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In some reaction-diffusion systems where the total mass of their components is conserved, solutions with
initial values near a homogeneous equilibrium converge to a simple localized pattern (spike) after exhibiting
Turing-like patterns near the equilibrium for appropriate diffusion coefficients. In this study, we investigate the
perturbed reaction-diffusion systems of such conserved systems. We show that a reaction-diffusion model with
a globally stable homogeneous equilibrium can exhibit large amplitude Turing-like patterns in the transient
dynamics. Moreover, we propose a three-component model, which exhibits an alternating repetition of spatially
(almost) homogeneous oscillations and large amplitude Turing-like patterns.
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I. INTRODUCTION

Reaction-diffusion systems provide a theoretical frame-
work for understanding pattern formation process in many
fields of sciences, including chemistry, biology, and ecology.
Recently, for understanding cell polarization related to the di-
rectional movements of cell, Refs. [1,2] proposed a conceptual
model of a reaction-diffusion system:

ut = Duuxx + f (u,v)

vt = Dvvxx − f (u,v)
(0 < x < L), (1.1)

under the periodic boundary condition with Dv > Du, where
u and v stand for concentrations of two internal chemicals in
a cell. This system is called a reaction-diffusion system with
mass conservation because∫ L

0
[u(x,t) + v(x,t)]dx ≡

∫ L

0
[u(x,0) + v(x,0)]dx (1.2)

holds for any (smooth) solutions. They showed that for
appropriate functions f , a homogeneous equilibrium can be
destabilized through the same mechanism as the diffusion-
driven instability, and hence solutions with initial values
near the destabilized equilibrium exhibit sinusoidal transient
patterns, which we call Turing-like patterns. Moreover, by
virtue of the mass conservation, the solutions eventually
approach a simple localized pattern (spike) after exhibiting
long transient dynamics; spatial patterns consisting of some
spikes appear and the number of spikes decreases. This
characteristic dynamics is regardless of the system size L when
Turing-like patterns are observed [1]. In addition, a physically
intuitive explanation on the instability of multispike patterns is
also given by Ref. [1]. Following these results, mathematical
aspects of Eq. (1.1) have been studied by Refs. [3–7]. In
particular, for appropriate functions f , any solution converges
to an equilibrium by virtue of a Lyapunov function, and a
linearized stability analysis with a variational method reveals
that every stable equilibrium must be constant or unimodal
under the periodic boundary condition (see Refs. [3–5]).

*kuwamura@main.h.kobe-u.ac.jp
†morita@rins.ryukoku.ac.jp

Although Eq. (1.1) has a rather special form, we often
encounter reaction-diffusion systems incorporating some addi-
tional terms into Eq. (1.1). For example, the Gray-Scott model,

ut = Duuxx − uv2 + F (1 − u)

vt = Dvvxx + uv2 − (F + k)v,

can be regarded as the perturbed system of Eq. (1.1) if positive
constants F and k are sufficiently small. We note that under
appropriate conditions [8], the Gray-Scott model exhibits
complex transient dynamics known as self-replication, which
is caused by dynamical properties such as the diffusion-driven
instability and the Bogdanov-Takens bifurcation [9].

In this paper, we consider a perturbed system of Eq. (1.1),

ut = Duuxx + f (u,v) + εg(u,v)

vt = Dvvxx − f (u,v) + εh(u,v)
(0 < x < L), (1.3)

under the periodic boundary condition, where ε > 0 is suf-
ficiently small. Notice that Eq. (1.3) no longer satisfies the
mass conservation property, Eq. (1.2), in general. Moreover,
we consider a three-component perturbed system of Eq. (1.1),

ut = Duuxx + f (u,v) + εg1(s,w)

vt = Dvvxx − f (u,v) + εg2(s,w)

wt = εh(s,w)

(0 < x < L), (1.4)

under the periodic boundary condition, where w = w(t) and

s = s(t) := 1

L

∫ L

0
(u + v) dx. (1.5)

Here, we suppose that there exists a function of H = H (s,w)
such that

d

dt
H [s(t),w(t)] ≡ 0 (1.6)

holds for solutions of Eq. (1.4). Notice that the total mass of u

and v is not conserved, whereas that of u, v, and w is conserved
if H = s + w.

When the parameters F and k in the Grey-Scott model
are sufficiently small, the model does not exhibit fascinating
dynamics. In fact, the system has a simple dynamical structure
if F = k = 0. Here, we are interested in the case that the
unperturbed system Eq. (1.1) allows the Turing-like patterns

1539-3755/2015/92(1)/012908(9) 012908-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.012908


MASATAKA KUWAMURA AND YOSHIHISA MORITA PHYSICAL REVIEW E 92, 012908 (2015)

and the perturbed systems could exhibit a certain complex tran-
sient dynamics. The purpose of our study is to investigate the
dynamics affected by perturbations to such reaction-diffusion
systems with mass conservation. Specifically, applying the
theory of fast-slow systems, we design curious dynamics
of Eqs. (1.3) and (1.4), which have not been realized by
the traditional Turing theory. As a result, a new aspect for
Turing mechanism in reaction-diffusion systems is provided
and it would be helpful for understanding some complex
spatiotemporal patterns.

