue-Bochner space
Lp(0, T ;Lp(Ω)) and Lebesgue space Lp(Q) with Q = Ω× (0, T ). However, these classes of spaces
are originally defined in a different way and their identification is delicate, particularly in the
variable-exponent setting, in view of the different types of measures involved. In the Appendix we
will present a review of the underlying theory by emphasizing the additional difficulties occurring
in the variable exponent case. A crucial role will be played by the pointwise evaluation operator
P : L1(Q) → L1(0, T ;L1(Ω)) (as |Ω| <∞, L1 is the largest space), defined by Pu(t) := u(·, t) for
t ∈ (0, T ), which permits to pass from Lebesgue functions of space-time variables to Lebesgue-
Bochner vector-valued functions. Its properties are summarized in the following proposition,
whose proof is postponed to the Appendix, where an extended survey of the properties of P is
presented. Here and henceforth, we simply write Pu(t) and P−1u(x, t) instead of (Pu)(t) and
(P−1u)(x, t), respectively.

Proposition 3.1. For any constant exponent 1 ≤ p < ∞ and variable one p(x) with 1 ≤ p− ≤
p+ <∞, the following (i)–(iv) hold true:

(i) The operator P is a linear, bijective, isometric mapping from Lp(Q) to Lp(0, T ;Lp(Ω)).

Furthermore, if u ∈ Lp(x)(Q), then Pu ∈ Lp−

(0, T ;Lp(x)(Ω)).
(ii) The inverse P−1 : Lp(0, T ;Lp(Ω)) → Lp(Q) is well-defined, and for each u = u(t) ∈

Lp(0, T ;Lp(Ω)), it holds that u(t) = P−1u(·, t) for a.e. t ∈ (0, T ).

(iii) If u ∈ Lp(x)(Q) with ∂tu ∈ Lp(x)(Q), then Pu belongs to the space W 1,p−

(0, T ;Lp(x)(Ω))
and (Pu)′ = P (∂tu).
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(iv) If u ∈ W 1,p(0, T ;Lp(Ω)), then ∂t(P
−1u) belongs to Lp(Q) and coincides with P−1(u′),

where u′ denotes the derivative of u : (0, T ) → V in time.

To be more precise (c.f., e.g., (ii) above), for each exponent p (or p(x)), we should use a different
notation of the operators defined above. However, for simplicity, we shall always write P and
P−1 regardless of p.

Set V := Lp(x)(Q) with the norm ‖u‖V := ‖u‖Lp(x)(Q) and 〈u, v〉V :=
∫∫

Q u(x, t)v(x, t) dxdt

whenever u ∈ V and v ∈ V∗ = Lp′(x)(Q). Define functionals Ψ and Φ on V as

Ψ(u) :=

∫∫

Q

1

p(x)
|u(x, t)|p(x)dxdt =

∫ T

0

ψ(Pu(t)) dt,

where the latter equality follows from Fubini’s lemma and the fact u ∈ Lp(x)(Q), and

Φ(u) :=







∫ T

0

φ(Pu(t)) dt if Pu(t) ∈ X for a.e. t ∈ (0, T ), t 7→ φ(Pu(t)) ∈ L1(0, T ),

∞ otherwise

for u ∈ V . Then Ψ is Fréchet differentiable and convex in V (hence D(Ψ) = V) and Φ is
proper, lower semicontinuous and convex in V with D(Φ) = {u ∈ V : Pu(t) ∈ X for a.e. t ∈
(0, T ) and t 7→ φ(Pu(t)) ∈ L1(0, T )}. To prove the lower semicontinuity of Φ on V , it suffices to
check it on a larger space L1(0, T ;V ) which continuously embeds V (see (ii) of Lemma 4.5 below)
by using the lower semicontinuity of φ in V . The details, quite standard, are given in Appendix B
below. The subdifferential operator ∂QΨ : V → V∗ of Ψ is formulated as

∂QΨ(u) :=

{

ξ ∈ V∗ : Ψ(v)−Ψ(u) ≥

∫∫

Q

ξ(v − u) dxdt for all v ∈ D(Ψ)

}

with domain D(∂QΨ) := {u ∈ D(Ψ): ∂QΨ(u) 6= ∅}, and ∂QΦ can be also defined analogously.

In the constant exponent case, a similar extension of convex functionals onto Lebesgue-Bochner
spaces (e.g., Lp(0, T ;V )) is a standard issue. On the other hand, in our case V = Lp(x)(Q), the
given extensions Φ and Ψ of φ and ψ do not correspond to those provided by the standard
theory. Correspondingly, some basic properties of these functionals (like, e.g., subdifferentials, or
regularizations) need to be properly analyzed.

The following relations will be frequently used in the sequel:

(i) For u ∈ V and ξ ∈ V∗,

[u, ξ] ∈ ∂QΦ if and only if [Pu(t), P ξ(t)] ∈ ∂Ωφ for a.e. t ∈ (0, T ),

i.e., −∆m(x)u(x, t) = ξ(x, t) for a.e. (x, t) ∈ Q.

(ii) For u ∈ V and η ∈ V∗,

[u, η] ∈ ∂QΨ if and only if [Pu(t), Pη(t)] ∈ ∂Ωψ for a.e. t ∈ (0, T ),

i.e., |u(x, t)|p(x)−2u(x, t) = η(x, t) for a.e. (x, t) ∈ Q.

The above properties (i)–(ii) will be proved in the next subsection, where, actually, more general
results will be presented. Finally, on account of the previous discussion, we can restate equation
(3. 1) in Lebesgue spaces of space-time variables as follows:

∂QΨ(∂t(P
−1u)) + ∂QΦ(P

−1u) = f in V∗. (3. 3)

Then û := P−1u corresponds to a strong solution of (1. 5)–(1. 7) as in Definition 1.1, provided
that û enjoys sufficient regularity.
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3.2. Representation of subdifferential operators associated with variable exponents.

In this section, we set V = Lp(x)(Ω) with 1 < p− ≤ p+ < ∞ (then V turns out to be a reflexive
and separable Banach space) and let p′(x) be the (pointwise) conjugate exponent of p(x), that is,
p′(x) := p(x)/(p(x) − 1). We also let ϕ : V → [0,∞] be proper (i.e., D(ϕ) 6= ∅; for simplicity, we
assume D(ϕ) ∋ 0), convex and lower semicontinuous (note that here ϕ is a generic functional,
non-necessarily corresponding to the functional φ of our equation). Then, we define a functional
Φ on V := Lp(x)(Q) by setting

Φ(u) :=







∫ T

0

ϕ(Pu(t)) dt if ϕ(Pu(·)) ∈ L1(0, T ),

∞ otherwise.

(3. 4)

Then Φ is proper, lower semicontinuous and convex. As expected, we have

Lemma 3.2. For u ∈ V, ξ ∈ V∗ with 1 < p− ≤ p+ <∞, the following property holds :

ξ ∈ ∂QΦ(u) if and only if Pξ(t) ∈ ∂Ωϕ(Pu(t)) for a.e. t ∈ (0, T ). (3. 5)

Proof. Define the operator Aext : V → V∗ as

ξ ∈ Aext(u)
define
⇐⇒ Pξ(t) ∈ ∂Ωϕ(Pu(t)) for a.e. t ∈ (0, T ), (3. 6)

where a function u ∈ V belongs to the domain D(Aext) whenever Pu(t) ∈ D(∂Ωϕ) for a.e. t ∈
(0, T ) and, moreover, there exists a function ξ ∈ V∗ such that Pξ(t) ∈ ∂Ωϕ(Pu(t)) for a.e. t ∈
(0, T ). Then one readily verifies by integration in time and Fubini’s lemma that Aext ⊂ ∂QΦ. So
it remains to prove that Aext is maximal. To this aim, we observe that the operator

ZΩ : V → V ∗, (ZΩv)(x) := |v(x)|p(x)−2v(x) (3. 7)

is strictly monotone, bounded (cf. Lemma 4.6 below), continuous, and coercive. The same hap-
pens, of course, for

ZQ : V → V∗, (ZQv)(x, t) := |v(x, t)|p(x)−2v(x, t). (3. 8)

Here we also remark that

ZΩ(Pu(t)) = P (ZQ(u))(t) for u ∈ V .

Properly modifying the proof of [8, Chap. II, Theorem 1.2, p. 39], one can see that a (possibly)
multivalued monotone graph A in V ×V ∗ (resp., V×V∗) is maximal if and only if A+λZΩ (resp.,
A + λZQ) is surjective for some λ > 0. In other words, one can use ZΩ (resp., ZQ) in place of
the duality mapping between V and V ∗ (resp., V and V∗), which behaves badly with respect to
integration in time. Now, we are in position to prove that Aext is maximal in V×V∗. Let f ∈ V∗.

Then, by Proposition 3.1, Pf belongs to L(p+)′(0, T ;V ∗). Since ∂Ωϕ is maximal monotone in
V × V ∗, one can uniquely take u(t) ∈ D(∂Ωϕ) such that

ZΩ (u(t)) + ∂Ωϕ (u(t)) ∋ Pf(t) for a.e. t ∈ (0, T ). (3. 9)

The next task consists in proving that u : t 7→ u(t) is strongly measurable with values in V .

