

PDF issue: 2025-07-17

台風通過に伴う田辺湾湾口部における海水温変化に ついて

馬場, 康之 ; 水谷, 英朗 ; 久保, 輝広 ; 内山, 雄介 ; 森, 信人 ; 渡部, 靖 憲 ; 大塚, 淳一 ; 山田, 朋人 ; 猿渡, 亜由未 ; 二宮, 順一

<mark>(Citation)</mark> 土木学会論文集B2(海岸工学),70(2):I_476-I_480

(Issue Date) 2014

(Resource Type) journal article

(Version) Version of Record

(Rights) @2014 公益社団法人 土木学会

(URL)

https://hdl.handle.net/20.500.14094/90002943

台風通過に伴う田辺湾湾口部における海水温変化について

Water Temperature Variation at the Mouth of Tanabe Bay during Typhoon Passing

馬場康之¹ · 水谷英朗² · 久保輝広³ · 内山雄介⁴ · 森 信人⁵ · 渡部靖憲⁶ 大塚淳一⁷ · 山田朋人⁶ · 猿渡亜由未⁸ · 二宮順一⁹

Yasuyuki BABA, Hideaki MIZUTANI, Teruhiro KUBO, Yusuke UCHIYAMA, Nobuhito MORI Yasunori WATANABE, Junichi OTSUKA, Tomohito YAMADA Ayumi SARUWATARI and Junichi NINOMIYA

The intensive field observations have been carried out in the summer seasons since 2009 around the mouth of Tanabe bay, Wakayama prefecture. During the intensive observation in 2013, a typhoon18 (MAN-YI) approached close to Kii peninsula in the middle of September. It is found during the typhoon passing that coastal upwelling through the Ekman transport happened clearly due to continuous southward wind. As a result of time-frequency analysis, the water temperature variations have a dominant period longer than tidal period. An EOF analysis decomposes the water temperature variation during the typhoon passing into 1) the increase and decease of water temperature and 2) the magnitude of the temperature difference in the vertical direction.

1. はじめに

京都大学防災研究所・白浜海象観測所では、毎年夏に 台風接近時の気象・海象データ計測を目的とした集中観 測を実施している. 最近では、2009年18号 (MELOR), 2011年12号 (TALAS), 15号 (ROKE), 2012年17号 (JELAWAT) 接近時の気象海象データを計測し, 流動構 造,水温変化,観測データに基づく鉛直混合に及ぼす波 浪の影響などの検討が行われている(森ら, 2010;内山 ら、2013; Babaら、2013)、2013年の夏期集中観測は8/8 ~11/14の間実施され、田辺湾湾口に位置する田辺中島高 潮観測塔(写真-1)による波高,潮位,海水温計測に加 えて、ADCPによる流速分布計測、水深30mまで計測範 囲を拡張した海水温計測(水深10mまでの表層付近には、 測器を集中的に配置)が実施された。2013年に北西太平 洋で発生した台風は31個で、期間中に観測地点付近には 台風17号 (TORAJI), 18号 (MAN-YI) が接近し, その うち台風18号の影響が最も大きく、台風18号接近時には 和歌山県串本町で竜巻も発生した.本研究では、2013年 の夏期集中観測結果に基づいて、台風18号接近時の田辺 湾湾口部における海水温鉛直構造の変化を明らかにする

1 2 3	正会員 正会員	博(工) 博(工)	京都大学准教授 防災研究所 京都大学助教 防災研究所 京都大学技術職員 防災研究所
4	正会員	博(工)	神戸大学准教授 大学院工学研究科
5	正会員	博(工)	京都大学准教授 防災研究所
6	正会員	博(工)	北海道大学准教授 大学院工学研究院
7	正会員	博(工)	(独法)土木研究所寒地土木研究所
			寒冷沿岸域チーム
8	正会員	博(工)	北海道大学助教 大学院工学研究院
9	正会員	修(工)	京都大学大学院 工学研究科

ことを目的とする.