The remainder of this paper is organized as follows. In
Sec. II, we provide a general framework for analyzing the onset
of Turing-like patterns in the perturbed reaction-diffusion
systems Eq. (1.3). Then, we show that a reaction-diffusion
model with a globally stable homogeneous equilibrium can
exhibit large amplitude Turing-like patterns in the transient
dynamics. According to a standard stability analysis and
bifurcation theory [10], in two-component reaction-diffusion
systems, Turing patterns are realized by stable stationary
solutions bifurcating from a homogeneous equilibrium. This
implies that such a system never allows a globally stable
homogeneous equilibrium. Therefore, our model provides
a viewpoint for understanding the Turing mechanism that
generates spatial patterns by the effect of diffusion. Recall that
the Turing-like patterns we deal with are transient patterns.

In Sec. III, we propose a three-component model that
exhibits an alternating repetition of spatially (almost) homo-
geneous oscillations and large amplitude Turing-like patterns.
According to a dynamical systems theory [11], an alternating
repetition of two different states is realized by the (approxi-
mate) construction of a periodic orbit by using heteroclinic
connections between the different states. In contrast, our
alternating repetition is induced by the destabilization of a
spatially homogeneous oscillation by the diffusion, and the
repetition seems to be given by a periodic orbit connecting
a transient state (Turing-like pattern) and a spatially homo-
geneous oscillation. Concluding remarks are presented in
Sec. IV.

II. PERTURBATIONS WITHIN SYSTEMS

A. Unperturbed systems

We consider a reaction-diffusion system,

ut = Duuxx + f (u,v)

vt = Dvvxx − f (u,v)
(0 < x < L), (2.1)

under the periodic boundary condition, where f is sufficiently
smooth (at least of C2 class). It should be noted that

1

L

∫ L

0
[u(x,t) + v(x,t)]dx ≡ 1

L

∫ L

0
[u(x,0) + v(x,0)]dx

holds for any (smooth) solutions of Eq. (2.1). Let (u∗,v∗) be a
homogeneous equilibrium of Eq. (2.1) defined by

f (u∗,v∗) = 0. (2.2)

Putting f ∗
u := fu(u∗,v∗) and f ∗

v := fv(u∗,v∗), we assume

f ∗
v > f ∗

u .

This condition implies that (u∗,v∗) is a stable equilibrium of
the system of ODEs,

u̇ = f (u,v)

v̇ = −f (u,v), (2.3)

which is obtained from Eq. (2.1) by dropping the diffusion
terms. We note that u(t) + v(t) ≡ u(0) + v(0) holds for any
solutions of Eq. (2.3). By this conservation, the linearized
matrix of the right-hand side of Eq. (2.3) at (u∗,v∗) has zero
eigenvalue. Furthermore, we assume

Dv > Du.

This implies that the amplitude of the u-component becomes
large when spatial patterns appear, as reported in Refs. [1,2].

By using a standard linear stability analysis, it is easy to see
that (u∗,v∗) is a stable equilibrium of Eq. (2.1) if

Dvf
∗
u − Duf

∗
v < 0. (2.4)

This condition ensures that besides the simplicity of the
zero eigenvalue, the remaining eigenvalues of the linearized
operator of the right-hand side of Eq. (2.1) at (u∗,v∗) are
negative; thus, the nonlinear stability is shown (cf. Ref. [12]).
We note that zero eigenvalue always appears because of the
mass conservation.

On the other hand, (u∗,v∗) is unstable if

Dvf
∗
u − Duf

∗
v > 0, (2.5)

and the wavenumber of unstable Fourier mode eikx satisfies

0 < k2 <
Dvf

∗
u − Duf

∗
v

DuDv

,

where k = 2πm/L (m = 1,2, · · · ). In this case, (u∗,v∗) is
destabilized by the same mechanism as the diffusion-driven
instability, and a solution generated by a small perturbation into
(u∗,v∗) exhibits spatial patterns approximated by sinusoidal
functions near (u∗,v∗). We call these transient sinusoidal
patterns Turing-like patterns. In the next stage, the amplitude of
the solution on some subintervals in [0,L] increases and that
on other subintervals decreases. Consequently, the solution
exhibits spatial patterns consisting of some spikes for an
appropriate function f . By virtue of the mass conservation
property of Eq. (2.1), however, the number of spikes decreases
and a single stable spike eventually remains as reported in
Refs. [1,2].

B. Slow manifold

We consider a perturbed system of Eq. (2.1),

ut = Duuxx + f (u,v) + εg(u,v)

vt = Dvvxx − f (u,v) + εh(u,v)
(0 < x < L), (2.6)

where g and h are sufficiently smooth functions, and ε > 0
is sufficiently small. To understand the dynamics of Eq. (2.6),
we first consider the dynamics of the system of ODEs

u̇ = f (u,v) + εg(u,v)

v̇ = −f (u,v) + εh(u,v), (2.7)

which is obtained by dropping the diffusion terms in Eq. (2.6).
Since Eq. (2.7) is reduced to Eq. (2.3) as ε → 0, we see that
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generically, a solution of Eq. (2.7) with an initial value (ũ0,ṽ0)
moves along the line defined by u + v = ũ0 + ṽ0 with O(1)
speed, and approaches a family of stable equilibria of Eq. (2.3)
defined by

� = {(u,v) | f (u,v) = 0, fu(u,v) < fv(u,v)}.
This dynamics is called the fast dynamics of Eq. (2.7). Once the
solution reached a neighborhood of the manifold �, it slowly
moves along � following the dynamics defined by

ṡ = ε{g[u(s),v(s)] +h[u(s),v(s)]}, [u(s),v(s)] ∈ �, (2.8)

where s [= u(s) + v(s)] gives a parametrization of �.
In general, a solution of Eq. (2.6) with an initial value

[u0(x),v0(x)] can be approximated by that of Eq. (2.7) with
an initial value (ũ0,ṽ0) if [u0(x),v0(x)] can be regarded as
a small random perturbation to (ũ0,ṽ0), i.e., [u0(x),v0(x)] =
(ũ0,ṽ0) + [ε1(x),ε2(x)], where ε1(x) and ε2(x) are sufficiently
small perturbations. However, the approximation is only valid
until the solution approaches �.