Indeed, equation (3. 9) can be rewritten as

u(t) = (ZΩ + ∂Ωϕ)
−1 (Pf(t)) .

Let us now show that TΩ := (ZΩ+∂Ωϕ)
−1 is demicontinuous from V ∗ into V . Indeed, let gn → g

strongly in V ∗ and put wn := TΩgn and w := TΩg. Then, rewriting (3. 9) with u(t) and Pf(t)
replaced, respectively, by wn and gn, and multiplying by wn, we have

∫

Ω

|wn(x)|
p(x)dx+ ϕ(wn) ≤ ϕ(0) + 〈gn, wn〉V

(2. 2)

≤ ϕ(0) +
1

2

∫

Ω

|wn(x)|
p(x)dx+ C

∫

Ω

|gn(x)|
p′(x)dx. (3. 10)
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This relation, together with Proposition 2.2, ensures that wn is bounded in V uniformly with n.
Hence, by subtraction of equations and multiplication by wn − w, we get

〈ZΩwn − ZΩw,wn − w〉V ≤ 〈gn − g, wn − w〉V → 0,

which along with the definition of ZΩ gives

(

|wn(x)|
p(x)−2wn(x) − |w(x)|p(x)−2w(x)

)

(wn(x)− w(x)) → 0 for a.e. x ∈ Ω.

Then, for almost all fixed x ∈ Ω, wn(x) is uniformly bounded and converges to w(x). The
combination of uniform boundedness in V and pointwise convergence implies that (the whole
sequence) wn tends to w weakly in V . Hence, TΩ is demicontinuous from V ∗ to V .

Now, let hn ∈ C([0, T ];V ∗) be such that hn → Pf strongly in L(p+)′(0, T ;V ∗). Then, from
the demicontinuity of TΩ, we see that un := TΩ(hn(·)) is weakly continuous with values in V
on [0, T ], and, hence, un is strongly measurable by Pettis’ lemma and the separability of V .
Moreover, un(t) converges to u(t) = TΩ(Pf(t)) weakly in V for a.e. t ∈ (0, T ), and, therefore, u
is also strongly measurable in (0, T ) with values in V . Repeating an estimate similar to (3. 10),
one finds that

∫ T

0

(
∫

Ω

|(u(t)) (x)|p(x) dx

)

dt <∞, (3. 11)

which particularly implies u ∈ Lp−

(0, T ;V ) ⊂ L1(0, T ;L1(Ω)). Furthermore, we get û := P−1u ∈
V by Fubini’s lemma along with (3. 11). Then, by (3. 9), û solves ZQ(û) + Aext(û) ∋ f . In
particular, û ∈ D(Aext) since f − ZQ(û) ∈ V∗. Therefore, Aext is maximal monotone in V × V∗.
Since the graph of Aext is contained in that of a (maximal) monotone operator ∂QΦ, the two
operators must coincide, as desired. �

4. Proof of Theorem 1.2

This section is aimed at giving a proof of Theorem 1.2. As mentioned in the Introduction, it
is a major difference of this study from the constant exponent case (e.g., [11]) that one has to
work in a mixed framework of (generalized) Lebesgue spaces of space and time variables and of
Lebesgue-Bochner spaces (i.e., vector-valued Lebesgue spaces). Particularly, it is a crucial point
how to incorporate chain rules for subdifferentials into such a specific framework. So let us begin
with the following proposition:

Proposition 4.1 (Chain rule for subdifferentials in a mixed frame). Let p(·) ∈ P(Ω) satisfy
1 < p− ≤ p+ < ∞. Let u ∈ V := Lp(x)(Q) be such that ∂tu ∈ V. Suppose that there exists ξ ∈

V∗ = Lp′(x)(Q) such that ξ ∈ ∂QΦ(u), where Φ is given by (3. 4) for a proper lower semicontinuous

convex functional ϕ on V := Lp(x)(Ω). Then, the function t 7→ ϕ(Pu(t)) is absolutely continuous
over [0, T ]. Moreover, for each t ∈ (0, T ), we have

d

dt
ϕ(Pu(t)) = 〈η, (Pu)′(t)〉V for all η ∈ ∂Ωϕ(Pu(t)),

whenever Pu and ϕ(Pu(·)) are differentiable at t. In particular, for 0 ≤ s < t ≤ T , we have

ϕ(Pu(t))− ϕ(Pu(s)) =

∫∫

Ω×(s,t)

ξ∂τu dxdτ.

This chain rule will be exploited at the end of the proof given below for Theorem 1.2, more
precisely, for the identification of a limit (see §4.6 for more details).
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4.1. Moreau-Yosida regularizations in variable exponent spaces. To prove Proposition
4.1, let us introduce a variant of Moreau-Yosida regularizations (cf. see [8] for usual ones) for
functionals defined on variable exponent spaces. Namely, we set

ϕλ(u) := min
v∈V

(

∫

Ω

λ

p(x)

∣

∣

∣

∣

v(x) − u(x)

λ

∣

∣

∣

∣

p(x)

dx+ ϕ(v)

)

for u ∈ V, (4. 1)

for ϕ : V → [0,∞], and analogously,

Φλ(u) := min
v∈V

(

∫∫

Q

λ

p(x)

∣

∣

∣

∣

v(x, t)− u(x, t)

λ

∣

∣

∣

∣

p(x)

dxdt+Φ(v)

)

for u ∈ V , (4. 2)

for Φ : V → [0,∞]. In the definition of ϕλ and Φλ, the position of λ is crucial, particularly in view
of Lemma 4.3 below, due to the presence of variable exponents. On the other hand, for constant
exponent cases, the position and the power of λ in Moreau-Yosida regularizations would not be
a problem even in the Lp-framework, and, in fact, ϕλ is defined in a simpler way.

Moreover, define the modified resolvent Jλ : V → V of A := ∂Ωϕ by setting Jλu := uλ, which
is a unique solution of the equation

ZΩ

(

uλ − u

λ

)

+A(uλ) ∋ 0 in V ∗ (4. 3)

(here ZΩ is defined as in Lemma 3.2). The modified Yosida approximation Aλ : V → V ∗ of A is
given by

Aλ(u) := ZΩ

(

u− Jλu

λ

)

∈ A(Jλu) for each u ∈ V.

Then one can prove as in [8] that Aλ is single-valued and monotone, and, furthermore, Jλ and Aλ

are demicontinuous. These notions and properties are still available for general maximal monotone
operators A : V → V ∗. Moreover, analogue properties hold in the frame of V = Lp(x)(Q) as well.

Going back to the modified Moreau-Yosida regularization and following the lines of [8, Theo-
rem II.2.2, p. 57] with the proper adaptations, we can also verify that ϕλ is convex, continuous
and Gâteaux differentiable in V . Moreover, the subdifferential (= Gâteaux derivative) ∂Ωϕλ of
ϕλ coincides with the modified Yosida approximation Aλ = (∂Ωϕ)λ of ∂Ωϕ. Furthermore, the
infimum in (4. 1) is achieved at v = Jλu, namely,

ϕλ(u) =

∫

Ω

λ

p(x)

∣

∣

∣

∣

Jλu(x)− u(x)

λ

∣

∣

∣

∣

p(x)

dx+ ϕ(Jλu).

Hence we have D(ϕλ) = V and ϕ(Jλu) ≤ ϕλ(u) ≤ ϕ(u) for any u ∈ V , which implies

ϕλ(u) → ϕ(u) for all u ∈ V, (4. 4)

since Jλu→ u strongly in V for u ∈ D(ϕ). A further notable property is given by the following

Lemma 4.2. Noting as Φλ the Moreau-Yosida regularization of Φ in V and as ϕλ the Moreau-
Yosida regularization of ϕ in V , we have the relation

Φλ(u) =

∫ T

0

ϕλ(Pu(t)) dt for all u ∈ V . (4. 5)

In particular, for u ∈ V and ξ ∈ V∗, Lemma 3.2 ensures that

ξλ = ∂QΦλ(u) if and only if Pξλ(t) = ∂Ωϕλ(Pu(t)) for almost all t ∈ (0, T ).