2.2013年夏期集中観測の概要

2013年の夏期集中観測において,観測塔における海水 温,塩分濃度の計測点は次の通りである(測点の位置は 観測塔基準,鉛直上向き:正)

水温 (全20点):-0.5~-5.5m (0.5m間隔), -6~-10m (1m 間隔), -15~-30m (5m間隔)

塩分濃度(全7点):-3,-4,-5,-6,-8,-10,-30m(-8m 以浅は生物付着の影響により欠測)

この他, 観測塔西側の水深9.5m地点にADCP(1200kHz, 9/6~9/20の間欠測), 観測塔上10m, 15m地点にはパーシベル, 10mにはパーティクルカウンターが設置された.

写真-1 田辺中島高潮観測塔

(観測塔南側,水深32m,図中斜体字は σ_i)

これらのデータに加えて、観測塔既設の測器により気象・ 海象データが、観測期間中連続的に計測された.

図-1は、8~10月の海水温の時系列を示したものであ る. 観測開始の8月上旬から9月上旬にかけて、水深方向 の海水温の差が大きく、水温成層が明確に確認される. また、水深の大きな測点においては海水温が周期的に変 動している様子が確認できる.9月中旬になると、海水 温の鉛直方向の差が減少し始め、9月下旬以降は計測地 点(水深30m程度)付近で水深方向の水温差がほぼ無い 状態となり、時間を追って水温成層が弱まり、混合層が 発達する様子が確認される.

水温成層が弱まり混合層が発達する期間の9月中旬に 台風18号が紀伊半島に接近した.9月中旬には水深方向 の水温差がかなり減少している状態であったが、台風接 近時(9/16~9/17頃)には海水温の一様化とその後の水 温低下が計測されている.9月下旬には台風20号が紀伊 半島の南沖を通過しており、9/26頃には海水温がやや低 下する様子が確認される。

図-2は、観測期間中に実施された水温・塩分濃度の計 測結果を比較したものである。8月の観測結果では、水 温差が4度以上あり、水深方向に水温成層が発達してい ることが確認できる。9月の結果は台風18号通過直後の ものであり、塩分濃度の低い水塊の存在が確認できると ともに、水温の差が徐々に小さくなる傾向が見られ、前 述のように水温成層が弱まり始めていることを示してい る。10月になると水深方向の水温差が小さくなり、観測 結果では計測範囲内の水温差が1度程度となって、混合 層が計測地点の水深方向全体に発達し、密度もほぼ一様 になっていることがわかる.

3. 台風18号接近時の海水温変化

(1) 台風接近時の海水温低下

台風18号接近時(9/14~9/17)の海水温,気温(観測塔),SST(観測塔,放射温度計の値),および観測塔で 計測された海上風,波浪の時系列を示したものが,図-3 である.

台風18号は9/15~9/16にかけて観測地点付近に最接近 し,紀伊半島東側を南西から北東に向けて移動した.観 測塔では、9/16の6時頃に最大18m/s程度の平均風速を計 測している.台風18号は接近時に観測地点からみて東側 を通過したため、台風接近の前後を問わず,北寄りの風 が連続した(図-3上,ゼロ度に近い風向が連続している). 波高は台風が観測地点に最接近した時間帯に有義波高で 3m程度に達しているが,北寄りの風が卓越したために大 きく発達することなく、台風の通過に伴い波高、周期と もに低下している様子が確認できる.台風の最接近に伴 い風速の最盛期となった9/16の午前中には、海水温が鉛

直方向にほぽー様になっており,強風に伴う鉛直混合が 発達していることがうかがえる.

風速のピークを過ぎた9/16の午後には、顕著な海水温 の低下および塩分濃度の上昇が確認できる.海水温の低 下は、水深の深い計測点(30m地点)から始まり、続い て水深25m、20m、15mの順で水温が低下している.同じ タイミングで水深30m地点の塩分濃度が大きく上昇して おり、低層から低温・高塩分の海水が進入していること を示している.北寄りの風が連続する際に、低層での水 温が低下ならびに塩分濃度が上昇することはこれまでに 田辺湾を対象とした観測結果でも確認されている(吉岡 ら、1998).岸を左手(北半球)にみて岸に沿って風が 吹くときに、岸沿いに湧昇域が発生することが知られて おり、アメリカ西海岸での沿岸湧昇などがよく知られて いる.これは、岸に沿って吹く風に引き起こされた、下層 の海水が岸方向に上昇したものとして説明される.