We now consider the dynamics of the reaction-diffusion
system Eq. (2.6) around �. Since � is not a family of equilibria
of Eq. (2.6), we expect that a solution with a nonhomogeneous
initial value [u0(x),v0(x)] in a small neighborhood of � slowly
moves along � following the dynamics defined by

ṡ = ε

L

∫ L

0
[g(u,v) + h(u,v)]dx, (2.9)

where

s = 1

L

∫ L

0
(u + v)dx.

Moreover, we expect that the solution moving along �

becomes unstable and exhibits Turing-like patterns if it enters
into a region defined by Eq. (2.5). As numerically shown in
the next subsection, � is a slow manifold that plays the onset
of Turing-like patterns when ε is sufficiently small.

C. Global dynamics

We deal with a reaction-diffusion model obtained from
Eq. (1.3) by setting f (u,v) = −f1(u) + v, g(u,v) ≡ 0 and

h(u,v) = −h1(v), i.e.,

ut = Duuxx − f1(u) + v

vt = Dvvxx + f1(u) − v − εh1(v)
(0 < x < L), (2.10)

under the periodic boundary condition, where f1 and h1

are nonnegative smooth functions satisfying the following
conditions:

f1(u) = 0 ⇐⇒ u = 0,

h1(v) = 0 ⇐⇒ v = 0. (2.11)

A typical example of f1(u) and h1(v) is given by

f1(u) := u

u2 + a
and h1(v) := v2, (2.12)

with a constant a > 0. By using a standard argument based on
the maximum principle, it is easily shown that a solution of
Eq. (2.10) with a nonnegative initial value takes nonnegative
values for all x and t > 0. Therefore, we consider the dynamics
of nonnegative solutions of Eq. (2.10).

First, we investigate an equilibrium of Eq. (2.10) defined
by

Duuxx − f1(u) + v = 0

Dvvxx + f1(u) − v − εh1(v) = 0
(0 < x < L), (2.13)

under the periodic boundary condition. Adding the first and
second equations of Eq. (2.13) and integrating over [0,L], we
have ∫ L

0
h1(v)dx = 0,

which implies v ≡ 0 by h1(v) = 0 and the second condition of
Eq. (2.11). Therefore, it follows from the second equation
of Eq. (2.13) that f1(u) = 0, which implies u ≡ 0 by the
first condition of Eq. (2.11). Thus, Eq. (2.10) has a unique
equilibrium (u,v) ≡ (0,0).

Next, we investigate the global stability of the trivial
equilibrium (0,0). Invoking Dv > Du, we define

L(u,v) :=
∫ L

0

Du

2
u2

x +F1(u)+ Du

2Dv

u2+ (Duu + Dvv)2

2Dv(Dv − Du)
dx,

where F1(u) := ∫ u

0 f1(u)du. For any nonnegative solution
[u(x,t),v(x,t)], we have

d

dt
L[u(·,t),v(·,t)] =

∫ L

0
Duuxuxt + f1(u)ut + Du

Dv

uut + (Duu + Dvv)

Dv(Dv − Du)
(Duut + Dvvt ) dx

=
∫ L

0
[−Duuxx + f1(u)]ut + Du

Dv

uut + (Duu + Dvv)

Dv(Dv − Du)
[Dv(ut + vt ) − (Dv − Du)ut ] dx

=
∫ L

0
(v − ut )ut + Du

Dv

uut − (Duu + Dvv)

Dv

ut + (Duu + Dvv)[Duuxx + Dvvxx − εh1(v)]

Dv − Du

dx

= −
∫ L

0
u2

t +
(Duux +Dvvx)2

Dv − Du

+ε
(Duu + Dvv)h1(v)

Dv − Du

dx �0.

In addition, if
d

dt
L[u(·,t),v(·,t)] = 0 (−∞ < t < ∞),

then ut = Duux + Dvvx = h1(v) = 0 holds for all x. We have
v ≡ 0 by h1(v) = 0 and the second condition of Eq. (2.11),
and hence ut ≡ ux ≡ 0. Therefore, it follows from the first
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FIG. 1. The flow of Eq. (2.14) on the first quadrant of uv plane.
Here, the horizontal and vertical axes indicate u and v, respectively.
The equilibria are given by v = u/(u2 + a). The solid line represents
a family of stable equilibria �, which is divided into two connected
components �1 and �2. On the other hand, the dashed line represents
that of unstable equilibria.

equation of Eq. (2.10) that f1(u) = 0, which implies u ≡ 0 by
the first condition of Eq. (2.11). Thus, we see that L(u,v) is
a Lyapunov function for Eq. (2.10), which proves the global
stability of the trivial equilibrium (cf. Ref. [13]).

