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LOCAL SOLVABILITY OF A FULLY NONLINEAR PARABOLIC EQUATION

GORO AKAGI

Abstract. This paper is concerned with the existence of local (in time) positive solutions to
the Cauchy-Neumann problem in a smooth bounded domain of RN for some fully nonlinear
parabolic equation involving the positive part function r ∈ R 7→ (r)+ := r ∨ 0. To show

the local solvability, the equation is reformulated as a mixed form of two different sorts of
doubly nonlinear evolution equations in order to apply an energy method. Some approximated
problems are also introduced and the global (in time) solvability is proved for them with an

aid of convex analysis, an energy method and some properties peculiar to the nonlinearity of
the equation. Moreover, two types of comparison principles are also established, and based
on these, the local existence and the finite time blow-up of positive solutions to the original
equation are concluded as the main results of this paper.

1. Introduction

Let Ω be a bounded domain in RN with smooth boundary ∂Ω. In this paper, we discuss the
local (in time) existence and the finite time blow-up of positive solutions of the Cauchy-Neumann
problem for a fully nonlinear parabolic equation,

∂tu = g(u)
(
λ2∆u+ u

)
+
, x ∈ Ω, t > 0, (1.1)

∂νu = 0, x ∈ ∂Ω, t > 0, (1.2)

u = φ, x ∈ Ω, t = 0, (1.3)

where ∂t = ∂/∂t, g(u) is a positive continuous function in (0,+∞), (s)+ := s ∨ 0 stands for the
positive part of s ∈ R, λ > 0 is a fixed constant, ∆ is the standard Laplacian, and ∂ν denotes the
normal derivative. The one dimensional version (i.e., N = 1 and Ω = (0, 1)) of Equation (1.1)
was originally proposed by Barenblatt and Prostokishin in the context of Damage Mechanics as
a model of damage accumulation processes taking account of microstructural effects in [2] (see
also [3, §2]), where a typical choice of g(u) is given by a power function,

g(u) = uα, α ≥ 0. (1.4)

One of peculiarities of the problem is found in the unidirectional evolution of solutions; more
precisely, u = u(x, t) is non-decreasing in time due to the non-negativity of the right-hand side
of (1.1). This feature plays a crucial role in the model of damage accumulation as a natural
hypothesis on the unidirectional evolution of an internal variable called a damage factor. It is
also worth mentioning that solutions of (1.1)–(1.3) may blow up in finite time. Indeed, one can
obtain a spatially uniform explicit solution that blows up in finite time for the case (1.4) with
α > 0 (see also the proof of Lemma 5.1 below).

The main purpose of this paper is to prove the local (in time) existence and the finite time
blow-up of positive solutions to (1.1)–(1.3) in an L2(Ω) framework.
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For the one-dimensional case, Bertsch and Bisegna [3] proved the local existence and the finite
time blow-up of classical solutions under the assumptions that

φ ≥ δ in [0, 1], φ ∈ C1([0, 1]), φ′ is Lipschitz continuous in [0, 1],
φ′(0) = φ′(1) = 0, (λ2φ′′ + φ)+ ∈ C([0, 1])

}
(1.5)

for some δ > 0 and some structural conditions on g(u). Moreover, they also investigated qualita-
tive properties of blow-up phenomena; in particular, regional blow-up phenomena may occur, that
is, the blow-up set is an interval of nonzero measure (but not the whole of Ω) under a suitable
initial configuration. In order to take account of chemical aggression, Natalini et al [9] extended
the one-dimensional model as a system of nonlinear parabolic equations and also studied it in
view of numerical analysis. Furthermore, Nitsch [10] proved the local well-posedness of the system
and investigated blow-up properties of solutions (see also [11]).

In this paper, we shall treat Equation (1.1) on the basis of an energy method, that is a
totally different way from the previous studies. Generally speaking, energy methods are not so
effective for fully nonlinear equations, and therefore, such a severe nonlinearity often prevents us
to construct solutions in a suitable energy class. We shall reformulate (1.1) as a mixed form of
two different sorts of doubly nonlinear evolution equations, for which energy methods are more
effective, with an aid of convex analysis. In the next section, we actually reformulate Equation
(1.1) and state a main result of the paper. Moreover, an outline of a proof is also exhibited.
Sections 3–5 are devoted to a proof of the main result. In Appendix §A, we give a brief exposition
of the relevant material on convex analysis for the convenience of the reader.

2. Reformulation of the equation and main result

Define a strictly increasing function β ∈ C1
loc((0,+∞)) by

β(s) =

∫ s

s0

dσ

g(σ)
+ C0 for s > 0 (2.1)

for some constants s0, C0 ∈ R (the following reformulation will not depend on the choice of s0,
C0, because we shall treat the derivative of β only, i.e., β′ or ∂tβ(u) for u = u(x, t)). Particularly,
in the case of (1.4), the function β can be given as

β(s) =


s1−α

1− α
if α 6= 1,

log s if α = 1
for s > 0. (2.2)

Then since ∂tβ(u) = β′(u)∂tu = ∂tu/g(u), Equation (1.1) is equivalently rewritten as

∂tβ(u) =
(
λ2∆u+ u

)
+
, x ∈ Ω, t > 0. (2.3)

Moreover, let us define the indicator function I[0,+∞) : R → [0,+∞] over the set [0,+∞) by

I[0,+∞)(s) :=

{
0 if s ≥ 0,

+∞ otherwise
(2.4)

and let ∂I[0,+∞) : R → 2R be the subdifferential operator of I[0,+∞) given by

∂I[0,+∞)(s) := {ξ ∈ R : I[0,+∞)(σ)− I[0,+∞)(s) ≥ ξ(σ − s) for all σ ∈ R} for s ∈ R (2.5)

with domain D(∂I[0,+∞)) = [0,+∞) (see also §Appendix A). One can observe that

∂I[0,+∞)(s) =

{
{0} if s > 0,

(−∞, 0] if s = 0.

Hence s + ∂I[0,+∞)(s) is the (multivalued) inverse function of (s)+ = s ∨ 0. Therefore (2.3) is
transformed into the inclusion,

∂tβ(u) + ∂I[0,+∞)(∂tβ(u)) 3 λ2∆u+ u, x ∈ Ω, t > 0.
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Since β is a strictly increasing function, so we observe that ∂tβ(u) > 0 if and only if ∂tu > 0;
therefore, we have

∂I[0,+∞)(∂tβ(u)) = ∂I[0,+∞)(∂tu). (2.6)

Thus (1.1)–(1.3) has been reformulated as the Cauchy-Neumann problem (denoted by (P) below)
for

∂tβ(u) + ∂I[0,+∞)(∂tu) 3 λ2∆u+ u, x ∈ Ω, t > 0, (2.7)

equipped with the Neumann boundary condition (1.2) and the initial condition (1.3).

Equation (2.7) now falls within the scope of an energy method and it can be regarded as a
mixed form of two sorts of doubly nonlinear problems; one is a sort of nonlinear diffusion equations
(e.g., porous medium/fast diffusion equation) in the form

∂tβ(u) = ∆u, x ∈ Ω, t > 0, (2.8)

and the other one is a sort of generalized gradient flows, e.g., the unidirectional heat flow (see [1]),

∂I[0,+∞)(∂tu) = ∆u, x ∈ Ω, t > 0. (2.9)

The former one has been vigorously studied so far; however, to the best of the author’s knowledge,
the mixed form such as (2.7) has not yet been fully pursued.

Prior to stating the main result of this paper, let us introduce the following assumptions (β)δ
for general β and a constant δ > 0: There exists a constant Cδ > 0 such that

β ∈ C1([δ,+∞)) and 0 < β′(s) ≤ Cδ for all s ≥ δ,
β′ is non-increasing on [δ,+∞),

}
(β)δ

which implies
|β(s)| ≤ Cδs+ |β(δ)| for all s ≥ δ (2.10)

and the strict increase of β on [δ,∞). We note that (β)δ holds true in the case of (1.4) for any
α ≥ 0.

Here and henceforth, Cw∗([0, T ];L
∞(Ω)) denotes the set of all L∞(Ω)-valued weakly star con-

tinuous functions on [0, T ]. Moreover, we refer the reader to Definition 2.3 below for the precise
definition of strong solutions of (P).