図-3下の水温変化では、水深の深い計測点(30m地点)

から順に水温が低下している.各計測点の水温が25度, 24度になった時刻と測点間の水深から湧昇速度を推定す ると,水温低下が同時期に明瞭に確認されている水深30 ~15mでは7~8×10⁻²cm/s程度となった.アメリカ西岸に おける夏期の湧昇事例では、2×10⁻²cm/s程度の湧昇速度 が報告されており(Huyer, 1983; Checkly・Birth, 2009), 具体的な数値は示されていないが、より大きな湧昇速度 を持つイベントが発生することも指摘されている.本観 測において推定される湧昇速度が相対的に大きく,低層 からの低温・高塩分の海水の進入が顕著に確認された背 景には、台風の接近に伴い9/15の18時以降から約1日程度 北寄りの強風が継続し、観測地点付近の慣性周期(約 21.5時間)に匹敵する程度であったことが主な要因の一 つに挙げられる.

水深30m地点の水温が25度を下回ってから水深3m地点 の水温が25度に下がるまでには16時間余りを要してお り、水深3m地点の水温低下が沿岸湧昇の影響によるもの と考えると、この間の平均湧昇速度は4.5×10⁻²cm/s程度と なる、平均的な湧昇速度が水深の深い計測点での湧昇速 度よりも小さくなっているのは、9/16午後には風速が徐々 に低下し、十分なエクマン輸送を継続させるだけの北寄 りの強風が連続しなかったためと考えられる

(2) 水温変化の時間周波数解析

図-4は、台風18 号接近時の海水温時系列データに対 して連続ウェーブレット解析を行った結果である(基 本ウェーブレット: complex gauss wavelet). 図中,色の 淡い部分はウェーブレット係数の大きい領域を示して おり,水温変化の時期と卓越する周波数を示している. ウェーブレット係数の大きさは水深の深い計測点の方 が総じて大きく、台風18号の接近時は相対的に浅い領 域は鉛直方向の混合は発達して温度変化が小さく、逆 に相対的に深い領域での水温変化が大きかったことを 示している.

水深の大きな計測点から水温が低下する時期(9/16午 後~)には、水深25m地点では特に周期の長い水温変化 が顕著であることが確認される.この水温変化は、上述 の通り低層からの低温・高塩分の外海水の進入によるも のと考えられる.水深30m~15m付近で顕著な水温低下 が確認されるタイミングにおいて、2~3日程度に相当す る長周期の水温変動が卓越しており、台風18 号接近時の 水温変化において、最も卓越した周期となっている.観 測地点周辺を対象とした広域のシミュレーション結果 (内山ら、2014)において、田辺湾湾口部の流動には2~ 3日周期の成分が潮流と同程度の規模を持つことが指摘 されており、台風通過時の水温変動にも同程度の周期が 強く含まれていることが確認された。

図-5 海水温のEOF解析結果(得点プロット)

表-1 海水温のEOF解析結果

	第1主成分	第2主成分
標準偏差	2.517	0.846
寄与率	0.868	0.105
係数(3m)	-0.177	0.397
係数(7m)	-0.208	0.452
係数(9m)	-0.275	0.408
係数(10m)	-0.308	0.356
係数(15m)	-0.435	0.092
係数(20m)	-0.512	-0.295
係数(25m)	-0.551	-0.499

(3) 海水温分布のEOF解析

鉛直方向の7点において計測された海水温分布の時系 列データ (9/14~9/17) に対してEOF解析を行い,第1, 第2の主成分ならびに主成分得点を求めた (図-5,表-1). 表-1から,抽出された二つの成分で,鉛直方向の水温分 布の変動の95%程度が表現されていることがわかる.

第1主成分は対象とした計測点の全てにおいて係数が 負の値となり、係数の絶対値は水深の大きな計測点がよ り大きい傾向がある.水深の大きな計測点の係数が大き いということから、時間周波数解析の結果と考え合わせ ると水温の変化に対応したものと考えられる.上述の通 り、台風18号の接近時には水深の大きな測点を中心に水 温が大きく低下している.図-5において、水温が大きく 低下した9/16の午後に、EOF解析結果の第一主成分が大 きく増加していることから、第一主成分は水温の変化 (水温の低下)を意味している.