Remark 1. The functional

E(u,v) :=
∫ L

0
(u + v) dx

also plays as a Lyapunov function for ε > 0 since the solutions
u(x,t) and v(x,t) are nonnegative. The above functional L,
however, plays as a Lyapunov function for ε = 0 as well as
ε > 0. In fact, when ε = 0, the Lyapunov functionL shows that
the flow of our system allows a global attractor in the space with
the constraint Eq. (1.2). Such an attractor can be expressed by
the union of all the unstable manifolds of equilibria [13] when
the attractor has multiequilibria. This dynamical structure,
however, is destroyed by a perturbation that breaks the
constraint, and it turns to an attractor consisting of only a
trivial equilibrium; in our parameter setting, Eq. (2.13) has
a unique trivial equilibrium for ε > 0, while it has many
equilibria including a single spike under the constraint for
ε = 0.

In what follows, we investigate the dynamics of nonnegative
solutions of Eq. (2.10) with a specific nonlinearity, Eq. (2.12).
First, we consider a system of ODEs,

ut = − u

u2 + a
+ v

vt = u

u2 + a
− v, (2.14)

which is obtained from Eq. (2.10) with Eq. (2.12) by setting
Du = Dv = 0 and ε = 0. In this case, the flow of Eq. (2.14)
on the first quadrant is shown in Fig. 1, and the family of stable
equilibria � is given by

� =
{

(u,v)|v = u

u2 + a
,

u2 − a

(u2 + a)2
< 1

}
.

Moreover, � is divided into two connected components given
by �1 = {(u,v)|(u,v) ∈ �, u < b} and �2 = {(u,v)|(u,v) ∈

�, u > c}, where b and c are defined by

b2 − a

(b2 + a)2
= c2 − a

(c2 + a)2
= 1, 0 <

√
a < b < c. (2.15)

Next, we consider the stability of a homogeneous equi-
librium (u∗,v∗) ∈ �2 in the unperturbed reaction-diffusion
system

ut = Duuxx − u

u2 + a
+ v

vt = Dvvxx + u

u2 + a
− v. (2.16)

It follows from Eqs. (2.4) and (2.5) that for fixed Du and Dv

with Dv > Du, (u∗,v∗) is stable for

(u∗)2 − a

[(u∗)2 + a]2
>

Dv

Du

,

while it is unstable for

(u∗)2 − a

[(u∗)2 + a]2
<

Dv

Du

. (2.17)

Therefore, we see that (u∗,v∗) ∈ �2 is unstable if u∗ is close to
c, because (c2 − a)/(c2 + a)2 < Dv/Du holds for all Du and
Dv with Dv > Du by virtue of Eq. (2.15).

We now numerically investigate the dynamics of nonnega-
tive solutions of

ut = Duuxx − u

u2 + a
+ v

vt = Dvvxx + u

u2 + a
− v − εv2

(0 < x < L), (2.18)

under the periodic boundary condition. Our simulations are
based on a standard pseudospectral method [14,15], and the
numerical scheme is found in the Appendix. The values of
parameters are given by

a = 0.1, ε = 0.01, Du = 0.001, Dv = 0.05, (2.19)

with the interval length L = 2π . In this case, [c,c/(c2 + a)] ≈
(0.79,1.09). Moreover, the initial value [u0(x),v0(x)] is given
by a small random perturbation on the value (2.0,2.0).

Our simulations show that the dynamics of Eq. (2.18)
consists of four stages; the dynamics from the second stage to
the fourth stage is shown in Fig. 2 (the dynamics of all stages is
provided in a supplemental movie file). On the first stage, the
solution moves along the line defined by u + v = 4 with O(1)
speed, and the dynamics can be given by Eq. (2.3). After the
solution approaches �2, it moves along �2 and undergoes the
diffusion-driven instability when it enters into a region defined
by Eq. (2.17); �2 is a slow manifold that plays the onset of
Turing-like patterns, and the dynamics on �2 can be given by
Eq. (2.9). On the third stage, the amplitude of the Turing-like
patterns becomes large and spatial patterns consisting of
some spikes appear. Numerical simulations support that the
dynamics on this stage can be approximated by the dynamics
of the unperturbed system Eq. (2.16) when ε is sufficiently
small. Finally, on the fourth stage, the number of spikes
decreases, and the solution eventually converges to the trivial
equilibrium; it seems that each spike disappears independently
if the distance to the nearest spike is far. The decreasing
of spikes can be also observed in the unperturbed system
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FIG. 2. The dynamics of solutions of Eq. (2.18) after the approach
of them to the slow manifold �2. The values of u(x,t) on 0 � x � 2π

and 7 � t � 2800 are presented by a 3D graph. In this numerical
simulation, the parameter values are given by Eq. (2.19), and the initial
value is given by [2.0 + ε1(x), 2.0 + ε2(x)], where ε1(x) and ε2(x)
are independent uniform pseudorandom numbers in [−0.005, 0.005)
for each x ∈ [0,2π ]. The profile of v(x,t) is omitted here because
the amplitude and spatial variation of v(x,t) for each t are relatively
smaller than those of u(x,t). An animation that shows the dynamics
of solutions for 0 � t � 2800 is provided in the Supplemental
Material [18]. (We recommend that the readers watch the animated
movie file of how the spatial pattern is changing; the green and yellow
curves represent u and v, respectively. Notice that the time scale on
0 � t � 7 is 16 times as fast as that on 7 � t � 2800.) Finally, we
note that the final trivial steady state of the solutions is on the manifold
�1 disconnected from �2.

Eq. (2.16) until a single spike remains, and the mathematical
justification for the stability of the single spike was shown
in Refs. [3,4] (see also Ref. [7]). On the other hand, in the
perturbed system, every spike disappears. Moreover, the time
scale of the collapse of spikes in Eq. (2.18) is considerably
faster than that in Eq. (2.16).