Now, our main result reads,

Theorem 2.1 (Local solvability of (P) and finite time blow-up of positive solutions). Assume
that

φ ∈ H2(Ω) ∩ L∞(Ω), ∂νφ = 0 on ∂Ω,
(
λ2∆φ+ φ

)
− ∈ L∞(Ω),

φ ≥ δ a.e. in Ω, for some constant δ > 0,

}
(2.11)

where (s)− := s ∧ 0 ≤ 0 is the negative part of s ∈ R. Moreover, suppose that (β)δ is satisfied.
Then the Cauchy-Neumann problem (P) = {(2.7), (1.2), (1.3)} admits at least one strong solution
u on [0, T0] for some T0 > 0 such that u ∈ Cw∗([0, T0];L

∞(Ω)) and

‖(λ2∆u+ u)−‖L∞(Ω×(0,T0)) ≤ ‖(λ2∆φ+ φ)−‖L∞(Ω). (2.12)

Moreover, let u ∈ Cw∗([0, S];L
∞(Ω)) be a strong solution of (P) on some interval [0, S] for

some data φ ∈ L∞(Ω) satisfying φ ≥ δ a.e. in Ω. Let Tmax > 0 be the supremum of τ ≥ S > 0
for which u can be extended onto [0, τ ] such that u ∈ Cw∗([0, τ ];L

∞(Ω)). In addition, define

T̂ (s) :=

∫ +∞

s

β′(ζ)

ζ
dζ ∈ (0,+∞] for s > 0.

Then it follows that

Tmax ≤ T̂ (δ).

Moreover, if Tmax < +∞, then it holds that

lim
t↗Tmax

‖u(t)‖L∞(Ω) = +∞. (2.13)
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Remark 2.2. (i) The function t 7→ ‖u(t)‖L∞(Ω) is left-continuous on [0, T ]. Indeed, since
u ∈ Cw∗([0, T ];L

∞(Ω)) and u(x, t) is non-decreasing in (0, T ), we observe that

‖u(t)‖L∞(Ω) ≤ lim inf
s↗t

‖u(s)‖L∞(Ω) ≤ lim sup
s↗t

‖u(s)‖L∞(Ω) ≤ ‖u(t)‖L∞(Ω)

for each t ∈ [0, T ].
(ii) The local existence time T0 can be represented as follows:

T0 = `(‖φ‖L∞(Ω) + ‖(λ2∆φ+ φ)−‖L∞(Ω) + Cδ + 1),

where `(·) is a positive strictly decreasing function depending only on β′ (see Remark
5.2 below for more details).

(iii) In case g(u) = uα for α > 0 (see also (2.2)), one can check T̂ (δ) < +∞ for any δ > 0.
Hence Tmax is always finite. As for the case α = 0, we shall further exhibit a global (in
time) existence result under weaker assumptions on initial data φ (see Theorem 3.8 and
Remark 3.9 below for details).

(iv) This result is still new even for the case N = 1. Indeed, the assumption (2.11) is slightly
weaker than (1.5) assumed in [3]. Assumption (1.5) requires φ′ to be Lipschitz continuous
on [0, 1], and hence, we particularly have φ ∈ W 2,∞(Ω) ⊂ H2(Ω), since every Lipschitz
continuous function belongs to W 1,∞(Ω). On the other hand, the non-increase of β′ is
assumed in Theorem 2.1 (cf. [3]), and the uniqueness of (general) solutions (cf. Corollary
4.6) and qualitative properties of blow-up solutions are not discussed in this paper.

An outline of a proof is as follows: We first construct global (in time) solutions to the Cauchy-
Neumann problem (P)µ, µ > 0, for the following approximated equations,

µ∂tu+ ∂tβ(u) + ∂I[0,+∞)(∂tu) 3 λ2∆u+ u, x ∈ Ω, t > 0 (2.14)

along with (1.2) and (1.3) under milder assumptions. Thanks to the additional time derivative
of u in the left-hand side, one may expect the existence of global (in time) solutions. Indeed,
we construct a global solution uµ = uµ(x, t), which is unbounded in time, by using a time-
discretization technique and an energy method (see Section 3).

Before going on to the limiting procedure as µ → 0, we establish an L∞(Ω) estimate for
uµ(·, t) uniform in t on some interval and µ ∈ (0, 1). To this end, we prove a comparison principle
for strictly increasing subsolutions and general supersolutions of (P)µ (see Section 4). However,
one cannot directly apply the principle to uµ due to the assumption of the strict increase of
subsolutions, which is more restrictive than those of usual comparison principles and arising from
a peculiar nonlinearity of (P)µ. To overcome this defect, we introduce an auxiliary subsolution

of (P)µ which is greater than uµ and strictly increasing. Constructing an appropriate spatially

uniform supersolution of (P)µ, we derive a uniform estimate for ‖uµ(t)‖L∞(Ω) locally in time (see

Section 5).

Furthermore, we establish uniform estimates and pass to the limit as µ→ 0 in order to prove
the local (in time) existence of solutions for the original problem (P). The finite time blow-up of
solutions for (P) is also verified by using a comparison principle for (P) (see Theorem 4.5) and a
strictly increasing explicit subsolution (see Section 5).

Let us close this section by giving a definition of strong solutions for (P) and (P)µ and some

remarks. From now on, Cw([0, T ];H
1(Ω)) stands for the space of all weakly continuous functions

on [0, T ] with values in H1(Ω).

Definition 2.3 (Strong solutions of (P) and (P)µ). For T > 0 and µ ≥ 0, a positive function

u ∈W 1,2(0, T ;L2(Ω)) is called a strong solution (or a solution for short) of (P)µ ( = (P) if µ = 0)
on [0, T ], if the following (i)–(iii) hold true:

(i) u ∈ Cw([0, T ];H
1(Ω)), β(u) ∈W 1,2(0, T ;L2(Ω)), ∆u ∈ L2(0, T ;L2(Ω)),

(ii) ∂νu = 0 on ∂Ω and u(·, t) ∈ H2(Ω) for a.e. t ∈ (0, T ),
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(iii) ∂tu(x, t) ≥ 0 for a.e. (x, t) ∈ Ω× (0, T ), and there exists ξ ∈ L2(0, T ;L2(Ω)) such that

µ∂tu+ ∂tβ(u) + ξ = λ2∆u+ u, ξ ∈ ∂I[0,+∞)(∂tu) (2.15)

for a.e. (x, t) ∈ Ω× (0, T ).

Solutions of (P)µ (or (P)) are also denoted by (u, ξ) in order to specify the section ξ of ∂tI[0,+∞)(∂tu)

as in (2.15).

Furthermore, a solution u of (P)µ (or (P)) on [0, T ] is said to be strictly increasing if ∂tu(x, t) >

0 for a.e. (x, t) ∈ Ω× (0, T ).

Remark 2.4. Let (u, ξ) be a strong solution of (P)µ (or (P)) on [0, T ]. One may obtain a
representation of ξ,

ξ = (λ2∆u+ u)− for a.e. (x, t) ∈ Ω× (0, T ). (2.16)

Indeed, let (x, t) ∈ Ω × (0, T ) be such that (2.15) holds there. In case when ξ(x, t) = 0, one has
0 ≤ µ∂tu+ ∂tβ(u) = λ2∆u+ u at (x, t). Hence (λ2∆u+ u)−(x, t) = 0. In case when ξ(x, t) < 0,
noting by (2.6) that ∂tu(x, t) = ∂tβ(u)(x, t) = 0, we deduce that 0 > ξ = λ2∆u + u at (x, t).
Therefore in both cases, (2.16) follows.

Here and henceforth, for simplicity, we use the same notation I[0,+∞) for the indicator function

over [0,+∞) defined on R as well as for that over the set {u ∈ L2(Ω): u ≥ 0 a.e. in Ω} defined
on L2(Ω), unless any confusion may arise. Moreover, the subdifferential operators (in L2(Ω))
of the both indicator functions are also denoted by ∂I[0,+∞) (see also Proposition A.2 for their
equivalence).

3. Solvability of the approximated problems (P)µ

In this section, we construct strong solutions for the approximate problems (P)µ for µ > 0
under a milder assumption,

φ ∈ H2(Ω), ∂νφ = 0 on ∂Ω, φ ≥ δ a.e. in Ω, for some constant δ > 0 (3.1)

without assuming (2.11). Then one can remove the singularity of β(s) at s = 0 (e.g., see (2.2))
by replacing β with a proper non-decreasing smooth function which coincides with β on [δ,+∞)
without any loss of generality, since solutions u of (P)µ are always supposed to be not less than

δ under (3.1). Throughout this section, we always assume that β ∈ C1([0,∞)).