In other words, also in the variable exponent setting, Moreau-Yosida regularization and integration
in time commute.
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Proof. Let u ∈ V . Then, we know that Pu(t) ∈ V for a.e. t ∈ (0, T ). Moreover, we also have

Φλ(u) =

∫∫

Q

λ

p(x)

∣

∣

∣

∣

u(t, x)− uλ(t, x)

λ

∣

∣

∣

∣

p(x)

dxdt+Φ(uλ), (4. 6)

where uλ ∈ D(∂QΦ) satisfies

ZQ

(

uλ − u

λ

)

+ ∂QΦ(uλ) ∋ 0. (4. 7)

Analogously, since Pu(t) ∈ V for a.a. t ∈ (0, T ), there exists ûλ(t) := Jλ(Pu(t)) ∈ D(∂Ωϕ), where
Jλ stands for the modified resolvent of ∂Ωϕ, such that

ϕλ(Pu(t)) =

∫

Ω

λ

p(x)

∣

∣

∣

∣

u(x, t)− P−1ûλ(x, t)

λ

∣

∣

∣

∣

p(x)

dx+ ϕ(ûλ(t)). (4. 8)

Here ûλ(t) satisfies, for a.e. t ∈ (0, T ),

ZΩ

(

ûλ(t)− Pu(t)

λ

)

+ ∂Ωϕ(ûλ(t)) ∋ 0. (4. 9)

Since Jλ : V → V is demicontinuous, one can prove that P−1ûλ ∈ V proceeding as in Lemma
3.2. Integrating (4. 8) in time and using Fubini’s lemma, we obtain

∫ T

0

ϕλ(Pu(t)) dt =

∫∫

Q

λ

p(x)

∣

∣

∣

∣

u(t, x)− P−1ûλ(t, x)

λ

∣

∣

∣

∣

p(x)

dxdt+Φ(P−1ûλ), (4. 10)

provided that ϕ(ûλ(·)) ∈ L1(0, T ).

Note that, up to this point, the functions uλ and ûλ need not be related to each other. However,
observing that

ZΩ

(

ûλ(t)− Pu(t)

λ

)

= ZΩ

(

P

(

P−1ûλ − u

λ

)

(t)

)

= P

(

ZQ

(

P−1ûλ − u

λ

))

(t),

by virtue of (4. 9) and Lemma 3.2, we infer that

ZQ

(

P−1ûλ − u

λ

)

+ ∂QΦ(P
−1ûλ) ∋ 0. (4. 11)

Comparing this with (4. 7), we deduce that P−1ûλ coincides with uλ, whence we also obtain
ϕ(ûλ(·)) = ϕ(Puλ(·)) ∈ L1(0, T ) and the thesis follows from (4. 10). �

4.2. Proof of Proposition 4.1. Now, we are in position to prove Proposition 4.1. We first
claim that

∫ t

s

〈Pξλ(τ), (Pu)
′(τ)〉V dτ = ϕλ(Pu(t))− ϕλ(Pu(s)) for all s, t ∈ [0, T ] (4. 12)

for any function u ∈ V satisfying ∂tu ∈ V and ξλ = ∂QΦλ(u) ∈ V∗ (see §4.1). Indeed, we deduce
from Proposition 3.1 that

Pu ∈W 1,p−

(0, T ;V );

hence, Pu is absolutely continuous with values in V . Furthermore, since Aλ := ∂Ωϕλ is bounded
from V to V ∗ and Pξλ(t) = Aλ(Pu(t)) by Lemma 4.2, we find that Pξλ belongs to L∞(0, T ;V ∗).
Therefore, by using a standard chain-rule for subdifferentials, one can obtain (4. 12).

We next pass to the limit as λց 0 in (4. 12). Concerning the left-hand side, we first give the
following lemma:

Lemma 4.3. Let A : V → V ∗ be a maximal monotone operator and let Aλ be the modified Yosida
approximation of A. Then for any [u, η] ∈ A and λ > 0, it follows that

∫

Ω

1

p′(x)
|Aλu(x)|

p′(x)dx ≤

∫

Ω

1

p′(x)
|η(x)|p

′(x)dx.
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An analogous statement also holds for maximal monotone operators A : V → V∗.

In §4.1, the notions of resolvent and Yosida approximation (and hence, modified Moreau-Yosida
regularization as well) were defined in such a way as to let this lemma hold true.

Proof. Let [u, η] ∈ A and observe by the monotonicity of A that 0 ≤ 〈η−Aλ(u), u−Jλu〉V , where
Jλ denotes the resolvent of A. By Young’s inequality and the definition of Aλ, we have

∫

Ω

∣

∣

∣

∣

u(x)− Jλu(x)

λ

∣

∣

∣

∣

p(x)

dx ≤

∫

Ω

η(x)
u(x) − Jλu(x)

λ
dx

≤

∫

Ω

1

p′(x)
|η(x)|p

′(x)dx+

∫

Ω

1

p(x)

∣

∣

∣

∣

u(x)− Jλu(x)

λ

∣

∣

∣

∣

p(x)

dx.

Note that |Aλu(x)|p
′(x) = |ZΩ((u−Jλu)/λ)(x)|p

′(x) = |(u(x)−(Jλu)(x))/λ|p(x). Then the desired
inequality follows. �

By this lemma, we have
∫∫

Q

1

p′(x)
|ξλ(x, t)|

p′(x)dxdt ≤

∫∫

Q

1

p′(x)
|ξ(x, t)|p

′(x)dxdt,

which along with Proposition 2.2 implies the boundedness of ξλ in V∗. Thus we deduce in
particular that, for a subsequence (not relabelled) of λց 0,

ξλ → ξ weakly in V∗.

This relation, together with the fact that (Pu)′ = P (∂tu) (see Proposition 3.1), implies
∫ t

s

〈Pξλ(τ), (Pu)
′(τ)〉V dτ =

∫∫

Ω×(s,t)

ξλ(x, τ)∂tu(x, τ) dxdτ

→

∫∫

Ω×(s,t)

ξ(x, τ)∂tu(x, τ) dxdτ =

∫ t

s

〈Pξ(τ), (Pu)′(τ)〉V dτ.

Therefore, noting that ϕλ(Pu(t)) → ϕ(Pu(t)) by (4. 4), we have

ϕ(Pu(t))− ϕ(Pu(s)) =

∫ t

s

〈

Pξ(τ), (Pu)′(τ)
〉

V
dτ for all 0 ≤ s < t ≤ T,

which implies that t 7→ ϕ(Pu(t)) is absolutely continuous on [0, T ], since t 7→ 〈Pξ(t), (Pu)′(t)〉V =
∫

Ω
ξ(x, t)∂tu(x, t)dx is integrable over (0, T ) by Fubini’s lemma and the fact that ξ∂tu ∈ L1(Q).

Now, let t ∈ (0, T ) be such that Pu and ϕ(Pu(·)) are differentiable at t and take η ∈ ∂Ωϕ(Pu(t))
arbitrarily. Then by definition of subdifferential, we have, for h > 0,

ϕ(Pu(t+ h))− ϕ(Pu(t))

h
≥

〈

η,
Pu(t+ h)− Pu(t)

h

〉

V

.

Taking the limit h→ 0+ and using the differentiability of ϕ(Pu(·)), we obtain

d

dt
ϕ(Pu(t)) ≥ 〈η, (Pu)′(t)〉V .

The converse inequality also follows by choosing h < 0 and letting h → 0−. Finally, we remark
that (Pu(t + h) − Pu(t))/h → (Pu)′(t) strongly in V for a.e. t ∈ (0, T ), since Pu belongs to

W 1,p−

(0, T ;V ). In particular, substitute η = Pξ(t) ∈ ∂Ωϕ(Pu(t)) to get

ϕ(Pu(t)) − ϕ(Pu(s)) =

∫ t

s

〈Pξ(τ), (Pu)′(τ)〉V dτ =

∫∫

Ω×(s,t)

ξ∂τu dxdτ.

Thus we obtain the desired formula.
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4.3. Time-discretization. We address system (1. 5)–(1. 7) by means of the following time-
discretization scheme:

∂Ωψ

(

un+1 − un
h

)

+ ∂Ωφ(un+1) = fn+1 in V ∗, n = 0, 1, . . . , N − 1, (4. 13)

where N ∈ N, h := T/N , fn ∈ V ∗ is given by

fn :=
1

h

∫ tn

tn−1

Pf(θ) dθ =
1

h

∫ tn

tn1

f(·, θ) dθ (4. 14)

with tn := nh (hence t0 = 0 and tN = T ) and the prescribed initial data u0. The existence of
solutions {un}n=1,2,...,N for (4. 13) can be proved at each step n by minimizing the functional
Jn : V → (−∞,∞] given by

Jn(u) := hψ

(

u− un
h

)

+ φ(u)− 〈fn+1, u〉V for u ∈ V,

which is convex and lower semicontinuous in V . Indeed, Jn is coercive in V by the fact that

Jn(u) ≥ hψ

(

u− un
h

)

− Cn‖u‖V

= h

∫

Ω

1

p(x)

∣

∣

∣

∣

u(x)− un(x)

h

∣

∣

∣

∣

p(x)

dx− Cn‖u‖V

≥
h

p+
σ−
p(·)

(∥

∥

∥

∥

u− un
h

∥

∥

∥

∥

V

)

− Cn‖u‖V ,

which is coercive in V by p− > 1 for each fixed n. Therefore, for each n ∈ {0, 1, . . . , N − 1}, one
can take a minimizer un+1 ∈ D(φ) of Jn. Hence, it holds that

∂ΩJn(un+1) ∋ 0 in V ∗.

Since D(ψ) = V , by the sum rule for subdifferentials (see, e.g., [8]), we have the representation
formula

∂ΩJn(un+1) = ∂Ωψ

(

un+1 − un
h

)

+ ∂Ωφ(un+1)− fn+1.

Thus the minimizers {un}n=1,2,...,N solve (4. 13).