Remark 2. In our numerical simulations, it is difficult to
observe the collapse of a single spike if we take sufficiently
small ε. A reasonable explanation is that the single spike
would be metastable patterns evolving with the speed of
O(e−C/ε), which should be investigated in a further study.
From a viewpoint of physics, it is desirable to choose the value
of ε such that 1/ε considered as the time scale associated to
the perturbation terms is much larger than L2/Du (=30 000)
considered as the typical time for one particle to travel through
the system. In our simulation, we choose ε = 0.01 such that
the collapse of spikes can be observed within a time interval
on which the accuracy of numerical computations can be
guaranteed.

Thus, we have shown that a reaction-diffusion model with
a globally stable homogeneous equilibrium can exhibit large
amplitude Turing-like patterns in the transient dynamics. This
example demonstrates that interesting spatiotemporal patterns
can be often observed in the transient dynamics of reaction-
diffusion systems (cf. Ref. [9]).

Remark 3. The above second stage can be understood by a
local center-unstable manifold theory [16,17]. In fact, the un-
perturbed system allows a center-unstable manifold consisting
of the continuum of the homogeneous equilibria parametrized

by s and a family of unstable manifolds emanating from the
equilibria in the continuum. The perturbed system still has a
similar structure for sufficiently small ε.

III. PERTURBATIONS FROM OUTSIDE OF SYSTEMS

In the previous section, we have investigated the effects of
perturbations to reaction-diffusion systems with mass conser-
vation; the total mass of the perturbed system is slowly varied
by the perturbations generated by interactions between the
components within the system. In this section, we investigate
the case that the total mass of a system is affected by the outside
of the system. Namely, we consider a larger system involving
the unperturbed system with a conservation property.

We are concerned with a reaction-diffusion model,

ut = Duuxx + f (u,v) + εg1(s,w)

vt = Dvvxx − f (u,v) + εg2(s,w) (0 < x < L) (3.1)

wt = εh(s,w),

under the periodic boundary condition, where w = w(t) and

s = s(t) := 1

L

∫ L

0
(u + v) dx. (3.2)

By adding the first and second equations of Eq. (3.1) and
integrating over [0,L], we have

ṡ = ε[g1(s,w) + g2(s,w)]

ẇ = εh(s,w), (3.3)

which represents an interaction between the inside and outside
of a domain where the unperturbed reaction-diffusion model
is defined. We suppose that Eq. (3.3) is a conserved system;
there exists a function of H = H (s,w) such that

d

dt
H [s(t),w(t)] ≡ 0 (3.4)

holds for solutions of Eq. (3.3). The most simple examples of
g1, g2, and h are given by

g1(s,w) ≡ 0, g2(s,w) = −(w − α), and h(s,w) = s − β,

(3.5)
respectively, where α and β are constants, and

H (s,w) = (w − α)2 + (s − β)2. (3.6)

Equation (3.1) can be considered as a conceptual model
describing an interaction between a compartment and a ho-
mogeneous medium surrounding the compartment in a larger
closed system (see Fig. 3). We assume that the interaction can
be observed through the dynamics of the total mass of the
components within the compartment.

FIG. 3. A compartment and mass flows in a larger closed system.
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In what follows, we investigate the dynamics of nonnegative
solutions of Eq. (3.1) with a specific nonlinearity,

f (u,v) = [(u + a)v − b]u, (3.7)

and Eq. (3.5), i.e.,

ut = Duuxx + [(u + a)v − b]u,

vt = Dvvxx − [(u + a)v − b]u − ε(w − α)

wt = ε

[
1

L

∫ L

0
(u + v) dx − β

] (0 < x < L),

(3.8)

under the periodic boundary condition, where a, b, α, and β

are positive constants with 0 < a <
√

b. From a viewpoint
of mathematical analysis, we note that Eq. (3.8) is a limiting
system of

ut = Duuxx + [(u + a)v − b]u,

vt = Dvvxx − [(u + a)v − b]u − ε(w − α)

wt = Dwwxx + ε(u + v − β)

(0 < x < L),

as Dw → +∞. Although Eq. (3.8) is a three-component
model, regarding it as a perturbed system of the two-
component system, we can treat Eq. (3.8) in a similar manner
to the two-component case in Sec. II.

In order to investigate the dynamics of Eq. (3.8), we
consider a system of ODEs,

ut = [(u + a)v − b]u

vt = −[(u + a)v − b]u, (3.9)

which is obtained from Eq. (3.8) by setting Du = Dv = 0 and
ε = 0. We consider nonnegative solutions of Eq. (3.9) because
the closure of the first quadrant is an invariant set of Eq. (3.9);
the flow of Eq. (3.9) on this set is shown in Fig. 4. The family

FIG. 4. The flow of Eq. (3.9) on the first quadrant of uv plane.
Here, the horizontal and vertical axes indicate u and v, respectively.
The equilibria are given by v = b/(u + a) or u = 0. The solid line
represents a family of stable equilibria �, which is divided into two
connected components, �1 and �2. On the other hand, the dashed line
represents that of unstable equilibria.

of stable equilibria � is given by � = �1 ∪ �2, where

�1 =
{

(0,ξ ) | 0 � ξ <
b

a

}
,

and

�2 =
{(

η,
b

η + a

) ∣∣∣∣ η >
√

b − a

}
. (3.10)

By adding diffusion terms to Eq. (3.9), we obtain the
unperturbed reaction-diffusion system

ut = Duuxx + [(u + a)v − b]u

vt = Dvvxx − [(u + a)v − b]u. (3.11)