We start with a time-discretization. Let N ∈ N, τ = τN := T/N > 0 and consider the following
discretized problems:

µ
un+1 − un

τ
+
β(un+1)− β(un)

τ
+ ξn+1 = λ2∆un+1 + un+1 in L2(Ω), (3.2)

ξn+1 ∈ ∂I[0,+∞)

(
un+1 − un

τ

)
, u0 = φ in L2(Ω) (3.3)

for n = 0, 1, . . . , N − 1. We then claim

Lemma 3.1. For each τ ∈ (0, µ), the discretized problems (3.2), (3.3) admit solutions (un+1, ξn+1) ∈
H2(Ω)× L2(Ω) for n = 0, 1, . . . , N − 1.

Proof. Let n ∈ {0, 1, . . . , N − 1} and let un ∈ D(−∆) := {v ∈ H2(Ω): ∂νv = 0 on ∂Ω} be such
that un ≥ δ a.e. in Ω. Define functionals Jn+1 : H1(Ω) → (−∞,+∞] by

Jn+1(u) :=
µ

2τ
‖u‖2L2(Ω) +

1

τ
ψ(u) + I[0,+∞)

(
u− un
τ

)
+
λ2

2
‖∇u‖2L2(Ω)

− 1

2
‖u‖2L2(Ω) −

〈
β(un)

τ
+ µ

un
τ
, u

〉
H1(Ω)

for u ∈ H1(Ω),
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where ψ is a functional of class C1 defined on H1(Ω) by

ψ(u) :=

∫
Ω

β̂(u) dx for u ∈ H1(Ω) with β̂(s) :=

∫ s

0

β(σ) dσ

and 〈·, ·〉H1(Ω) stands for the duality pairing between H1(Ω) and (H1(Ω))∗. Then Jn+1 is well

defined on H1(Ω), since we see that β(un) ∈ L2(Ω) by (β)δ along with the assumptions of
un. For τ ∈ (0, µ), each functional Jn+1 is coercive, strictly convex and lower semicontinuous in
H1(Ω). Hence employing the Direct Method, one can verify that Jn+1 admits a unique minimizer
un+1 ∈ H1(Ω), and then, un+1 solves the Euler-Lagrange equation,

µ
un+1 − un

τ
+
β(un+1)− β(un)

τ
+ ξn+1 = λ2∆un+1 + un+1 in (H1(Ω))∗, (3.4)

ξn+1 ∈ ∂H1(Ω)I[0,+∞)

(
un+1 − un

τ

)
in (H1(Ω))∗, (3.5)

where ∂H1(Ω)I[0,+∞) denotes the subdifferential operator fromH1(Ω) to 2(H
1(Ω))∗ of the functional

I[0,+∞) restricted onto H1(Ω) (see (A.1) of §Appendix A below).

Note that

∂H1(Ω)I[0,+∞)

(
u− un
τ

)
= ∂H1(Ω)I[ · ≥un](u),

where ∂H1(Ω)I[ · ≥un] stands for the subdifferential of the indicator function I[ · ≥un] over the set

[ · ≥ un] := {u ∈ H1(Ω): u(x) ≥ un(x) for a.e. x ∈ Ω}. Then one can rewrite (3.4), (3.5) as the
variational inequality of obstacle type,(µ
τ
− 1

)
un+1−λ2∆un+1+∂H1(Ω)I[ · ≥un](un+1) 3

µ

τ
un−

β(un+1)− β(un)

τ
in (H1(Ω))∗. (3.6)

Here we shall exploit a regularity theory for variational inequalities of obstacle type. Let
K := {u ∈ H1(Ω): u ≥ ψ a.e. in Ω} for some ψ ∈ L2(Ω) and let A : H1(Ω) → (H1(Ω))∗ be the
homeomorphism defined by

〈Au, φ〉H1(Ω) = γ

∫
Ω

uφ dx+ λ2
∫
Ω

∇u · ∇φ dx for u, φ ∈ H1(Ω)

for some γ > 0 (i.e., Au = γu−λ2∆u). Concerning the variational inequality with f ∈ (H1(Ω))∗,

u ∈ K, 〈Au, v − u〉H1(Ω) ≥ 〈f, v − u〉H1(Ω) for all v ∈ K, (3.7)

which can be equivalently rewritten as

Au+ ∂H1(Ω)IK(u) 3 f in (H1(Ω))∗

(here IK stands for the indicator function over the set K), we recall the following proposition
(see [1] or [7] with a proper modification):

Proposition 3.2 ([1], [7]). Suppose that ψ ∈W 2,p(Ω), ∂νψ = 0 on ∂Ω and f ∈ Lp(Ω) for some
p ≥ 2. Then the unique weak solution u of (3.7) belongs to W 2,p(Ω), ∂νu = 0 a.e. on ∂Ω, and

f ≤ Au ≤ f ∨Aψ a.e. in Ω,

where Aψ = γψ − λ2∆ψ.

Due to the fact that un ∈ D(−∆), by applying Proposition 3.2 to (3.6), one can verify that
un+1 ∈ D(−∆) and

µ

τ
un − β(un+1)− β(un)

τ
≤

(µ
τ
− 1

)
un+1 − λ2∆un+1

≤
(
µ

τ
un − β(un+1)− β(un)

τ

)
∨
((µ

τ
− 1

)
un − λ2∆un

)
for a.e. x ∈ Ω,
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which implies

0 ≤ µ
un+1 − un

τ
+
β(un+1)− β(un)

τ
− λ2∆un+1 − un+1

≤ 0 ∨
(
−λ2∆un − un +

β(un+1)− β(un)

τ

)
for a.e. x ∈ Ω.

Since un ∈ H2(Ω) and β(un), β(un+1) ∈ L2(Ω) (by (2.10)), we can verify from (3.4) that ξn+1 ∈
L2(Ω) and ξn+1 ∈ ∂I[0,+∞)((un+1 − un)/τ). Moreover, from the fact that ξn+1(x) 6= 0 only if
un+1(x) = un(x), we also deduce that

0 ≤ −ξn+1 ≤ −
(
λ2∆un + un

)
− for a.e. x ∈ Ω, (3.8)

where (s)− = s ∧ 0 ≤ 0.

By virtue of (3.1), starting from n = 0 and u0 = φ, one can iteratively obtain solutions
un+1 ∈ D(−∆) and ξn+1 ∈ L2(Ω) of (3.2), (3.3) for n = 0, 1, . . . , N − 1. �

We next establish a priori estimates for un and ξn.

Lemma 3.3. There exists a constant C ≥ 0 depending on µ, λ and φ such that

max
n

(
‖un‖2L2(Ω) + ‖∇un‖2L2(Ω)

)
+

N−1∑
n=0

τ

∥∥∥∥un+1 − un
τ

∥∥∥∥2
L2(Ω)

≤ C, (3.9)

max
n

‖β(un)‖2L2(Ω) ≤ C, (3.10)

N−1∑
n=0

τ

∥∥∥∥β(un+1)− β(un)

τ

∥∥∥∥2
L2(Ω)

≤ C. (3.11)

Proof. Test (3.2) by (un+1 − un)/τ to get

µ

∥∥∥∥un+1 − un
τ

∥∥∥∥2
L2(Ω)

+

(
β(un+1)− β(un)

τ
,
un+1 − un

τ

)
L2(Ω)

+

(
ξn+1,

un+1 − un
τ

)
L2(Ω)

+
λ2

2τ
‖∇un+1‖2L2(Ω) −

λ2

2τ
‖∇un‖2L2(Ω)

≤
(
un+1,

un+1 − un
τ

)
L2(Ω)

≤ µ

2

∥∥∥∥un+1 − un
τ

∥∥∥∥2
L2(Ω)

+ C‖un+1‖2L2(Ω), (3.12)

where (·, ·)L2(Ω) stands for the inner product in L
2(Ω), for n = 0, 1, . . . , N −1. Moreover, we note

that
‖un+1‖2L2(Ω) − ‖un‖2L2(Ω)

2τ
≤ 1

2
‖un+1‖2L2(Ω) +

1

2

∥∥∥∥un+1 − un
τ

∥∥∥∥2
L2(Ω)

and (
ξn+1,

un+1 − un
τ

)
L2(Ω)

= 0.

Hence exploiting the monotonicity of β and summing both sides of (3.12) for n = 0, 1, . . . , k ∈
{2, 3, . . . , N − 1}, we derive

µ

2
‖uk+1‖2L2(Ω) +

λ2

2
‖∇uk+1‖2L2(Ω) ≤

µ

2
‖φ‖2L2(Ω) +

λ2

2
‖∇φ‖2L2(Ω) +

(µ
2
+ C

) k+1∑
j=0

τ‖uj‖2L2(Ω).