We next introduce interpolants of the minimizers defined by

uN(t) :=
tn+1 − t

h
un +

t− tn
h

un+1 (4. 15)

and

uN (t) ≡ un+1 (4. 16)

for t ∈ (tn, tn+1] and n = 0, 1, . . . , N − 1. Then uN ∈ W 1,∞(0, T ;V ) and uN ∈ L∞(0, T ;V ), and
they satisfy

∂Ωψ(u
′
N (t)) + ∂Ωφ(uN (t)) = fN (t) in V ∗, for a.e. t ∈ (0, T ), uN (0) = u0, (4. 17)

where fN is a piecewise constant interpolant of {fn}n=0,1,...,N defined as in (4. 16). Equivalently,
by Proposition 3.1 and Lemma 3.2,

∂QΨ(∂t(P
−1uN )) + ∂QΦ(P

−1uN ) = P−1fN in V∗, uN(0) = u0. (4. 18)

By convexity, we also find that uN (t) and uN (t) belong to D(φ) for all t ∈ [0, T ].



DOUBLY NONLINEAR EVOLUTION EQUATIONS 15

4.4. Lemmas for a priori estimates. We first give a lemma on the boundedness and the
convergence of the piecewise constant interpolant fN of {fn}n=0,1,...,N .

Lemma 4.4. It holds that
∫∫

Q

|P−1fN |p
′(x)dxdt ≤

∫∫

Q

|f |p
′(x)dxdt. (4. 19)

Moreover, P−1fN → f strongly in Lp′(x)(Q) as N → ∞.

Proof. By using Jensen’s inequality, we have, for all t ∈ (tn−1, tn),

|P−1fN (x, t)|p
′(x) =

∣

∣

∣

∣

∣

1

h

∫ tn

tn−1

f(x, t)dt

∣

∣

∣

∣

∣

p′(x)

≤
1

h

∫ tn

tn−1

|f(x, t)|p
′(x)dt,

which implies (4. 19). The convergence of P−1fN can be proved in a standard way (see, e.g., [21,
Lemma 8.7, p. 208], where a similar argument is performed in a Lebesgue-Bochner space setting).
However, for the convenience of the reader, let us give a brief sketch of proof. Let ε > 0 be
any small number. Then one can take a smooth approximation fε ∈ C∞

0 (Q) by p(·) ∈ P(Ω)
and p+ < ∞ (see [13, Theorem 3.4.12, p. 90]) such that ‖fε − f‖Lp′(x)(Q) < ε/3 and ‖P−1fN −

P−1(fε)N‖Lp′(x)(Q) < ε/3, where (fε)N ∈ L∞(0, T ;V ∗) denotes a piecewise constant interpolant

for fε given in a similar way to fN for f . Indeed, the latter inequality can be checked from the
former one by observing that, thanks to (4. 19),
∫∫

Q

∣

∣

∣
P−1fN − P−1(fε)N

∣

∣

∣

p′(x)

dxdt =

∫∫

Q

∣

∣

∣
P−1(f − fε)N

∣

∣

∣

p′(x)

dxdt ≤

∫∫

Q

|f − fε|
p′(x)

dxdt

and using Proposition 2.2.

On the other hand, since fε is uniformly continuous on Q, there exists a modulus of continuity
ωε for fε. Then by Proposition 2.1 it holds that

∥

∥

∥
P−1(fε)N − fε

∥

∥

∥

Lp′(x)(Q)
≤ 2‖1‖Lp′(x)(Q)

∥

∥

∥
P−1(fε)N − fε

∥

∥

∥

L∞(Q)

≤ 2(|Q|+ 1)ωε(h) → 0

as h → 0 (equivalently, N → ∞). Here we also used ‖1‖Lp′(x)(Q) ≤ (|Q|+ 1). Actually, we have
∫∫

Q
(1/λ)p

′(x)dxdt ≤ 1 with λ = |Q|+ 1. Therefore, we can take Nε ∈ N such that ‖P−1(fε)N −

fε‖Lp′(x)(Q) < ε/3 for any N ≥ Nε. Consequently, it holds that ‖P−1fN − f‖Lp′(x)(Q) < ε for any
N ≥ Nε. �

The following lemma provides continuous embeddings between variable exponent Lebesgue
spaces and Lebesgue-Bochner spaces through the mappings P, P−1.

Lemma 4.5. The following (i) and (ii) are satisfied :

(i) ‖P−1u‖Lp(x)(Q) ≤ C‖u‖Lp+(0,T ;V ) for all u ∈ Lp+

(0, T ;V ).

(ii) ‖Pu‖Lp−(0,T ;V ) ≤ C‖u‖Lp(x)(Q) for all u ∈ Lp(x)(Q).

Proof. By Proposition 3.1, each u ∈ Lp+

(0, T ;V ) ⊂ L1(0, T ;L1(Ω)) has a unique representative

P−1u ∈ L1(Q). Then (i) follows. Indeed, for each u ∈ Lp+

(0, T ;V ), by Fubini’s lemma and
Proposition 2.2 we get

∫∫

Q

|P−1u(x, t)|p(x)dxdt ≤

∫ T

0

(‖u(t)‖V + 1)
p+

dt,
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which implies P−1u ∈ Lp(x)(Q). Using Proposition 2.2 again, we also note that

σ−
p(·)

(

‖P−1u‖Lp(x)(Q)

)

≤

∫∫

Q

|P−1u(x, t)|p(x)dxdt.

Therefore (i) follows. As for (ii), see Proposition A.3 for a proof. �

We next derive the boundedness of ∂QΨ : V → V∗.

Lemma 4.6. It holds that
∥

∥

∥
|v|p(x)−2v

∥

∥

∥

V∗

≤ (‖v‖V + 1)
p+−1

for all v ∈ V . (4. 20)

Proof. Set λ = (‖v‖V + 1)p
+−1 ≥ 1. Let us estimate the following:

∫∫

Q

∣

∣

∣

∣

|v|p(x)−2v

λ

∣

∣

∣

∣

p′(x)

dxdt =

∫∫

Q

|v|p(x)

λp′(x)
dxdt.

Then we note that

λp
′(x) = (‖v‖V + 1)p

′(x)(p+−1) ≥ (‖v‖V + 1)p(x) ≥ ‖v‖
p(x)
V .

Thus we get
∫∫

Q

∣

∣

∣

∣

|v|p(x)−2v

λ

∣

∣

∣

∣

p′(x)

dxdt ≤

∫∫

Q

∣

∣

∣

∣

v

‖v‖V

∣

∣

∣

∣

p(x)

dxdt ≤ 1,

which implies the assertion. �

4.5. A priori estimates. We are now in position to derive a priori estimates. Let us first test
(4. 13) by (un+1 − un)/h to get

∫

Ω

∣

∣

∣

∣

un+1 − un
h

∣

∣

∣

∣

p(x)

dx+

〈

∂Ωφ(un+1),
un+1 − un

h

〉

V

=

〈

fn+1,
un+1 − un

h

〉

V

,

which, together with Propositions 2.1 and 2.2 and Inequality (2. 2), implies
∫

Ω

∣

∣

∣

∣

un+1 − un
h

∣

∣

∣

∣

p(x)

dx+
φ(un+1)− φ(un)

h

≤ C

∫

Ω

|fn+1|
p′(x)dx+

1

2

∫

Ω

∣

∣

∣

∣

un+1 − un
h

∣

∣

∣

∣

p(x)

dx.

Hence
1

2

∫

Ω

∣

∣

∣

∣

un+1 − un
h

∣

∣

∣

∣

p(x)

dx+
φ(un+1)− φ(un)

h
≤ C

∫

Ω

|fn+1|
p′(x)dx. (4. 21)

Multiplying this by h and summing it up from n = 0 to m ∈ {0, 1, . . . , N − 1}, we have

1

2

m
∑

n=0

h

∫

Ω

∣

∣

∣

∣

un+1 − un
h

∣

∣

∣

∣

p(x)

dx+ φ(um+1) ≤ φ(u0) + C

∫∫

Q

|P−1fN |p
′(x)dxdt. (4. 22)

Thus by Proposition 3.1 and Lemma 4.4 we obtain
∫∫

Q

∣

∣∂t(P
−1uN)

∣

∣

p(x)
dxdt+ sup

t∈(0,T ]

φ(uN (t)) ≤ C, (4. 23)

which together with Proposition 2.2 also gives

sup
t∈(0,T ]

|uN (t)|X + sup
t∈[0,T ]

|uN (t)|X ≤ C. (4. 24)

One can also deduce from (4. 23) and Proposition 2.2 that
∥

∥∂t(P
−1uN)

∥

∥

V
≤ C. (4. 25)
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Thus by (4. 25) along with Lemma 4.6, one can get
∥

∥∂QΨ(∂t(P
−1uN))

∥

∥

V∗
≤ C. (4. 26)

By comparison of terms in (4. 18) together with the boundedness of P−1fN in V∗ (see Lemma
4.4) again, we get

∥

∥∂QΦ(P
−1uN )

∥

∥

V∗
≤ C. (4. 27)

4.6. Convergence. Recall that X = W
1,m(x)
0 (Ω) is compactly embedded in V = Lp(x)(Ω)

by (H2). Hence by virtue of (4. 24) and (4. 25) together with Proposition 3.1 (particularly,
∂t(P