By using a standard argument based on the maximum
principle, it is easily shown that a solution of Eq. (3.11) with
a nonnegative initial value takes nonnegative values for all x

and t > 0.
We consider the stability of a homogeneous equilibrium

on � in Eq. (3.11). It follows from Eq. (2.4) that (0,ξ ) ∈ �1

is stable for all positive Du and Dv . On the other hand, it
follows from Eqs. (2.4) and (2.5) that for fixed Du and Dv

with Dv > Du, [η,b/(η + a)] ∈ �2 is stable for

η > ηc,

while it is unstable for
√

b − a < η < ηc, (3.12)

where

ηc :=
√

Dvb

Du

− a. (3.13)

Thus, we see that Eq. (3.11) has a similar structure to the
two-component model Eq. (2.16) in Sec. II.

Now let us consider Eq. (3.8). Equation (3.8) has a family
of spatially homogeneous periodic orbits. In fact, when Du =
Dv = 0, Eq. (3.8) is reduced to an ODE system,

u̇ = [(u + a)v − b]u

v̇ = −[(u + a)v − b]u − ε(w − α)

ẇ = ε(u + v − β)

. (3.14)

By adding the first and second equations of Eq. (3.14), we have

ṡ = −ε(w − α)

ẇ = ε(s − β), (3.15)

where s = u + v. Notice that Eq. (3.15) is the same as Eq. (3.3)
with Eq. (3.5). Since solutions of Eq. (3.15) in the (s,w) plane
consist of a family of circles with the center (β,α), Eq. (3.8) has
a homogeneous periodic orbit, say C, whose (u,v) components
slowly oscillate on �2 given by Eq. (3.10).

Noting that �2 can be regarded as a slow manifold that
plays the onset of Turing-like patterns in a similar manner
as stated in Sec. II, we investigate how the homogeneous
periodic orbit C changes as the value of Dv increases in
Eq. (3.8). In the same way as Sec. II, we numerically solve
Eq. (3.8) for various values of Dv under the parameter values
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FIG. 5. An alternating repetition of (almost) homogeneous oscil-
lations and large amplitude Turing-like patterns in the dynamics of
Eq. (3.8). The values of u(x,t) on 0 � x � 2π and 0 � t � 2400 are
presented by a 3D graph. In this numerical simulation, Dv = 0.03
and the parameter values are given by Eq. (3.16). Moreover, the
initial values are given by [u0(x),v0(x)] = [1.5 + ε1(x), 1.6 + ε2(x)]
and by w0 = 2.5, where ε1(x) and ε2(x) are independent uniform
pseudorandom numbers in [−0.005, 0.005) for each x ∈ [0,2π ]. The
profile of v(x,t) is omitted here because the amplitude and spatial
variation of v(x,t) for each t are relatively small than those of u(x,t).
An animation that shows the dynamics of u, v, and s for 0 � t � 2400
is provided in the Supplemental Material [18]. (We recommend that
the readers watch the animated movie file of how the spatial pattern
is changing; the green, blue, and red curves represent u, v, and s,
respectively).

given by

a = 1.0, b = 4.0, α = 2.5,

β = 4.0, ε = 0.01, Du = 0.01. (3.16)

The initial values [u0(x),v0(x)] and w0 are given by a small
random perturbation on the value (1.5,1.6) ∈ �2 and by w0 =
2.5, respectively. Notice that the small random perturbation
is an indispensable factor in nonhomogeneous spatial pattern
formation; the solution without small random perturbations
uniformly oscillates for any Dv . Moreover, for relatively small
Dv/Du, the solution with an initial small random perturbation
does not exhibit nonhomogeneous spatial patterns. This is
supported by our numerical simulations for Dv � 0.026. These
features and the results presented below can also be obtained
near the above specific parameters and initial values.

Figure 5 shows an alternating repetition of spatially (almost)
homogeneous oscillations and large amplitude Turing-like
patterns for Dv = 0.03, which is induced by the destabilization
effect of the diffusion terms on the homogeneous periodic
orbit C. In this case, we have chosen the initial values so as
to satisfy u0(x) < ηc ≈ 2.46, where ηc is given by Eq. (3.13);
if this condition is not satisfied, such an alternating repetition
is not necessarily observed. In fact, the spatial fluctuation of
a solution with a small random initial disturbance vanishes
before the solution moving along �2 enters a region defined
by Eq. (3.12), and hence its dynamics can be reduced to the
dynamics of Eq. (3.14).

It should be emphasized that Eq. (3.4) plays a central
role for generating the above alternating repetition. In general
reaction-diffusion systems, if a solution with an initial value

near a homogeneous periodic orbit approaches a stable Turing
pattern for appropriate values of diffusion coefficients, then the
solution cannot leave the stable Turing pattern. On the other
hand, in our reaction-diffusion system Eq. (3.8), a solution
with an initial value near the homogeneous periodic orbit C

can leave the Turing-like patterns because of the constraint
Eq. (3.4) with Eq. (3.6). In fact, Turing-like patterns are not
stable stationary solutions. Moreover, as explained in Sec. II,
the solution exhibits Turing-like patterns when the value
of s decreases and approaches its minimum value, i.e., the
solution moving along �2 enters a region defined by Eq. (3.12).
Thereafter, by the constraint Eq. (3.4) with Eq. (3.6), the value
of s must increase and move away from its minimum value.
Then, the solution is far away from the region defined by
Eq. (3.12) and its spatial profile becomes flat. Consequently,
the solution returns to a neighborhood of the homogeneous
periodic orbit C when the value of s approaches its maximum
value.