Exploiting the discrete Gronwall inequality, one has

max
n

(
‖un‖2L2(Ω) + ‖∇un‖2L2(Ω)

)
≤ C

(
‖φ‖2L2(Ω) + ‖∇φ‖2L2(Ω)

)
,

which together with (2.10) also yields (3.10). Furthermore, recalling (3.12), we obtain (3.9).
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By (β)δ and the Mean-Value Theorem, we observe that∣∣∣∣β(un+1)− β(un)

τ

∣∣∣∣ = 1

τ
|β′((1− θn)un+1 + θnun)||un+1 − un| ≤ Cδ

∣∣∣∣un+1 − un
τ

∣∣∣∣
for some θn = θn(x) ∈ (0, 1), a.e. x ∈ Ω. Thus (3.11) follows from (3.9). �

We further prove:

Lemma 3.4. If (λ2∆φ+ φ)− ∈ Lp(Ω) for some p ∈ [2,+∞], it follows that

‖ξn+1‖Lp(Ω) ≤ ‖ξn‖Lp(Ω) ≤ ‖(λ2∆φ+ φ)−‖Lp(Ω) for n = 1, 2, . . . , N − 1. (3.13)

In particular, (3.13) follows with p = 2 from the fact that φ ∈ H2(Ω) by (3.1).

Moreover, there exists a constant C ≥ 0 depending on µ, λ and φ such that

N−1∑
n=0

τ‖∆un+1‖2L2(Ω) ≤ C. (3.14)

Proof. By subtraction of equations, we have

µ

(
un+1 − un

τ
− un − un−1

τ

)
+
β(un+1)− β(un)

τ
− β(un)− β(un−1)

τ

+ξn+1 − ξn = λ2∆(un+1 − un) + un+1 − un (3.15)

for n = 1, 2, . . . , N − 1. Assume that (λ2∆φ+φ)− ∈ Lp(Ω) for some p ∈ [2,+∞). Let R > 0 and
let γR ∈ C1(R) be a smooth monotone function satisfying

γR(u) =

{
|u|p−2u if |u| ≤ R,

sgn(u)(R+ 1)p−1 if |u| ≥ R+ 2,

where sgn(·) denotes the sign function. Test (3.15) by ηn+1 := γR(ξn+1) ∈ L∞(Ω). Here we note
that ηn+1 also belongs to ∂I[0,+∞)((un+1 − un)/τ) and that

(−∆u, η)L2(Ω) ≥ 0 for all η ∈ ∂I[0,+∞)(u) and u ∈ D(−∆) satisfying u ≥ 0

by (iii) of Proposition A.2 in Appendix. Furthermore, by definitions of the indicator function
I[0,+∞) and its subdifferential, we observe that(

un+1 − un
τ

− un − un−1

τ
, ηn+1

)
L2(Ω)

≥ I[0,+∞)

(
un+1 − un

τ

)
− I[0,+∞)

(
un − un−1

τ

)
= 0,

since {un(x)} is non-decreasing in n a.e. x ∈ Ω. Noting that

ηn+1 ∈ ∂I[0,+∞)

(
un+1 − un

τ

)
= ∂I[0,+∞)

(
β(un+1)− β(un)

τ

)
,

one can similarly derive(
β(un+1)− β(un)

τ
− β(un)− β(un−1)

τ
, ηn+1

)
L2(Ω)

≥ 0.

Moreover, we also note that
(un+1 − un, ηn+1)L2(Ω) = 0,

since ηn+1(x) 6= 0 only if un+1(x) = un(x). Combining all these facts, we have∫
Ω

γ̂R(ξn+1) dx ≤
∫
Ω

γ̂R(ξn) dx for n = 1, 2, . . . , N − 1,

where γ̂R stands for the primitive function of γR satisfying γ̂R(0) = 0. Moreover, letting R→ +∞
and recalling (3.8) with n = 0, we find by iteration that

‖ξn‖Lp(Ω) ≤ ‖ξ1‖Lp(Ω) ≤ ‖(λ2∆φ+ φ)−‖Lp(Ω) for n = 2, 3, . . . , N.



LOCAL SOLVABILITY OF A FULLY NONLINEAR PARABOLIC EQUATION 9

As for the case (λ2∆φ+φ)− ∈ L∞(Ω), passing to the limit as p→ +∞ in both sides, we conclude
that (3.13) holds true for p = ∞.

Finally, (3.14) follows by comparison of both sides in (3.2). �

Now, let us move on to the limiting procedure. To this end, we first introduce the piecewise
forward constant interpolants ūτ (t) := un+1 and ξ̄τ (t) := ξn+1 for t ∈ [tn, tn+1) and the piecewise
linear interpolants

uτ (t) :=
tn+1 − t

τ
un +

t− tn
τ

un+1 if t ∈ [tn, tn+1),

vτ (t) :=
tn+1 − t

τ
β(un) +

t− tn
τ

β(un+1) if t ∈ [tn, tn+1)

for n = 0, 1, . . . , N − 1. Then (3.2) is rewritten as

µ∂tuτ + ∂tvτ + ξ̄τ = λ2∆ūτ + ūτ , ξ̄τ ∈ ∂I[0,+∞)(∂tuτ ). (3.16)

From the preceding a priori estimates, we can derive the following convergences by taking a
(non-relabeled) subsequence of τ → 0 (equivalently, N → +∞):

Lemma 3.5. It holds, up to a subsequence, that

uτ → u weakly star in L∞(0, T ;H1(Ω)), (3.17)

strongly in C([0, T ];L2(Ω)), (3.18)

ūτ → ū weakly star in L∞(0, T ;H1(Ω)), (3.19)

strongly in L∞(0, T ;L2(Ω)), (3.20)

∂tuτ → ∂tu weakly in L2(0, T ;L2(Ω)), (3.21)

vτ → v weakly star in L∞(0, T ;L2(Ω)), (3.22)

β(ūτ ) → v̄ weakly star in L∞(0, T ;L2(Ω)), (3.23)

∂tvτ → ∂tv weakly in L2(0, T ;L2(Ω)), (3.24)

ξ̄τ → ξ weakly star in L∞(0, T ;L2(Ω)), (3.25)

∆ūτ → ∆ū weakly in L2(0, T ;L2(Ω)) (3.26)

for some u ∈W 1,2(0, T ;L2(Ω))∩L∞(0, T ;H1(Ω)), ū ∈ L∞(0, T ;H1(Ω)) and v ∈W 1,2(0, T ;L2(Ω))
and v̄, ξ ∈ L∞(0, T ;L2(Ω)). In particular, it follows that u(·, 0) = φ. Moreover, it holds that
u = ū, v = v̄ = β(u) and

µ∂tu+ ∂tβ(u) + ξ = λ2∆u+ u. (3.27)

Proof. By Lemmas 3.3 and 3.4, we immediately obtain (3.17)–(3.26) except for (3.18) and (3.20).
Moreover, (3.18) follows from Ascoli’s compactness lemma (see, e.g., [12]) along with (3.9) and
Rellich’s compact embedding H1(Ω) ↪→ L2(Ω). Then we also observe u(·, 0) = φ. By (3.9), we
find that, for t ∈ [tn, tn+1),

‖uτ (t)− ūτ (t)‖2L2(Ω) =

(
tn+1 − t

τ

)2

‖un+1 − un‖2L2(Ω)

(3.9)

≤ Cτ → 0,

which gives u = ū and (3.20). One can similarly derive by (3.11) that v = v̄. Since the operator
u 7→ β(u) is maximal monotone in L2(Ω), thanks to the demiclosedness of maximal monotone
operators (see Proposition A.1), one can verify that v = β(u). Finally, (3.27) follows from these
facts along with (3.2). �

Remark 3.6. Due to (β)δ, i.e., β is Lipschitz continuous in R, and (3.20), one can also directly
derive the strong convergence of β(ūτ ) to β(ū) in L

∞(0, T ;L2(Ω)).
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By virtue of the relation C([0, T ];L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ⊂ Cw([0, T ];H
1(Ω)) (see [8]), we

obtain u ∈ Cw([0, T ];H
1(Ω)).

The next lemma identifies the limit ξ as a section of ∂I[0,+∞)(∂tu).

Lemma 3.7. It follows that ∂tu ≥ 0 a.e. in Ω× (0, T ) and ξ ∈ ∂I[0,+∞)(∂tu).