−1uN) = P−1(u′N )) and (ii) of Lemma 4.5, Aubin-Lions’s compactness lemma ensures the
precompactness of (uN ) in C([0, T ];V ). Thus we obtain

uN → u strongly in C([0, T ];V ) and weakly in W 1,p−

(0, T ;V ), (4. 28)

weakly star in L∞(0, T ;X), (4. 29)

with u ∈W 1,p−

(0, T ;V ) ∩ L∞(0, T ;X). Furthermore, for each t ∈ (tn, tn+1), noting that

∣

∣P−1uN (x, t)− P−1uN (x, t)
∣

∣ =

∣

∣

∣

∣

tn+1 − t

h
un(x) +

t− tn
h

un+1(x)− un+1(x)

∣

∣

∣

∣

= (tn+1 − t)

∣

∣

∣

∣

un+1(x) − un(x)

h

∣

∣

∣

∣

≤ h

∣

∣

∣

∣

un+1(x)− un(x)

h

∣

∣

∣

∣

,

one has
∫

Ω

|P−1uN(x, t)− P−1uN (x, t)|p(x)dx ≤

∫

Ω

hp(x)
∣

∣

∣

∣

un+1(x)− un(x)

h

∣

∣

∣

∣

p(x)

dx

(4. 22)

≤ 2hp
−−1

(

φ(u0) + C

∫∫

Q

|f |p
′(x)dxdt

)

→ 0 uniformly for t ∈ (0, T ) as h→ 0.

Here we also used Lemma 4.4. Thus it follows that

uN − uN → 0 strongly in L∞(0, T ;V ).

Combining this relation with (4. 28), we obtain

uN → u strongly in L∞(0, T ;V ). (4. 30)

Furthermore, it also holds by (4. 24) that

uN → u weakly star in L∞(0, T ;X), (4. 31)

which, together with the fact that u ∈ C([0, T ];V ) and X →֒ V , implies u ∈ Cw([0, T ];X), the
space of weakly continuous functions with values in X .

By (4. 30) along with Lemma 4.5, we infer that

P−1uN → P−1u strongly in V . (4. 32)

We set
û := P−1u ∈ V .

By (4. 25)–(4. 27), one can also take ξ, η ∈ V∗ such that

∂t(P
−1uN) → ∂tû weakly in V , (4. 33)

∂QΦ(P
−1uN ) → ξ weakly in V∗, (4. 34)

∂QΨ(∂t(P
−1uN)) → η weakly in V∗. (4. 35)

Hence, we have in particular ∂tû ∈ V . Moreover, thanks also to Lemma 4.4, we can take the limit
n → ∞ in (4. 18) to obtain η + ξ = f in V∗. By the maximal monotonicity in V × V∗ of the
subdifferential operator ∂QΦ, we derive [û, ξ] ∈ ∂QΦ from (4. 34) and (4. 32).
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We finally claim that

[∂tû, η] ∈ ∂QΨ. (4. 36)

We can prove this fact by using the chain rule established in Proposition 4.1 as well as a mono-
tonicity argument. Indeed, a standard chain rule and a simple calculation yield
∫∫

Q

∂QΨ
(

∂t(P
−1uN)

)

∂t(P
−1uN ) dxdt

(4. 18)
=

∫∫

Q

(

P−1fN − ∂QΦ(P
−1uN )

)

∂t(P
−1uN ) dxdt

≤

∫∫

Q

(

P−1fN
)

∂t(P
−1uN) dxdt− φ(uN (T )) + φ(u0).

Hence, by virtue of the strong convergence of P−1fN to f in V∗ (see Lemma 4.4), we infer that

lim sup
n→∞

∫∫

Q

∂QΨ
(

∂t(P
−1uN)

)

∂t(P
−1uN ) dxdt

≤

∫∫

Q

f∂tû dxdt− φ(u(T )) + φ(u0),

since lim infN→∞ φ(uN (T )) ≥ φ(u(T )) by (4. 28). Furthermore, recall that ∂tû ∈ V , ξ ∈ V∗,
[û, ξ] ∈ ∂QΦ and exploit the chain rule in Proposition 4.1 to deduce that t 7→ φ(u(t)) is absolutely
continuous on [0, T ], and, moreover, it holds that

lim sup
n→∞

〈

∂QΨ
(

∂t(P
−1uN)

)

, ∂t(P
−1uN)

〉

V
≤

∫∫

Q

f∂tû dxdt− φ(P û(T )) + φ(P û(0))

= 〈f − ξ, ∂tû〉V = 〈η, ∂tû〉V ,

which together with the maximal monotonicity of ∂QΦ in V × V∗ implies that [∂tû, η] ∈ ∂QΦ.
Thus û is a strong solution of (1. 5)–(1. 7) (see §3.1). This completes the proof.

5. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 under the additional regularity assumption (1. 8). To
this end, we shall derive the second energy inequality. Write (4. 13) for the couple of indexes n
and n− 1 (for n ∈ {1, 2, . . . , N − 1}) and then take the difference. It follows that

∂Ωψ

(

un+1 − un
h

)

− ∂Ωψ

(

un − un−1

h

)

+ ∂Ωφ(un+1)− ∂Ωφ(un) = fn+1 − fn.

By the monotonicity of ∂Ωφ, the multiplication of the above by un+1 − un yields
〈

∂Ωψ

(

un+1 − un
h

)

− ∂Ωψ

(

un − un−1

h

)

, un+1 − un

〉

V

≤ 〈fn+1 − fn, un+1 − un〉V . (5. 1)

Here the left-hand side can be transformed as follows:
〈

∂Ωψ

(

un+1 − un
h

)

− ∂Ωψ

(

un − un−1

h

)

, un+1 − un

〉

V

≥ h

[

ψ∗

(

∂Ωψ

(

un+1 − un
h

))

− ψ∗

(

∂Ωψ

(

un − un−1

h

))]

, (5. 2)

where we also used that ∂Ωψ
∗ = (∂Ωψ)

−1. Hence, multiplying (5. 1) by (n− 1) and using (5. 2),
we have

(n− 1)h

[

ψ∗

(

∂Ωψ

(

un+1 − un
h

))

− ψ∗

(

∂Ωψ

(

un − un−1

h

))]

≤ (n− 1)〈fn+1 − fn, un+1 − un〉V .
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Summing it up from n = 2 tom ∈ N, we observe by a simple calculation withm ∈ {3, 4, . . . , N−1}
that

(m− 1)hψ∗

(

∂Ωψ

(

um+1 − um
h

))

≤
m
∑

n=2

hψ∗

(

∂Ωψ

(

un − un−1

h

))

+

m
∑

n=2

(n− 1)h2
〈

fn+1 − fn
h

,
un+1 − un

h

〉

V

. (5. 3)

Then, we have to control the right-hand side. Firstly we notice that

m
∑

n=2

hψ∗

(

∂Ωψ

(

un − un−1

h

))

≤

∫ T

0

ψ∗ (∂Ωψ(u
′
N (t))) dt ≤ C

from (4. 23) together with the fact that

ψ∗ (∂Ωψ(v)) =

∫

Ω

1

p′(x)

∣

∣

∣
|v(x)|p(x)−2v(x)

∣

∣

∣

p′(x)

dx =

∫

Ω

1

p′(x)
|v(x)|p(x)dx

for any v ∈ V . Moreover, the following lemma holds:

Lemma 5.1. It holds that

m
∑

n=2

(n− 1)h2
〈

fn+1 − fn
h

,
un+1 − un

h

〉

V

≤

∫∫

Q

2

p′(x)
|t∂tf |

p′(x)dxdt+

∫∫

Q

1

p(x)

∣

∣∂t(P
−1uN)

∣

∣

p(x)
dxdt.

Proof. By a simple computation,

m
∑

n=2

(n− 1)h2
〈

fn+1 − fn
h

,
un+1 − un

h

〉

V

≤
m
∑

n=2

h

∫

Ω

1

p′(x)
|(n− 1) (fn+1(x)− fn(x))|

p′(x)
dx+

∫∫

Q

1

p(x)

∣

∣∂t(P
−1uN )(x, t)

∣

∣

p(x)
dxdt

for t ∈ (tn, tn+1). Here we further observe, by Jensen’s inequality, that

|(n− 1) (fn+1(x)− fn(x))|
p′(x)

=

∣

∣

∣

∣

1

h

∫ tn+1

tn

(n− 1) (f(x, θ) − f(x, θ − h)) dθ

∣

∣

∣

∣

p′(x)

≤
1

h

∫ tn+1

tn

|(n− 1) (f(x, θ)− f(x, θ − h))|p
′(x)

dθ

=
1

h

∫ tn+1

tn

∣

∣

∣

∣

∣

∫ θ

θ−h

(n− 1)∂sf(x, s)ds

∣

∣

∣

∣

∣

p′(x)

dθ

≤
1

h2

∫ tn+1

tn

∫ θ

θ−h

|(n− 1)h∂sf(x, s)|
p′(x)

ds dθ. (5. 4)

Since (n− 1)h ≤ s for any s ∈ (θ − h, θ) and θ ∈ (tn, tn+1), we infer that

1

h2

∫ tn+1

tn

∫ θ

θ−h

|(n− 1)h∂sf(x, s)|
p′(x) ds dθ ≤

1

h2

∫ tn+1

tn

∫ θ

θ−h

|s∂sf(x, s)|
p′(x) ds dθ

≤
1

h

∫ (n+1)h

(n−1)h

|s∂sf(x, s)|
p′(x)

ds. (5. 5)
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Collecting (5. 4) and (5. 5) and exploiting Fubini’s lemma, we obtain

m
∑

n=2

h

∫

Ω

1

p′(x)
|(n− 1) (fn+1(x) − fn(x))|

p′(x)
dx

≤
m
∑

n=2

∫

Ω

1

p′(x)

(

∫ (n+1)h

(n−1)h

|s∂sf(x, s)|
p′(x)

ds

)

dx

≤

∫∫

Q

2

p′(x)
|s∂sf(x, s)|

p′(x) dxds.