Remark 4. Suppose that a homogeneous equilibrium of a
reaction-diffusion system undergoes Turing instability and the
amplitude of bifurcating patterns becomes large for appropri-
ate values of the diffusion coefficients. We periodically and
slowly vary a parameter included in the reaction terms around
a critical value at which the stability of the homogeneous
equilibrium changes.1 Then, it might be possible to observe an
alternating repetition of spatially (almost) homogeneous os-
cillations and large amplitude Turing-like patterns. However,
in general, such an alternating repetition cannot be observed;
only either spatially homogeneous oscillations or Turing-like
patterns can be observed. This fact suggests that some sort
of mechanism allowing solutions to leave Turing-like patterns
and to return to homogeneous oscillatory states are underlying
in generating an alternating repetition of spatially (almost)
homogeneous oscillations and large amplitude Turing-like
patterns.

IV. CONCLUDING REMARKS

In this study, we have investigated spatiotemporal dy-
namics obtained by small perturbations to reaction-diffusion
systems with mass conservation. First, we have shown that a
reaction-diffusion model with a globally stable homogeneous
equilibrium can exhibit large amplitude Turing-like patterns in
the transient dynamics. This model has a Lyapunov function,
and hence any solution converges to the homogeneous equi-
librium. On the other hand, the model has a slow manifold,
which is the onset of Turing-like patterns, and hence solutions
passing through a neighborhood of the slow manifold can
generate Turing-like patterns.

Next, we have proposed a three-component reaction-
diffusion model that exhibits an alternating repetition of spa-
tially (almost) homogeneous oscillations and large amplitude
Turing-like patterns. This model has a homogeneous periodic

1In this case, the (in)stability is determined by the behavior of eigen-
values of the linearized operator at the homogeneous equilibrium for
each fixed value of the parameter to be periodically varied. This
instability should not be called Turing instability because the values
of the diffusion coefficients are fixed.
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orbit moving along a slow manifold, which includes the
onset of Turing-like patterns, and hence a solution with an
initial value near the periodic orbit can approach Turing-like
patterns. On the other hand, the model has another conservation
that is different from the total mass of the components of
unperturbed reaction-diffusion system. Therefore, the solution
can leave Turing-like patterns by virtue of this conservation.
Consequently, the solution can return to a neighborhood of the
homogeneous periodic orbit.

Although our models were proposed for studying mathe-
matical aspects of perturbations to reaction-diffusion systems
with mass conservation, our motivation of this study originates
from a biological issue concerning cell polarization; spatially
distinctive accumulation of signaling molecules is established
inside the cell. A certain class of reaction-diffusion systems
with mass conservation were proposed as a conceptual model
to explain cell polarization under the assumption that the
masses of molecules are constant during the polarization.
Therefore, our approach could be useful to study cell polariza-
tion under the situation that the masses of molecules are slowly
varied through various slow events such as gene expression and
protein synthesis.

Our approach provides a viewpoint for studying the effects
of perturbations on the dynamics of reaction-diffusion systems
with mass conservation. At present, this work is a first step,
which should be developed to a theory for analyzing of
perturbed reaction-diffusion systems with mass conservation.
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APPENDIX: NUMERICAL SCHEME

Applying the Fourier transformation, a reaction-diffusion
system in the real space,

ut = Duxx + f (u), (A1)

can be converted to a system of ODEs in the Fourier space,

dûk

dt
= −Dk2ûk + fk(û), (A2)

where k denotes the wavenumber, and

fk(û) = [f̂ (u)]k = {F[f (F−1û)]}k,

with the Fourier transformation F and its inverse F−1. In
simple terms, the pseudospectral method for numerically
solving Eq. (A1) on (−L/2,L/2) under the periodic boundary
condition is a numerical scheme to solve Eq. (A2) by
using the Runge-Kutta method under the condition that the
amplitudes of high-frequency Fourier modes e2πikx/L vanish;
ûk = 0 (k ∈ Z, |k| � N/2), where N = 2m (m ∈ N) is the
total number of Fourier modes in the numerical computation
(finite dimensional approximation) with the aid of FFT.

Let vk = ûk exp(−Dk2t). Then, we have

dvk

dt
= fk(û) exp(Dk2t) := Gk(v,t). (A3)

Applying the fourth-order Runge-Kutta scheme to Eq. (A3),
we have

vk(t + 	t) = vk(t) + (h1 + 2h2 + 2h3 + h4)	t/6,

h1 = Gk(v,t) = fk(û) exp(Dk2t),

û′
1 ={ûk(t)+h1 exp(−Dk2t)	t/2} exp(−Dk2	t/2),

h2 = Gk(v + h1	t/2, t + 	t/2)

=fk(û′
1) exp[(Dk2(t + 	t/2))],

û′
2 ={ûk(t)+h2 exp(−Dk2t)	t/2} exp(−Dk2	t/2),

h3 = Gk(v + h2	t/2, t + 	t/2)

= fk(û′
2) exp[Dk2(t + 	t/2)],

û′
3 = {ûk(t) + h3 exp(−Dk2t)	t} exp(−Dk2	t),

h4 = Gk(v + h3	t, t + 	t)

= fk(û′
3) exp[Dk2(t + 	t)].