Proof. The proof given below basically relies on Minty’s trick. However, compared to usual
doubly nonlinear evolution equations such as (2.8) and (2.9), some additional difficulty may
arise from the coexistence of two sorts of nonlinearities, ∂tβ(u) and ∂I[0,+∞)(∂tu). Noting that

ξ̄τ ∈ ∂I[0,+∞)(∂tuτ ), by Lemma 3.5, we first derive

lim sup
τ→0

∫ T

0

(
ξ̄τ , ∂tuτ

)
L2(Ω)

dt
(3.16)
= lim sup

τ→0

∫ T

0

(
ūτ + λ2∆ūτ − µ∂tuτ − ∂tvτ , ∂tuτ

)
L2(Ω)

dt

≤ lim
τ→0

∫ T

0

(ūτ , ∂tuτ )L2(Ω)dt−
λ2

2
lim inf
τ→0

‖∇uτ (T )‖2L2(Ω) +
λ2

2
‖∇φ‖2L2(Ω)

− µ lim inf
τ→0

∫ T

0

‖∂tuτ‖2L2(Ω)dt− lim inf
τ→0

∫ T

0

(∂tvτ , ∂tuτ )L2(Ω) dt

≤
∫ T

0

(u, ∂tu)L2(Ω)dt−
λ2

2
‖∇u(T )‖2L2(Ω) +

λ2

2
‖∇φ‖2L2(Ω)

− µ

∫ T

0

‖∂tu‖2L2(Ω)dt− lim inf
τ→0

∫ T

0

(∂tvτ , ∂tuτ )L2(Ω) dt. (3.28)

Here the last inequality follows from the weak lower semicontinuity of norms and the fact that

uτ (T ) → u(T ) weakly in H1(Ω).

Moreover, we emphasize that the last term of (3.28) arises from the mixed double nonlinearity of
Equation (2.7).

We claim that

lim inf
τ→0

∫ T

0

(∂tvτ , ∂tuτ )L2(Ω) dt ≥
∫ T

0

(∂tβ(u), ∂tu)L2(Ω) dt. (3.29)

To prove this, by using the Mean-Value Theorem, we observe that∫ T

0

(∂tvτ , ∂tuτ )L2(Ω) dt =
N−1∑
n=0

τ

(
β(un+1)− β(un)

τ
,
un+1 − un

τ

)
L2(Ω)

=
N−1∑
n=0

τ

∫
Ω

β′ (z̄τ )

∣∣∣∣un+1 − un
τ

∣∣∣∣2 dx
for some z̄τ = z̄τ (x, t) ∈ (ūτ (x, t−τ), ūτ (x, t)). Here, as in the proof of Lemma 3.5, one can verify
that

ūτ (· − τ) → u strongly in L∞(0, T ;L2(Ω)),

which also yields that

z̄τ → u strongly in L∞(0, T ;L2(Ω)).

Since β′(s) is continuous on [δ,+∞) by (β)δ, we have

β′(z̄τ (x, t)) → β′(u(x, t)) for a.e. (x, t) ∈ Ω× (0, T ). (3.30)

Moreover, noting by (β)δ that∣∣∣√β′(z̄τ (x, t))
∣∣∣ ≤ C

1/2
δ for a.e. (x, t) ∈ Ω× (0, T )

and applying the Lebesgue dominated convergence theorem, we obtain√
β′(z̄τ ) →

√
β′(u) strongly in Lq(Ω× (0, T ))
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for any q ∈ [1,+∞). Here we particularly take q > 2.

For any ϕ ∈ L∞(0, T ;Lr(Ω)) with r ∈ (1,+∞) sufficiently large (e.g., r = 2q/(q − 2) > 2), it
follows that ∫ T

0

∫
Ω

ϕ
√
β′(z̄τ ) ∂tuτ dxdt→

∫ T

0

∫
Ω

ϕ
√
β′(u) ∂tu dxdt

as τ → 0. Hence we deduce that√
β′(z̄τ ) ∂tuτ →

√
β′(u) ∂tu weakly in L1(0, T ;Lr′(Ω)),

where r′ := r/(r − 1) < 2. Moreover, note by (3.9) that∫ T

0

∫
Ω

β′(z̄τ )|∂tuτ |2 dxdt ≤ Cδ

∫ T

0

‖∂tuτ‖2L2(Ω)dt ≤ C,

which implies √
β′(z̄τ ) ∂tuτ →

√
β′(u) ∂tu weakly in L2(0, T ;L2(Ω)).

From the weak lower semicontinuity of a norm, we conclude that

lim inf
τ→0

∫ T

0

∫
Ω

β′(z̄τ )|∂tuτ |2 dxdt ≥
∫ T

0

∫
Ω

β′(u)|∂tu|2 dxdt =

∫ T

0

(∂tβ(u), ∂tu)L2(Ω)dt,

which implies the desired assertion (3.29).

Now, we obtain

lim sup
τ→0

∫ T

0

(
ξ̄τ , ∂tuτ

)
L2(Ω)

dt ≤
∫ T

0

(u, ∂tu)L2(Ω)dt−
λ2

2
‖∇u(T )‖2L2(Ω) +

λ2

2
‖∇φ‖2L2(Ω)

− µ

∫ T

0

‖∂tu‖2L2(Ω)dt−
∫ T

0

(∂tβ(u), ∂tu)L2(Ω) dt

=

∫ T

0

(
u+ λ2∆u− µ∂tu− ∂tβ(u), ∂tu

)
L2(Ω)

dt

(3.27)
=

∫ T

0

(ξ, ∂tu)L2(Ω) dt,

which together with the maximal monotonicity of ∂I[0,+∞) : L
2(Ω) → L2(Ω) gives ∂tu ≥ 0 a.e. in

Ω× (0, T ) and ξ ∈ ∂I[0,+∞)(∂tu) (see Proposition A.1). The proof is completed. �

Finally, let us derive an energy inequality to be used later. Recall (3.13) and (3.25). Due to
the weak star lower semicontinuity of a norm, we can obtain{

ess supt∈(0,T ) ‖ξ(t)‖Lp(Ω) ≤ ‖(λ2∆φ+ φ)−‖Lp(Ω) if p ∈ [2,+∞),

‖ξ‖L∞(Ω×(0,T )) ≤ ‖(λ2∆φ+ φ)−‖L∞(Ω) if p = ∞,

if (λ2∆φ+ φ)− belongs to Lp(Ω) for some p ∈ [2,+∞]. Therefore we conclude that

Theorem 3.8 (Solvability of (P)µ). Let µ > 0 and assume (3.1) and (β)δ for some constant

δ > 0. Then the Cauchy-Neumann problem (P)µ = {(2.14), (1.2), (1.3)} admits at least one

strong solution (u, ξ) satisfying

ξ ∈ L∞(0, T ;Lp(Ω)), ess sup
t∈(0,T )

‖ξ(t)‖Lp(Ω) ≤ ‖(λ2∆φ+ φ)−‖Lp(Ω) (3.31)

with p = 2. In addition, if (λ2∆φ+φ)− belongs to Lq(Ω) for some q ∈ [2,+∞), then (3.31) holds
for any p ∈ [2, q]. If (λ2∆φ+ φ)− ∈ L∞(Ω), then ξ belongs to L∞(Ω× (0, T )), and it holds that

‖ξ‖L∞(Ω×(0,T )) ≤ ‖(λ2∆φ+ φ)−‖L∞(Ω).

Remark 3.9. In the case of (1.4) with α = 0, by virtue of a scaling argument, Theorem 3.8 also
ensures the existence of a global (in time) solution for (P) under the milder assumption (3.1).
Furthermore, the non-increase of β′ (see (β)δ) is not used in the proof of Theorem 3.8.
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4. Comparison principle for strictly increasing subsolutions

We first define the notions of a subsolution and a supersolution for (2.14) and (2.7), respectively.

Definition 4.1 (Sub- and supersolution). For µ > 0, a positive function u ∈ W 1,2(0, T ;L2(Ω))
is called a subsolution of (2.14) if the following (i)–(iii) holds true:

(i) β(u) ∈W 1,2(0, T ;L2(Ω)),
(ii) u(·, t) ∈ H2(Ω) for a.e. t ∈ (0, T ),
(iii) ∂tu(x, t) ≥ 0 for a.e. (x, t) ∈ Ω× (0, T ), and there exist ξ(·, t) ∈ L2(Ω) for a.e. t ∈ (0, T )

such that

µ∂tu+ ∂tβ(u) + ξ ≤ λ2∆u+ u, ξ ∈ ∂I[0,+∞)(∂tu) (4.1)

for a.e. (x, t) ∈ Ω× (0, T ).