Thus the proof is completed. �

Let δ ∈ (0, T ) be fixed. Then we claim that one can choose N ∈ N so large (equivalently, h > 0
so small) that

ess sup
t∈(δ,T )

ψ∗ (∂Ωψ(u
′
N (t))) ≤ C/δ (5. 6)

for some C > 0 independent of N and δ. Indeed, we note that

(m− 1)hψ∗

(

∂Ωψ

(

um+1 − um
h

))

≥
m− 1

m+ 1
tψ∗ (∂Ωψ(u

′
N (t))) for all t ∈ (mh, (m+ 1)h) .

Hence it follows from (5. 3) together with Lemma 5.1 and Proposition 2.2 that

tψ∗ (∂Ωψ(u
′
N (t))) ≤

m+ 1

m− 1
ℓ
(

‖t∂tf‖V∗ +
∥

∥∂t(P
−1uN)

∥

∥

V

)

(5. 7)

with a non-decreasing function ℓ in R for all t ∈ (mh, (m+ 1)h) and m ∈ {3, 4, . . . , N − 1}.

Now, let δ ∈ (0, T ) be fixed. For h ∈ (0, δ/3], one can take mδ ∈ {3, 4, . . . , N − 1} such that
mδh ≤ δ ≤ (mδ + 1)h, which implies

δ

h
− 1 ≤ mδ ≤

δ

h
and

mδ + 1

mδ − 1
≤
δ/h+ 1

δ/h− 2
→ 1 as h→ 0.

Moreover, due to the monotonicity of the function r 7→ (r + 1)/(r − 1), we note that

m+ 1

m− 1
≤
mδ + 1

mδ − 1
for any m ≥ mδ.

Hence, observing that mδh ≤ δ, we conclude that

ess sup
t∈(δ,T )

tψ∗ (∂Ωψ(u
′
N(t))) ≤ ess sup

t∈(mδh,T )

tψ∗ (∂Ωψ(u
′
N (t)))

(5. 7)

≤ 2ℓ
(

‖t∂tf‖V∗ +
∥

∥∂t(P
−1uN )

∥

∥

V

)

for 0 < h≪ 1. By (4. 25) and assumption (1. 8), we obtain (5. 6). Moreover, we also infer that

sup
t∈[δ,T ]

‖∂Ωψ (u′N (t))‖V ∗ ≤
C

δ
. (5. 8)

By a comparison of terms in (4. 17) along with Lemma 5.2 given below, we further get

sup
t∈[δ,T ]

‖∂Ωφ (uN (t))‖V ∗ ≤
C

δ
. (5. 9)

Lemma 5.2. Let f ∈ Lp′(x)(Q) and assume (1. 8). Then it follows that

sup
t∈[0,T ]

‖tfN (t)‖V ∗ ≤ ℓ

(
∫∫

Q

|f |p
′(x)dxdt+

∫∫

Q

|t∂tf |
p′(x)dxdt

)

with a nondecreasing function ℓ in R.
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Proof. For t ∈ [tn, tn+1), we see by Jensen’s inequality that
∫

Ω

|tP−1fN (t, x)|p
′(x)dx

≤

∫

Ω

|tn+1fn+1(x)|
p′(x)dx

=

∫

Ω

∣

∣

∣

∣

tn+1

h

∫ tn+1

tn

f(x, τ) dτ

∣

∣

∣

∣

p′(x)

dx

=

∫

Ω

∣

∣

∣

∣

tn+1

h

∫ tn+1

tn

1

τ
P−1

{
∫ τ

0

d

ds
(sPf) ds

}

dτ

∣

∣

∣

∣

p′(x)

dx

≤ σ+
p(·)

(

tn+1

tn
T

)

2(p
−)′−1

T

∫∫

Q

(

|f(x, s)|p
′(x) + |s∂sf(x, s)|

p′(x)
)

dxds.

Here we used the facts that sPf(s)|s=0 = 0, which will be checked below, and that ∂s(sf) =
f + s∂sf . Consequently, one can derive the desired inequality by noting that tn+1/tn ≤ 2.

We finally prove that tPf(t)|t=0 = 0. By virtue of (1. 8), we find that tPf belongs to

W 1,(p+)′(0, T ;V ∗) by ∂t(tf) = f + t∂tf ∈ V∗. Hence tPf is continuous with values in V ∗

on [0, T ]. In particular, tPf(t) converges to some g0 ∈ V ∗ strongly in V ∗ as t→ 0+. Hence,

‖tPf(t)‖V ∗ ≥
1

2
‖g0‖V ∗ for 0 < t ≪ 1,

which implies ‖Pf(t)‖V ∗ ≥
1

2t
‖g0‖V ∗ . Since ‖Pf(·)‖V ∗ ∈ L1(0, T ), we conclude that g0 = 0. �

By (5. 8) and (5. 9), for any δ ∈ (0, T ), up to a subsequence, it holds that

∂Ωφ(uN (t))|(δ,T ) → Pξ|(δ,T ) weakly star in L∞(δ, T ;V ∗), (5. 10)

∂Ωψ(u
′
N (t))|(δ,T ) → Pη|(δ,T ) weakly star in L∞(δ, T ;V ∗). (5. 11)

In particular, Pξ, Pη ∈ L∞(δ, T ;V ∗) for any δ ∈ (0, T ). Moreover, (5. 6) also yields that u′ ∈
L∞(δ, T ;V ) for any δ ∈ (0, T ).

Appendix A. Identification between Lebesgue and Bochner spaces

We often identify the Lebesgue-Bochner space Lp(0, T ;Lp(Ω)) with the Lebesgue space Lp(Q)
for Q = Ω × (0, T ). For instance, a function u = u(x, t) ∈ Lp(Q) with space-time variables
(x, t) ∈ Q = Ω × (0, T ) corresponds to an Lp(Ω)-valued function Pu ∈ Lp(0, T ;Lp(Ω)) through
the mapping P : Lp(Q) → Lp(0, T ;Lp(Ω)) given by

(Pu)(t) := u(·, t). (A. 1)

This mapping is well-defined and turns out to be linear, bijective and isometric (see Proposition
A.3). Conversely, one may expect that each Lp(Ω)-valued function u = u(t) ∈ Lp(0, T ;Lp(Ω))
could be identified with a function Mu ∈ Lp(Q), where M is defined by the relation

(Mu)(x, t) := (u(t)) (x). (A. 2)

However, checking that M is well-defined with values in Lp(Q) is somehow delicate due to the
different measures characterizing the domain and the target space of the map. For instance, it is
known that L∞(Q) does not coincide with L∞(0, T ;L∞(Ω)) (see, e.g., [21, Example 1.42, p. 24])
because of the difference between the Lebesgue measurability of functions in Q and the strong
measurability of Lp(Ω)-valued functions over (0, T ) in Bochner’s sense (and also a lack of Pettis’
theorem for L∞(Ω)).

On the other hand, for 1 ≤ p < ∞, the two classes of spaces can be rigorously identified. In
this section, we revise the measure-theoretic arguments leading to this identification and show
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that, with a limited effort, also the case of (measurable) variable exponents can be covered. The
exposition will mainly follow the lines of the standard theory of vector-valued Lp-spaces, so we do
not claim any particular originality here. However, the extension to the variable exponent case,
although not difficult, seems to be new and this is the main reason why we decided to include
this part. Throughout this section, we denote by LN the N -dimensional Lebesgue measure.

Remark A.1. To be precise, the equivalence in Lebesgue space Lp(Q) and Lebesgue-Bochner
space Lp(0, T ;Lp(Ω)) is to be interpreted as follows:

(i) The equivalence “u1 = u2 in Lp(Q)” means that there exists an LN+1-measurable subset

Q̂ of Q such that u1(x, t) = u2(x, t) for all (x, t) ∈ Q̂ and LN+1(Q \ Q̂) = 0.
(ii) On the other hand, “u1 = u2 in Lp(0, T ;Lp(Ω))” has to be intended as u1(t) = u2(t) in

Lp(Ω) for all t ∈ I, where I is an L1-measurable subset of (0, T ) satisfying L1((0, T )\I) =
0. Moreover, “u1(t) = u2(t) in L

p(Ω)” means that (u1(t))(x) = (u2(t))(x) for all x ∈ Ωt

with some LN -measurable subset Ωt of Ω satisfying LN (Ω \ Ωt) = 0.