Thus, we obtain the following numerical scheme for Eq. (A2):

ûk(t + 	t) = ûk(t) exp(−Dk2	t) + {h′
1 exp(−Dk2	t)

+ 2(h′
2 + h′

3) exp(−Dk2	t/2) + h′
4}	t/6,

where

h′
1 = fk(û), h′

2 = fk(û′
1), h′

3 = fk(û′
2), h′

4 = fk(û′
3).

It should be noted that this scheme can be applicable to
Eq. (3.8) because the integration term in Eq. (3.8) corresponds
to the sum of the amplitudes of the zero Fourier mode (k = 0)
for u and v in Eq. (3.8). Although numerical schemes to solve
PDEs by using the pseudospectral method are rather more
involved than standard finite difference schemes, they can give
precise numerical results even if the PDEs satisfy (infinitely
many) conservation laws such as the KdV equation [14,15].

[1] M. Otsuji, S. Ishihara, C. Co, K. Kaibuchi, A. Mochizuki, and
S. Kuroda, PLoS Comp. Biol. 3, e108 (2007).

[2] S. Ishihara, M. Otsuji, and A. Mochizuki, Phys. Rev. E 75,
015203 (2007).

[3] Y. Morita and T. Ogawa, Nonlinearity 23, 1387 (2010).
[4] Y. Morita, J. Appl. Anal. Comp. 2, 57 (2012).
[5] S. Jimbo and Y. Morita, J. Diff. Eqs. 255, 1657 (2013).
[6] T. Okuda Sakamoto, Nonlinearity 26, 2027 (2013).

[7] E. Latos and T. Suzuki, J. Math. Anal. Appl. 411, 107
(2014).

[8] J. E. Pearson, Science 216, 189 (1993).
[9] Y. Nishiura, Far-from-Equilibrium Dynamics, Translations of

Mathematical Monographs (American Mathematical Society,
Providence, RI, 2002), Vol. 209.

[10] J. D. Murray, Mathematical Biology, 2nd ed. (Springer-Verlag,
New York, 1989).

012908-8

http://dx.doi.org/10.1371/journal.pcbi.0030108
http://dx.doi.org/10.1371/journal.pcbi.0030108
http://dx.doi.org/10.1371/journal.pcbi.0030108
http://dx.doi.org/10.1371/journal.pcbi.0030108
http://dx.doi.org/10.1103/PhysRevE.75.015203
http://dx.doi.org/10.1103/PhysRevE.75.015203
http://dx.doi.org/10.1103/PhysRevE.75.015203
http://dx.doi.org/10.1103/PhysRevE.75.015203
http://dx.doi.org/10.1088/0951-7715/23/6/007
http://dx.doi.org/10.1088/0951-7715/23/6/007
http://dx.doi.org/10.1088/0951-7715/23/6/007
http://dx.doi.org/10.1088/0951-7715/23/6/007
http://dx.doi.org/10.1016/j.jde.2013.05.021
http://dx.doi.org/10.1016/j.jde.2013.05.021
http://dx.doi.org/10.1016/j.jde.2013.05.021
http://dx.doi.org/10.1016/j.jde.2013.05.021
http://dx.doi.org/10.1088/0951-7715/26/7/2027
http://dx.doi.org/10.1088/0951-7715/26/7/2027
http://dx.doi.org/10.1088/0951-7715/26/7/2027
http://dx.doi.org/10.1088/0951-7715/26/7/2027
http://dx.doi.org/10.1016/j.jmaa.2013.09.039
http://dx.doi.org/10.1016/j.jmaa.2013.09.039
http://dx.doi.org/10.1016/j.jmaa.2013.09.039
http://dx.doi.org/10.1016/j.jmaa.2013.09.039
http://dx.doi.org/10.1126/science.261.5118.189
http://dx.doi.org/10.1126/science.261.5118.189
http://dx.doi.org/10.1126/science.261.5118.189
http://dx.doi.org/10.1126/science.261.5118.189


PERTURBATIONS AND DYNAMICS OF REACTION- . . . PHYSICAL REVIEW E 92, 012908 (2015)

[11] S. H. Strogatz, Nonlinear Dynamics and Chaos (Westview Press,
Boulder, CO, 2000).

[12] D. Henry, Geometric Theory of Semilinear Parabolic Equations
(Springer-Verlag, Berlin/New York, 1981).

[13] J. K. Hale, Asymptotic Behavior of Dissipative Systems,
Mathematical Surveys and Monographs, Vol. 25 (American
Mathematical Society, Providence, RI, 1988).

[14] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral
Methods: Theory and Applications, CBMS-NSF Regional Con-
ference Series in Applied Mathematics (SIAM, Philadelphia,
1977), Vol. 26.

[15] B. Fornberg, A Practical Guide to Pseudospectral Methods
(Cambridge University Press, Cambridge, 1995).

[16] P. W. Bates, K. Lu, and C. Zeng, Existence and Per-
sistence of Invariant Manifolds for Semiflows in Banach
Space (American Mathematical Society, Providence, RI, 1998),
Vol. 135.

[17] P. W. Bates, K. Lu, and C. Zeng, Trans. Am. Math. Soc. 352,
4641 (2000).

[18] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.92.012908 for the animation corresponding
to Figs. 2 and 5.

012908-9

http://dx.doi.org/10.1090/S0002-9947-00-02503-4
http://dx.doi.org/10.1090/S0002-9947-00-02503-4
http://dx.doi.org/10.1090/S0002-9947-00-02503-4
http://dx.doi.org/10.1090/S0002-9947-00-02503-4
http://link.aps.org/supplemental/10.1103/PhysRevE.92.012908