第2主成分は、水深15m付近を境に、浅い計測点の係数 が正、深い計測点の係数が負となっている。台風が計測 地点に接近し、水温が水深方向に一様になる段階(9/15 ~9/16午前)において、第2主成分得点は正から負に変化 し、台風接近時の水温低下が観測される時期(9/16午後) には負から正に変わっている. その後、9/17に入って計 測点間の水温差が小さくなる時期には再度負の値を取る ようになる、すなわち、鉛直方向の水温差が小さくなる 時期(9/15~9/16午前、9/17)には第2主成分得点は負と なり、鉛直方向の水温差が増加する時期には第二主成分 得点が正となる. この主成分得点の変化と、各計測点で の係数(浅い領域が正、深い領域が負)であることを考 え合わせると、第2主成分は鉛直方向の水温差の大小を 意味していることがわかる.

これら二つの主成分を用いて、台風18号接近時の水温 分布の変化は、弱いながらも鉛直方向に水温差が存在し た状態から、強風・高波浪に伴う鉛直混合の発達、エク マン輸送に伴う低層からの外海水の侵入および水深の大 きな計測点を中心とした水温低下と、鉛直方向の水温差 が減少する回復期に大別することができ、主成分プロッ ト図から台風通過後には台風接近前に近い状態に復帰し ていることが示されている、

4.おわりに

2013年夏期に、和歌山県田辺湾湾口部に位置する田辺 中島高潮観測塔で行われた集中観測結果に基づいて、台 風接近時の田辺湾湾口部における海水温鉛直構造の変化 について検討した。

観測期間中の9月中旬に台風18号が紀伊半島に接近した際,強風による鉛直混合の発達と,北寄りの風が連続したことによる低層水の進入に伴う水温の低下,塩分濃度の上昇が確認された.特に,台風18号接近前後を通じて北寄りの強風が観測地点付近の慣性周期(約21.5時間)に匹敵する程度継続したため,低層からの低温・高塩分の水塊の流入が明瞭に捉えられている.

台風接近前後の水温変化は,低層からの流入の影響を 受けて,水深の大きな計測点での水温変動が大きく,潮 汐周期よりも長い周期の変動が卓越していることが確認 された.また、台風接近時の水温分布に対してEOF解析 を行い、水温変動が"海水温の増減"と"鉛直方向の水 温差の大小"という2つの要因に特徴付けられることが 確認された.

謝辞:現地観測の実施にあたり,電力中央研究所の今村 正裕氏,木原直人氏から水温計,放射温度計などのご提 供を受けた.本研究は,京都大学防災研究所一般共同研 究(24G-05,25G-10)の援助を受けた.ここに記して謝 意を表する.

参考文献

- 内山雄介・西井達也・森 信人・馬場康之 (2013):紀伊半島 沿岸域における台風通過に伴う海水温低下と海洋構造変 化について、土木学会論文集B2(海岸工学), Vol.69, No.2, pp.I_481-I_485.
- 内山雄介・松川大祐・神吉亮佑・馬場康之・森 信人・水谷 英明・渡部靖憲・大塚淳一・山田朋人・猿渡亜由未・二 宮順一(2014):紀伊半島田辺湾湾口部における海水交換 特性に関する研究,土木学会論文集B2(海岸工学), Vol.70, No.2, pp.I_446-I_450.
- 森 信人・鈴木崇之・木原直人 (2010):海洋表層鉛直混合に およぼす風応力と波浪の影響,土木学会論文集B2(海岸 工学), Vol.66, No.1, pp.311-315.
- 吉岡 洋・芹沢重厚・高山知司・田中祐志(1998):夏季田辺 湾における内部急潮による海水交換,海岸工学論文集, 第45巻, pp.456-460.
- Baba, Y., Kubo, T., Uchiyama, Y., Kihara, N., Mori, N., Muto, Y., and Suzuki, T. (2013): Field observations at an offshore observation tower during the typhoon seasons, Proc. of the 35th IAHR, Chengdu, China (CD-ROM).
- Checkley Jr., D. M., and J. A. Barth, (2009): Patterns and processes in the california current system. Progress in Oceanography, 83(1-4), pp.49-64. doi:http://dx.doi.org/10.1016/j.pocean.2009. 07.028.
- Huyer, A. (1983): Coastal upwelling in the california current system. Progress in Oceanography, 12(3), pp.259-284. doi:http://dx.doi. org/10.1016/0079-6611(83)90010-1.