We begin with the following lemma regarding the behavior of the operator M in the class of
simple functions.

Lemma A.2. The operator M given by (A. 2) is well-defined for the class of simple functions
with values in Lp(Ω). Moreover, it holds that M = P−1 in that class.

Proof. Let v : (0, T ) → Lp(Ω) be given by

v(t) =
∑

j∈J

fjχIj (t), (A. 3)

with a finite set J , disjoint subintervals {Ij}j∈J each with positive measure, characteristics func-
tions χIj over Ij , and {fj}j∈J ⊂ Lp(Ω) \ {0}. Define v̂ : Q→ R by

v̂(x, t) :=
∑

j∈J

fj(x)χIj (t).

Then v̂ is Lebesgue-measurable over Q. Indeed, for any a ∈ R, the set

{(x, t) ∈ Q : v̂ ≤ a} =
⋃

j∈J

{x ∈ Ω: fj(x) ≤ a} × Ij

is Lebesgue-measurable in Q, since so are {x ∈ Ω: fj(x) ≤ a} and Ij in Ω and (0, T ), respectively.

Even if v is identified with some other simple function v0 : (0, T ) → Lp(Ω) as in (ii) of Remark
A.1, v̂ coincides with v̂0 := (v0(t))(x) a.e. in Q. Actually, by assumption v̂(x, t) = v̂0(x, t)
for all t ∈ I and x ∈ Ωt with some I ⊂ (0, T ) and a family Ωt ⊂ Ω with full measure. Set

Q̂ := {(x, t) ∈ Q : v̂(x, t) = v̂0(x, t)}. Since v̂ and v̂0 are Lebesgue measurable, Q̂ is LN+1-

measurable. Set Zt := {x ∈ Ω: (x, t) ∈ Q \ Q̂} for each t ∈ (0, T ). Then for all t ∈ I, we find that
Zt ⊂ Ω \ Ωt; hence LN (Zt) = 0. Hence by Fubini’s lemma, we see that

LN+1(Q \ Q̂) =

∫ T

0

LN (Zt) dt ≤

∫

I

LN (Zt) dt+ L1((0, T ) \ I)LN (Ω) = 0.

Hence M is well-defined, and from the definition we immediately get the relationM = P−1. This
completes the proof. �

The following proposition enables us to identify Lp(0, T ;Lp(Ω)) with Lp(Q).

Proposition A.3 (Relations between Lebesgue and Bochner spaces). Let Ω be a (possibly un-
bounded and non-smooth) domain of RN . Let Q = Ω× (0, T ) with T > 0.
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(i) If p+ < ∞, then the mapping P (given as in (A. 1)) is well-defined from Lp(x)(Q) into

Lp−

(0, T ;Lp(x)(Ω)). Moreover, P is linear, injective and continuous, that is, there exists
a constant C ≥ 0 such that

‖Pu‖Lp−(0,T ;Lp(x)(Ω)) ≤ C‖u‖Lp(x)(Q) for all u ∈ Lp(x)(Q).

In particular, if p(x) ≡ p < ∞, then P : Lp(Q) → Lp(0, T ;Lp(Ω)) is isometric, i.e.,
‖Pu‖Lp(0,T ;Lp(Ω)) = ‖u‖Lp(Q) for all u ∈ Lp(Q).

(ii) For each u ∈ Lp(0, T ;Lp(Ω)), there exists a unique representative û ∈ Lp(Q) of u,
i.e., û is the unique function in Lp(Q) such that u = P û. Define a mapping R :
Lp(0, T ;Lp(Ω)) → Lp(Q) by Ru := û. Then R is linear, bijective and isometric. Fur-
thermore, P (Ru) = u for all u ∈ Lp(0, T ;Lp(Ω)) and R(Pu) = u for all u ∈ Lp(Q);
hence, R = P−1. It also holds that

u(t) = Ru(·, t) for a.e. t ∈ (0, T )

for every u ∈ Lp(0, T ;Lp(Ω)).

Proof. We first verify (i). Let u ∈ Lp(x)(Q). Since u is measurable and (x, t) 7→ |u(x, t)|p(x) is
integrable over Q, by Fubini’s lemma it holds that u(·, t) ∈ Lp(x)(Ω) for a.e. t ∈ (0, T ). Let us
claim that u(·, t) can be uniquely determined in the sense of (ii) of Remark A.1, although u has
to be intended as an equivalence class of Lp(x)(Q). Indeed, let u1, u2 ∈ Lp(x)(Q) satisfy u1 = u2
in Lp(x)(Q), that is, u1(x, t) = u2(x, t) for all (x, t) ∈ Q̂ with some subset Q̂ of Q satisfying

LN+1(Q \ Q̂) = 0. Set Zt := {x ∈ Ω: (x, t) ∈ Q \ Q̂} for each t ∈ (0, T ). Then by Fubini’s
lemma, LN (Zt) = 0 for all t ∈ I with a subset I ⊂ (0, T ) satisfying L1((0, T ) \ I) = 0. Then
u1(·, t) = u2(·, t) a.e. in Ω for all t ∈ I. Thus u(·, t) is uniquely determined as a vector-valued
function.

Now, let us define an Lp(x)(Ω)-valued function Pu : (0, T ) → Lp(x)(Ω) by (Pu)(t) := u(·, t).

We next verify the strong measurability of Pu in (0, T ). For any v ∈ Lp′(x)(Ω) = (Lp(x)(Ω))∗, it
follows by Proposition 2.1 that uv ∈ L1(Q). Therefore we observe by Fubini’s lemma that

〈v, (Pu)(t)〉Lp(x)(Ω) =

∫

Ω

v(x)u(x, t) dx ∈ L1(0, T ).

Hence Pu : (0, T ) → Lp(x)(Ω) is weakly measurable thanks to the arbitrariness of v. Since
Lp(x)(Ω) is separable by p+ < ∞, Pettis’ theorem ensures that Pu is also strongly measurable.
Moreover, by Proposition 2.2 it follows that
∫ T

0

σ−
p(·)

(

‖(Pu)(t)‖Lp(x)(Ω)

)

dt ≤

∫ T

0

(
∫

Ω

|u(x, t)|p(x)dx

)

dt =

∫∫

Q

|u(x, t)|p(x)dxdt <∞.

Let us define the (measurable) set T :=
{

t ∈ (0, T ) : ‖Pu(t)‖Lp(x)(Ω) ≤ 1
}

. Then it follows that

∫ T

0

‖Pu(t)‖p
−

Lp(x)(Ω)
dt =

∫

T

‖Pu(t)‖p
−

Lp(x)(Ω)
dt+

∫

(0,T )\T

σ−
p(·)

(

‖Pu(t)‖Lp(x)(Ω)

)

dt

≤ T +

∫∫

Q

|u(x, t)|p(x)dxdt <∞,

which implies Pu ∈ Lp−

(0, T ;Lp(x)(Ω)). Hence, we obtain that P is a well-defined operator from

Lp(x)(Q) into Lp−

(0, T ;Lp(x)(Ω)).

The linearity of P follows immediately from its definition. Let us next check the injectivity of P .
Let u1, u2 ∈ Lp(x)(Q) satisfy Pu1 = Pu2. Then one can take I ⊂ (0, T ) and a family (Ωt)t∈I as in
(ii) of Remark A.1 such that ((Pu1)(t))(x) = ((Pu2)(t))(x) for all (x, t) ∈ {(x, t) : x ∈ Ωt, t ∈ I}.
Since ((Pu1)(t))(x)− ((Pu2)(t))(x) = u1(x, t)− u2(x, t) are Lebesgue measurable over Q, the set

Q̂ = {(x, t) ∈ Q : u1(x, t) = u2(x, t)} is LN+1-measurable. Thus we infer that u1(x, t) = u2(x, t)
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for all (x, t) ∈ Q̂; moreover, by Fubini’s lemma, the measure LN+1(Q \ Q̂) of the complement is
zero, since L1((0, T ) \ I) = 0 and LN (Ω \ Ωt) = 0 for all t ∈ I. Hence P is injective.

In particular, if p(x) ≡ p, then, by Fubini’s lemma, we see that

‖u‖pLp(Q) =

∫∫

Q

|u(x, t)|pdxdt =

∫ T

0

(
∫

Ω

|u(x, t)|pdx

)

dt = ‖Pu‖pLp(0,T ;Lp(Ω))

for all u ∈ Lp(Q).

We next prove (ii). For each u ∈ Lp(0, T ;Lp(Ω)), one can take a sequence (un) of L
p(Ω)-valued

simple functions such that

un → u strongly in Lp(0, T ;Lp(Ω)). (A. 4)

Hence (un) forms a Cauchy sequence in Lp(0, T ;Lp(Ω)). Recalling Lemma A.2 and using Fubini’s
lemma, we have

‖Mun −Mum‖pLp(Q) =

∫∫

Q

|(Mun)(x, t) − (Mum)(x, t)|p dxdt

=

∫ T

0

(
∫

Ω

|(Mun)(x, t) − (Mum)(x, t)|p dx

)

dt

= ‖un − um‖pLp(0,T ;Lp(Ω)) → 0 as n,m→ ∞.