A positive function u ∈W 1,2(0, T ;L2(Ω)) is called a supersolution of (2.14) if the conditions (i)–
(iii) hold with the inequality of (4.1) replaced by the inverse one, i.e., µ∂tu+∂tβ(u)+ξ ≥ λ2∆u+u
in Ω× (0, T ).

A positive function u ∈ C([0, T ];L2(Ω)) is called a subsolution of (2.7) if the conditions (i)–(iii)
are satisfied with µ = 0. The notion of a supersolution of (2.7) is also analogously defined.

Let us next state a comparison principle for (2.14).

Theorem 4.2 (Comparison principle for (2.14)). Let µ > 0 be fixed and assume that

β is strictly increasing in (0,∞). (4.2)

Let u be a subsolution of (2.14) and let v be a supersolution of (2.14) such that u(x, 0) ≤ v(x, 0)
for a.e. x ∈ Ω and ∂νu ≤ ∂νv for a.e. (x, t) ∈ ∂Ω× (0, T ). Suppose that

∂tu > 0 a.e. in Ω× (0, T ). (4.3)

Then it holds that u ≤ v for a.e. x ∈ Ω and all t ∈ [0, T ].

Proof. Set w = u− v. By subtraction of equations, we have

µ∂tw + ∂tβ(u)− ∂tβ(v) + ξ − η ≤ λ2∆w + w, ξ ∈ ∂I[0,+∞)(∂tu), η ∈ ∂I[0,+∞)(∂tv).

By assumption, we find that ξ ≡ 0. Test it by z := sgn(w) ∨ 0 = sgn(β(u)− β(v)) ∨ 0 ≥ 0. Then
we have

µ
d

dt

∫
Ω

(w)+dx+
d

dt

∫
Ω

(β(u)− β(v))+ dx+

∫
Ω

−ηz dx ≤
∫
Ω

(w)+dx.

Here we used the fact that (−∆w, z)L2(Ω) ≥ 0 by ∂νw ≤ 0 and the monotonicity of the mapping
s 7→ sgn(s) ∨ 0. Noting that −ηz ≥ 0, w(x, 0) ≤ 0 and β(u(x, 0))− β(v(x, 0)) ≤ 0 for a.e. x ∈ Ω,
we have

µ

∫
Ω

(w)+(x, t) dx+

∫
Ω

(β(u)− β(v))+ (x, t) dx ≤
∫ t

0

∫
Ω

(w)+(x, s) dxds.

By exploiting Gronwall’s inequality, we deduce that

µ

∫
Ω

(w)+(x, t) dx ≡ 0 for all t ∈ [0, T ],

which concludes that u ≤ v for a.e. x ∈ Ω and all t ∈ [0, T ]. �

One can immediately obtain the following corollaries:

Corollary 4.3. Let µ > 0 and assume in addition to (4.2) that φ ∈ L2(Ω) satisfies φ ≥ 0 a.e. in
Ω. Then strictly increasing solutions u = u(x, t) of (P)µ are unique.
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Corollary 4.4. Let µ > 0 and assume that (β)δ holds and φ ∈ L2(Ω) satisfies φ ≥ δ a.e. in Ω
for some constant δ > 0. Then any solution u = u(x, t) of (P)µ on [0,+∞) diverges to +∞ as
t→ +∞.

Proof. Let z be a solution of the Cauchy problem,

µz′(t) +
d

dt
β(z(t)) = z(t) for t > 0, z(0) = z0 := δ.

Define a function Φµ by

Φµ(z) =

∫ z

z0

µ+ β′(ζ)

ζ
dζ for z ≥ z0 > 0.

Then one can observe that

Φµ(z) <∞, Φ′
µ(z) > 0 for all z ∈ [z0,+∞), lim

z→+∞
Φµ(z) ≥ lim

z→+∞

∫ z

z0

µ

ζ
dζ = +∞.

Hence the inverse function Φ−1
µ : [0,+∞) → [z0,+∞) of t = Φµ(z) exists, and moreover, Φ−1

µ (t)

is strictly increasing on [0,+∞), Φ−1
µ (0) = z0, and Φ−1

µ (t) → +∞ as t→ +∞.

Now, z(t) is explicitly written as

z(t) = Φ−1
µ (t) for t ≥ 0.

Moreover, since ∂tz > 0 and z(t) is uniform in Ω, z becomes a strictly increasing (sub)solution of
(P)µ on [0,+∞). Hence applying Theorem 4.2, we have

u(x, t) ≥ z(t) for a.e. x ∈ Ω and all t ≥ 0,

which implies the desired conclusion. �

The next theorem provides a comparison principle for (2.7), which will be used to verify the
blow-up in finite time of positive solutions for (P) in Section 5.

Theorem 4.5 (Comparison principle for (2.7)). Assume (β)δ for some constant δ > 0 and let u
be a subsolution of (2.7) and let v be a supersolution of (2.7) such that δ ≤ u(x, 0) ≤ v(x, 0) for
a.e. x ∈ Ω and ∂νu ≤ ∂νv for a.e. (x, t) ∈ ∂Ω× (0, T ). Suppose that

∂tu > 0 a.e. in Ω× (0, T ) and ‖u‖L∞(Ω×(0,T )) ∨ ‖v‖L∞(Ω×(0,T )) ≤M (4.4)

for some constant M ≥ 0. Then it holds that u ≤ v for a.e. x ∈ Ω and all t ∈ [0, T ].

Proof. Repeating the same argument as in the proof of Theorem 4.2, we have∫
Ω

(β(u)− β(v))+ (x, t) dx ≤
∫ t

0

∫
Ω

(w)+(x, s) dxds for all t ∈ [0, T ],

where w = u− v. Here letting z be a function defined as in the proof of Theorem 4.2, we observe
that

(β(u)− β(v)) z =

∫ 1

0

β′ ((1− θ)v + θu) (w)+dθ ≥ cM (w)+

for some constant cM > 0, which is given as the minimum of β′ on [δ,M ] by (β)δ. Thus it yields

(w)+ ≤ 1

cM
(β(u)− β(v)) z =

1

cM
(β(u)− β(v))+ .

Therefore we obtain∫
Ω

(β(u)− β(v))+ (x, t) dx ≤ 1

cM

∫ t

0

∫
Ω

(β(u)− β(v))+ (x, s) dxds for all t ∈ [0, T ],

which implies ∫
Ω

(β(u)− β(v))+ (x, t) dx ≡ 0 for all t ∈ [0, T ].
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Thus u ≤ v for a.e. x ∈ Ω and all t ∈ [0, T ]. �

We close this section by an immediate consequence of the theorem stated above.

Corollary 4.6. Assume that (β)δ holds and φ ∈ L2(Ω) satisfies φ ≥ δ a.e. in Ω for some
constant δ > 0. Then bounded strictly increasing solutions of (P) are unique.

5. Local solvability of (P) and finite time blow-up of solutions

This section is devoted to proving Theorem 2.1. Throughout this section, we assume (2.11)
and also suppose that β ∈ C1([0,∞)) without any loss of generality as in §3.

To construct a solution of (P), we employ strong solutions (uµ, ξµ) of (P)µ on [0, T ] constructed

in §3 as approximated solutions for (P). However, in contrast with (P)µ for µ > 0, solutions of (P)

may blow up in finite time (see an explicit solution blowing up in finite time given by (5.2) below).
So it is a key step to establish a local (in time) estimate for uµ. To this end, we shall apply the
comparison principle (see Theorem 4.2) to uµ (as a subsolution) and an explicit supersolution.
However, in Theorem 4.2, subsolutions are supposed to be strictly increasing (see (4.3)), and this
assumption is somewhat restrictive to directly apply the principle to uµ, whose time derivative
may vanish. Hence it is crucial how to apply the principle and obtain a local (in time) uniform
estimate of uµ.

Lemma 5.1. For each M > ‖φ‖L∞(Ω), there exists TM > 0 independent of µ > 0 such that

δ ≤ uµ(x, t) ≤M for a.e. x ∈ Ω and all t ∈ [0, TM ].