Thus (Mun) forms a Cauchy sequence in Lp(Q). Hence Mun converges to some element û
strongly in Lp(Q). Moreover, we obtain that u = P û in Lp(0, T ;Lp(Ω)) by observing that

(

∫ T

0

‖u(t)− (P û)(t)‖pLp(Ω) dt

)1/p

≤

(

∫ T

0

‖u(t)− un(t)‖
p
Lp(Ω)dt

)1/p

+

(

∫ T

0

‖un(t)− (P û)(t)‖pLp(Ω) dt

)1/p

=

(

∫ T

0

‖u(t)− un(t)‖
p
Lp(Ω)dt

)1/p

+

(
∫∫

Q

|(Mun)(x, t)− û(x, t)|pdxdt

)1/p

→ 0

as n→ ∞. Here we used the fact that un = P (Mun). Thus we get u = P û, which also implies

‖û‖Lp(Q)
(i)
= ‖P û‖Lp(0,T ;Lp(Ω)) = ‖u‖Lp(0,T ;Lp(Ω)).

Furthermore, let û1, û2 ∈ Lp(Q) be representatives of u ∈ Lp(0, T ;Lp(Ω)), that is, P û1 = u = P û2
in Lp(0, T ;Lp(Ω)). Then it follows from (i) that ‖û1 − û2‖Lp(Q) = ‖P û1 −P û2‖Lp(0,T ;Lp(Ω)) = 0,
which implies û1 = û2 a.e. in Q. Hence the representative û ∈ Lp(Q) of u is uniquely determined.

Thus one can define the mapping R : Lp(0, T ;Lp(Ω)) → Lp(Q) by setting Ru = û for each
u ∈ Lp(0, T ;Lp(Ω)). Then, from the above, one can immediately find that P (Ru) = u for all
u ∈ Lp(0, T ;Lp(Ω)) (hence, R is injective), and R is isometric, that is,

‖Ru‖Lp(Q) = ‖u‖Lp(0,T ;Lp(Ω)) for all u ∈ Lp(0, T ;Lp(Ω)). (A. 5)

We also claim that R is linear. Indeed, for u1, u2 ∈ Lp(0, T ;Lp(Ω)) and α, β ∈ R, let us take
simple functions u1,n, u2,n : (0, T ) → Lp(Ω) such that ui,n → ui strongly in Lp(0, T ;Lp(Ω)) for
i = 1, 2. Then observing by the linearity of M that

R(αu1 + βu2) := Lp(Q)- lim (M(αu1,n + βu2,n)) = αRu1 + βRu2,

we conclude that R is linear. We next claim that R(Pu) = u for all u ∈ Lp(Q). Indeed, let
u ∈ Lp(Q). Then Pu belongs to Lp(0, T ;Lp(Ω)) by (i); hence, there exist simple functions (Pu)n
such that (Pu)n → Pu strongly in Lp(0, T ;Lp(Ω)). One can prove that R((Pu)n) = M((Pu)n).
We observe by (i) and Lemma A.2 that M((Pu)n) → u strongly in Lp(Q). On the other hand,
R((Pu)n) converges to R(Pu) strongly in Lp(0, T ;Lp(Ω)) by (A. 5). Thus we get R(Pu) = u for
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all u ∈ Lp(Q). Furthermore, the procedure also yields that R is surjective. Thus we conclude
that R and P = R−1 are bijective.

Finally, recall that P (Ru) = u for all u ∈ Lp(0, T ;Lp(Ω)) to obtain u(t) = P (Ru)(t) = Ru(·, t)
for a.e. t ∈ (0, T ). The proof is completed. �

The next proposition states, roughly speaking, that the operatorsR,P behave well with respect
to differentiation in time.

Proposition A.4. Let Ω be a (possibly unbounded and nonsmooth) domain of RN and let T > 0.
Then, for every u ∈W 1,p(0, T ;Lp(Ω)), we have

∂t(Ru) = R(u′) ∈ Lp(Q).

Moreover, if u ∈ Lp(x)(Q) and ∂tu ∈ Lp(x)(Q), then Pu ∈W 1,p−

(0, T ;Lp(x)(Ω)) and

(Pu)′ = P (∂tu) ∈ Lp−

(0, T ;Lp(x)(Ω)).

Proof. Let u ∈W 1,p(0, T ;Lp(Ω)). Then u′ ∈ Lp(0, T ;Lp(Ω)) and
∫ T

0

u′(t)ρ(t) dt = −

∫ T

0

u(t)ρ′(t) dt ∀ρ ∈ C∞
0 (0, T )

(see, e.g., [8] for vector-valued distributions). Moreover, for any φ ∈ C∞
0 (Q), we see that

∫ T

0

〈(Pφ)(t), u′(t)〉Lp(Ω) dt = −

∫ T

0

〈(Pφ)′(t), u(t)〉Lp(Ω) dt.

Since u and u′ belong to Lp(0, T ;Lp(Ω)), using Proposition A.3 and the fact that (Pφ)′ = P (∂tφ)
(indeed, one can prove this just by integration by parts), the above equality can be rewritten as

∫∫

Q

φR(u′) dxdt = −

∫∫

Q

(Ru)∂tφ dxdt ∀φ ∈ C∞
0 (Q),

which implies ∂t(Ru) = R(u′) ∈ Lp(Q).

If u ∈ Lp(x)(Q) and ∂tu ∈ Lp(x)(Q), then by standard integration by parts in Sobolev spaces
we have

∫∫

Q

φ∂tu dxdt = −

∫∫

Q

u∂tφ dxdt for all φ ∈ C∞
0 (Q).

Let ρ ∈ C∞
0 (0, T ) and w ∈ C∞

0 (Ω). Then, since φ(x, t) = ρ(t)w(x) ∈ C∞
0 (Q), using Fubini’s

lemma we see that
〈

w,

∫ T

0

Pu(t)ρ′(t)dt

〉

Lp(x)(Ω)

=

∫ T

0

〈ρ′(t)w,Pu(t)〉Lp(x)(Ω) dt

=

∫∫

Q

ρ′(t)w(x)u(x, t) dxdt

= −

∫∫

Q

ρ(t)w(x)∂tu(x, t) dxdt

= −

〈

w,

∫ T

0

ρ(t)P (∂tu)(t) dt

〉

Lp(x)(Ω)

.

From the fact that C∞
0 (Ω) is dense in Lp′(x)(Ω) (see Theorem 3.4.12 of [13]), it follows that

∫ T

0

Pu(t)ρ′(t) dt = −

∫ T

0

ρ(t)P (∂tu)(t) dt.

Thus (Pu)′ = P (∂tu). �
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Appendix B. Lower semicontinuity of Φ on Lp(x)(Q)

Let un ∈ V = Lp(x)(Q) be such that Φ(un) ≤ a with an arbitrary a ∈ R and un → u
strongly in V . Then by Fatou’s lemma along with the fact that supn∈N

Φ(un) ≤ a, we see that
lim infn→∞ φ(Pun(·)) ∈ L1(0, T ) and

∫ T

0

lim inf
n→∞

φ(Pun(t)) dt ≤ lim inf
n→∞

∫ T

0

φ(Pun(t)) dt ≤ a. (B. 1)

By (ii) of Lemma 4.5, Pun → Pu strongly in L1(0, T ;V ). Hence it follows from the lower
semicontinuity of φ in V that

φ(Pu(t)) ≤ lim inf
n→∞

φ(Pun(t)) <∞ for a.e. t ∈ (0, T ), (B. 2)

which particularly means that Pu(t) ∈ D(φ) for a.e. t ∈ (0, T ).

On the other hand, we claim that φ(Pu(·)) is Lebesgue measurable in (0, T ). Indeed, since Pu
is strongly measurable with values in V in (0, T ), one can take step functions sn : (0, T ) → V such
that sn(t) → Pu(t) strongly in V for a.e. t ∈ (0, T ). Let φλ be the Moreau-Yosida regularization
of φ in V (in a standard sense). Then φλ(sn(·)) is also a step function in Ω; moreover, φλ(sn(t)) →
φλ(Pu(t)) for a.e. t ∈ (0, T ). Hence φλ(Pu(·)) is Lebesgue measurable in (0, T ). Furthermore,
since φλ(Pu(t)) → φ(Pu(t)) <∞ for a.e. t ∈ (0, T ), we deduce that φ(Pu(·)) is also measurable.

Recall (B. 2) and the measurability of φ(Pu(·)) to get
∫ T

0

φ(Pu(t)) dt ≤

∫ T

0

lim inf
n→∞

φ(Pun(t)) dt.

Thus it follows from (B. 1) that

Φ(u) =

∫ T

0

φ(Pu(t)) dt ≤ lim inf
n→∞

∫ T

0

φ(Pun(t)) dt ≤ a.

Therefore, Φ is lower semicontinuous in V . �
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