Proof. We start with constructing an explicit supersolution of (2.14). Let z = z(t) be a solution
of the Cauchy problem of the following ODE:

d

dt
β(z(t)) = z(t), z(0) = z0 > 0. (5.1)

Here as in the proof of Corollary 4.4, define a function Φ : [z0,∞) → [0, T̂ (z0)) by

Φ(z) :=

∫ z

z0

β′(ζ)

ζ
dζ, T̂ (z0) :=

∫ ∞

z0

β′(ζ)

ζ
∈ (0,∞].

Then z is explicitly given by

z(t) = Φ−1(t) for t ∈ [0, T̂ (z0)). (5.2)

Here we remark that z solves (P) with φ ≡ z0. We find that z′(t) > 0 for all t and z(t) → +∞ as

t↗ T̂ (z0). Moreover, since z is constant in Ω and ∂I[0,+∞)(z
′(t)) = {0} for t > 0, it follows that

µ∂tz + ∂tβ(z) + ∂I[0,+∞)(∂tz) ≥ λ2∆z + z in Ω× (0, T̂ (z0)), ∂νz = 0 on ∂Ω× (0, T̂ (z0)).

Hence z is a supersolution of (2.14) on [0, S] for any S ∈ (0, T̂ (z0)).

Let (uµ, ξµ) be a strong solution of (P)µ and define a positive function ûµ ∈W 1,2(0, T ;L2(Ω))
by

ûµ := uµ + t+ κ,

where κ ≥ 0 is a constant to be determined later. Then we observe that ∂ν ûµ = 0 on ∂Ω× (0, T )
and ∂tûµ = ∂tuµ + 1 > 0 in Ω × (0, T ), which implies ∂I[0,+∞)(∂tûµ) = {0}. Moreover, we note
that

∂tβ(ûµ) = β′(ûµ)∂tûµ ≤ β′(uµ)(∂tuµ + 1) ≤ β′(uµ)∂tuµ + Cδ

by the non-increase and the boundedness of β′ (see (β)δ). Therefore we have

µ∂tûµ + ∂tβ(ûµ) ≤ µ∂tuµ + β′(uµ)∂tuµ + µ+ Cδ

= λ2∆uµ + uµ − ξµ + µ+ Cδ

≤ λ2∆ûµ + ûµ −
(
κ− ‖ξµ‖L∞(Ω×(0,T )) − µ− Cδ

)
.
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Here we recall by Theorem 3.8 and (2.11) that

‖ξµ‖L∞(Ω×(0,T )) ≤ ‖(λ2∆φ+ φ)−‖L∞(Ω).

Hence choosing κ = ‖(λ2∆φ+ φ)−‖L∞(Ω) + 1 + Cδ, we conclude that, for any µ ∈ (0, 1), ûµ is a
subsolution of (2.14) such that ∂tûµ > 0 in Ω× (0, T ).

Let us take z0 := ‖φ‖L∞(Ω) + κ ≥ ûµ(·, 0) and apply Theorem 4.2 to the strictly increasing
subsolution ûµ and the supersolution z. Then we obtain

ûµ(x, t) ≤ z(t) for all t ∈ [0, T̂ (z0)),

which implies
uµ(x, t) ≤ z(t)− t− κ for all t ∈ [0, T̂ (z0)).

Therefore for each M > ‖φ‖L∞(Ω), one can choose TM ∈ (0, T̂ (z0)) such that z(TM ) = M + κ,
and hence, uµ(x, t) ≤M for all t ∈ [0, TM ]. �

Now, fix M = ‖φ‖L∞(Ω) + 1 and take T0 := TM > 0 such that

sup
t∈[0,T0]

‖uµ(t)‖L∞(Ω) ≤M. (5.3)

Remark 5.2. One may also obtain

T0 = `(‖φ‖L∞(Ω) + ‖(λ2∆φ+ φ)−‖L∞(Ω) + Cδ + 1) (5.4)

with a strictly decreasing positive function `(·) depending only on the choice of β′. Indeed, let z
be a solution of (5.1) with z(0) = z0 and let ` = `(z0) > 0 be such that z(`(z0)) = z0 + 1. Then
by (5.1),

`(z0) =

∫ z0+1

z0

β′(ζ)

ζ
dζ,

which implies

`′(z0) =
β′(z0 + 1)

z0 + 1
− β′(z0)

z0
.

Since β′ is non-increasing and positive (see (β)δ), ` is strictly decreasing in z0. Hence by the
choice of T0 in (5.3), putting z0 = ‖φ‖L∞(Ω) + κ, we obtain (5.4).

Then we are in position to derive uniform estimates.

Lemma 5.3. There exist constants C ≥ 0 and cM > 0 independent of µ > 0 such that

µ

∫ T0

0

‖∂tuµ‖2L2(Ω)dt+ cM

∫ T0

0

‖∂tuµ‖2L2(Ω)dt+
λ2

2
sup

t∈[0,T0]

‖∇uµ(t)‖2L2(Ω) ≤ C, (5.5)

sup
t∈[0,T0]

‖β(uµ(·, t))‖L∞(Ω) ≤ C, (5.6)

‖ξµ‖L∞(Ω×(0,T0)) ≤ ‖(λ2∆φ+ φ)−‖L∞(Ω), (5.7)∫ T0

0

‖∂tβ(uµ)‖2L2(Ω)dt ≤ C, (5.8)∫ T0

0

‖∆uµ‖2L2(Ω)dt ≤ C. (5.9)

Proof. Test (2.14) by ∂tuµ to get

µ‖∂tuµ‖2L2(Ω) + (∂tβ(uµ), ∂tuµ)L2(Ω) +
d

dt

(
λ2

2
‖∇uµ‖2L2(Ω) −

1

2
‖uµ‖2L2(Ω)

)
= 0, (5.10)

from the fact that ξµ∂tuµ = 0 by ξµ ∈ ∂I[0,+∞)(∂tuµ). Here by virtue of (5.3), we find that

(∂tβ(uµ), ∂tuµ)L2(Ω) =

∫
Ω

β′(uµ)|∂tuµ|2 dx ≥ cM

∫
Ω

|∂tuµ|2 dx,
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where cM := infs∈[δ,M ] β
′(s) (= β′(M)) > 0 by (β)δ. Hence integrating both sides of (5.10) over

(0, t), we deduce that

µ

∫ t

0

‖∂τuµ‖2L2(Ω)dτ + cM

∫ t

0

‖∂τuµ‖2L2(Ω)dτ +
λ2

2
‖∇uµ(t)‖2L2(Ω)

≤ 1

2
‖uµ(t)‖2L2(Ω) +

λ2

2
‖∇φ‖2L2(Ω) ≤

M2|Ω|
2

+
λ2

2
‖∇φ‖2L2(Ω)

for any t ∈ [0, T0]. Thus (5.5) follows. Moreover, it follows from (2.10) and (5.3) that

sup
t∈[0,T0]

‖β(uµ(·, t))‖L∞(Ω) ≤ CδM + |β(δ)|,

which gives (5.6). Moreover, (5.7) has already been derived by Theorem 3.8 and (2.11). Estimate
(5.8) follows from (5.5) and the fact that

|∂tβ(uµ)| = |β′(uµ)||∂tuµ| ≤ Cδ|∂tuµ|.
Finally, by comparison, we get (5.9). �

Let us proceed to passing to the limit as µ→ 0.

Lemma 5.4. By taking a (non-relabeled) subsequence of µ→ 0, one can derive

µ∂tuµ → 0 strongly in L2(0, T0;L
2(Ω)), (5.11)

uµ → u weakly star in L∞(0, T0;H
1(Ω)), (5.12)

weakly star in L∞(Ω× (0, T0)), (5.13)

weakly in W 1,2(0, T0;L
2(Ω)), (5.14)

strongly in C([0, T0];L
2(Ω)), (5.15)

ξµ → ξ weakly star in L∞(Ω× (0, T0)), (5.16)

β(uµ) → v weakly star in L∞(Ω× (0, T0)), (5.17)

∂tβ(uµ) → ∂tv weakly in L2(0, T0;L
2(Ω)), (5.18)

∆uµ → ∆u weakly in L2(0, T0;L
2(Ω)) (5.19)

for some u ∈ W 1,2(0, T0;L
2(Ω)) ∩ L∞(0, T0;H

1(Ω)) ∩ L∞(Ω× (0, T0)), v ∈ W 1,2(0, T0;L
2(Ω)) ∩

L∞(Ω × (0, T0)) and ξ ∈ L∞(Ω × (0, T0)). In particular, one has u(0) = φ. Moreover, it holds
that v = β(u) and ∂tβ(u) + ξ = λ2∆u+ u.

Proof. The weak (star) convergences follow immediately from the uniform estimates established so
far. Since

√
µ∂tuµ is bounded in L2(0, T0;L

2(Ω)), (5.11) follows. Moreover, (5.15) can be verified

by using Ascoli’s compactness lemma (see, e.g., [12]) along with the compact embeddingH1(Ω) ↪→
L2(Ω). Then one can also assure the initial condition u(0) = φ. Finally, the demiclosedness
of maximal monotone operators together with (5.15) and (5.17) yields v = β(u), and hence,
∂tβ(u) + ξ = λ2∆u+ u. �

We also deduce that u ∈ Cw([0, T0];H
1(Ω)), since u belongs to C([0, T0];L

2(Ω))∩L∞(0, T0;H
1(Ω)).

Furthermore, by (5.3) and (5.15), one has

uµ(t) → u(t) weakly star in L∞(Ω) for all t ∈ [0, T0].

It follows that

‖u(t)‖L∞(Ω) ≤ lim inf
µ→0

‖uµ(t)‖L∞(Ω) ≤M for all t ∈ [0, T0],

which along with the fact that u ∈ C([0, T0];L
2(Ω)) implies the continuity of t 7→ u(t) in the

weak star topology of L∞(Ω), that is, u ∈ Cw∗([0, T0];L
∞(Ω)). Finally, we identify the limit ξ of

ξµ as µ→ 0.
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Lemma 5.5. It holds that ∂tu ≥ 0 a.e. in Ω× (0, T0) and ξ ∈ ∂I[0,+∞)(∂tu).

Proof. We use Minty’s trick again to prove this lemma. Observe that∫ T0

0

(ξµ, ∂tuµ)L2(Ω)dt =

∫ T0

0

(
λ2∆uµ + uµ − µ∂tuµ − ∂tβ(uµ), ∂tuµ

)
L2(Ω)

dt

= −λ
2

2
‖∇uµ(T0)‖2L2(Ω) +

λ2

2
‖∇φ‖2L2(Ω) +

∫ T0

0

(uµ, ∂tuµ)L2(Ω)dt

− µ

∫ T0

0

‖∂tuµ‖2L2(Ω)dt−
∫ T0

0

(∂tβ(uµ), ∂tuµ)L2(Ω) dt.

Here we also remark that

lim inf
µ→0

∫ T0

0

(∂tβ(uµ), ∂tuµ)L2(Ω) dt ≥
∫ T0

0

(∂tβ(u), ∂tu)L2(Ω) dt

by verifying that
√
β′(uµ)∂tuµ →

√
β′(u)∂tu weakly in L2(0, T0;L

2(Ω)) (see the proof of Lemma
3.7). Finally, from (5.14), (5.15) and the weak lower semicontinuity of norms, we conclude that

lim sup
µ→0

∫ T0

0

(ξµ, ∂tuµ)L2(Ω)dt ≤ −λ
2

2
‖∇u(T0)‖2L2(Ω) +

λ2

2
‖∇φ‖2L2(Ω) +

∫ T0

0

(u, ∂tu)L2(Ω)dt

−
∫ T0

0

(∂tβ(u), ∂tu)L2(Ω) dt

=

∫ T0

0

(ξ, ∂tu)L2(Ω) dt,

whence follows ∂tu ≥ 0 a.e. in Ω× (0, T0) and ξ ∈ ∂I[0,+∞)(∂tu). This completes the proof. �

By Remark 2.4 along with (5.7) and (5.16), one can also derive the inequality (2.12). Thus we
have proved the existence of a local (in time) strong solution for (P).

Let us finally verify the finite time blow-up of any solution u = u(x, t) to (P) for any data

φ ∈ L∞(Ω) satisfying φ ≥ δ > 0 a.e. in Ω. To this end, suppose on the contrary that Tmax > T̂ (δ),

i.e., for some Tδ > T̂ (δ), one can extend u onto [0, Tδ] such that

Mδ := sup
t∈[0,Tδ]

‖ū(t)‖L∞(Ω) = ‖ū(Tδ)‖L∞(Ω) < +∞, (5.20)

where ū stands for the extended solution. We recall the explicit solution z = z(t) on [0, T̂ (δ))
of the ODE (5.1) with z0 = δ > 0. Then z is a strictly increasing (sub)solution of (P) on

[0, T̂ (δ)). For each M > δ, one can take τM ∈ (0, T̂ (δ)) such that z(t) < M for all t ∈ [0, τM ) and

z(τM ) =M , since z(t) diverges to +∞ as t→ T̂ (δ). Set Q :=M ∨Mδ < +∞. We observe that

|z(t)| ≤ Q and ‖ū(t)‖L∞(Ω) ≤ Q for a.e. t ∈ (0, τM ).

Due to Theorem 4.5, we have

z(t) ≤ ū(x, t) for a.e. x ∈ Ω and all t ∈ [0, τM ].

Now, letting M → +∞, we infer that τM ↗ T̂ (δ), and therefore,

z(t) ≤ ū(x, t) for a.e. x ∈ Ω and t ∈ [0, T̂ (δ)).

Hence we obtain

lim
t↗T̂ (δ)

ess inf
x∈Ω

|ū(x, t)| = +∞,

which contradicts (5.20). Thus we obtain Tmax ≤ T̂ (δ). From the definition of Tmax and the local
existence part, one can prove (2.13) by recalling (5.4) and (2.12). Thus we have proved Theorem
2.1. �
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Appendix A. Convex analysis

Here we briefly recall several notions and propositions related to convex analysis for the con-
venience of the reader.

Let X be a Banach space with norm ‖ · ‖X and let ϕ : X → (−∞,+∞] be a proper (i.e.,
ϕ 6≡ +∞), lower semicontinuous convex functional with effective domain D(ϕ) := {u ∈ X : ϕ(u) <
+∞}. The subdifferential operator ∂Xϕ : X → 2X

∗
(or simply denoted by ∂ϕ) is formulated as

∂ϕ(u) := {ξ ∈ X∗ : ϕ(v)− ϕ(u) ≥ 〈ξ, v − u〉X for all v ∈ X} , (A.1)

where 〈·, ·〉X is the duality pairing betweenX andX∗, with domainD(∂ϕ) := {u ∈ D(ϕ) : ∂ϕ(u) 6=
∅}. It is well known that ∂ϕ has a maximal monotone graph in X ×X∗. In particular, if X is
a Hilbert space whose dual space is identified with itself (e.g., X = L2(Ω)), then 〈·, ·〉X can be
replaced by an inner product (·, ·)X . Furthermore, if ψ is a convex functional on X of class C1

(in the sense of Fréchet derivatives), then

∂(ϕ+ ψ) = ∂ϕ+ ψ′,

where ψ′ : X → X∗ is the Fréchet derivative of ψ.

The following proposition is useful to identify the (weak) limit of a sequence in the graph of a
nonlinear maximal monotone operator.

Proposition A.1 (Demiclosedness of maximal monotone operators). Let A : X → X∗ be a
(possibly multivalued) maximal monotone operator. Let [un, ξn] be in the graph of A such that
un → u weakly in X and ξn → ξ weakly in X∗. Suppose that

lim sup
n→+∞

〈ξn, un〉X ≤ 〈ξ, u〉X .

Then [u, ξ] belongs to the graph of A, and moreover, it holds that

lim
n→+∞

〈ξn, un〉X = 〈ξ, u〉X .

Let Ω be a bounded domain in RN . Let u ∈ L2(Ω) and let α be a maximal monotone graph in
R2. Since every maximal monotone graph in R2 becomes cyclic monotone, one can take a proper
lower semicontinuous convex potential θ : R → (−∞,+∞] such that ∂θ = α.

Proposition A.2 ([6, 5]). Define Θ : L2(Ω) → (−∞,+∞] by

Θ(u) :=


∫
Ω

θ(u(x)) dx if u ∈ L2(Ω) and θ(u(·)) ∈ L1(Ω),

+∞ otherwise.

Then the following properties are all satisfied :

(i) Θ is proper, lower semicontinuous and convex in L2(Ω).
(ii) For all f, u ∈ L2(Ω), it follows that f ∈ ∂L2(Ω)Θ(u) if and only if f(x) ∈ ∂Rθ(u(x)) for

a.e. x ∈ Ω.
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(iii) Assume that u ∈ D(−∆) = {u ∈ H2(Ω): ∂νu = 0 a.e. on ∂Ω}. It then holds that

−
∫
Ω

∆u(x)η(x) dx ≥ 0 for any section η ∈ ∂L2(Ω)Θ(u).
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