

PDF issue: 2025-12-05

Zonal spherical functions on the quantum homogeneous space SUq(n+1)/SUq(n)

Noumi, Masatoshi Yamada, Hirofumi Mimachi, Katsuhisa

(Citation)

Proceedings of the Japan Academy. Ser. A, Mathematical sciences, 65(6):169-171

(Issue Date)
1989-06
(Resource Type)
journal article
(Version)
Version of Record
(URL)

https://hdl.handle.net/20.500.14094/90003238

48. Zonal Spherical Functions on the Quantum Homogeneous Space $SU_q(n+1)/SU_q(n)$

By Masatoshi Noumi,*) Hirofumi Yamada,**) and Katsuhisa Mimachi***)

(Communicated by Shokichi IYANAGA, M. J. A., June 13, 1989)

In this note, we give an explicit expression to the zonal spherical functions on the quantum homogeneous space $SU_q(n+1)/SU_q(n)$. Details of the following arguments as well as the representation theory of the quantum group $SU_q(n+1)$ will be presented in our forthcoming paper [3]. Throughout this note, we fix a non-zero real number q.

1. Following [4], we first make a brief review on the definition of the quantum groups $SL_q(n+1; C)$ and its real form $SU_q(n+1)$.

The coordinate ring $A(SL_q(n+1; C))$ of $SL_q(n+1; C)$ is the *C*-algebra $A = C[x_{ij}; 0 \le i, j \le n]$ defined by the "canonical generators" $x_{ij} (0 \le i, j \le n)$ and the following fundamental relations:

$$(1.1) x_{ik}x_{jk} = qx_{jk}x_{ik}, x_{ki}x_{kj} = qx_{kj}x_{ki}$$

for $0 \le i < j \le n$, $0 \le k \le n$,

$$(1.2) x_{it}x_{jk} = x_{jk}x_{it}, x_{ik}x_{jt} - qx_{it}x_{jk} = x_{jt}x_{ik} - q^{-1}x_{jk}x_{it}$$

for $0 \le i < j \le n$, $0 \le k < l \le n$ and

$$\det_q = 1.$$

The symbol det_q stands for the quantum determinant

(1.4)
$$\det_{q} = \sum_{\sigma \in S_{n+1}} (-q)^{l(\sigma)} x_{0\sigma(0)} x_{1\sigma(1)} \cdots x_{n\sigma(n)},$$

where S_{n+1} is the permutation group of the set $\{0, 1, \dots, n\}$ and, for each $\sigma \in S_{n+1}$, $l(\sigma)$ denotes the number of pairs (i, j) with $0 \le i < j \le n$ and $\sigma(i) > \sigma(j)$. This algebra A has the structure of a Hopf algebra, endowed with the *coproduct* $\Delta: A \to A \otimes A$ and the *counit* $\varepsilon: A \to C$ satisfying

(1.5)
$$\Delta(x_{ij}) = \sum_{k=0}^{n} x_{ik} \otimes x_{kj} \quad \text{and} \quad \varepsilon(x_{ij}) = \delta_{ij} \quad \text{for } 0 \leq i, j \leq n.$$

Moreover, there exists a unique conjugate linear anti-homomorphism $a \mapsto a^* : A \to A$ such that

$$(1.6) x_{ji}^* = S(x_{ij}) \text{for } 0 \le i, j \le n$$

with respect to the antipode $S: A \rightarrow A$ of A. Together with this *-operation, the Hopf algebra $A = A(SL_q(n+1; C))$ defines the *-Hopf algebra $A(SU_q(n+1))$.

In what follows, we denote by G the quantum group $SU_q(n+1)$ and by K the quantum subgroup $SU_q(n)$ of $G=SU_q(n+1)$. Denote by y_{ij} $(0 \le i, 0 \le i, 0 \le i)$

^{*)} Department of Mathematics, Sophia University.

^{**)} Department of Mathematics, Tokyo Metropolitan University.

^{***} Department of Mathematics, Nagoya University.

 $j \le n$) the canonical generators for the coordinate ring A(K). Embedding of K into G is then specialized by the C-algebra epimorphism $\pi_k : A(G) \to A(K)$ such that

(1.7)
$$\pi_K(x_{ij}) = y_{ij}$$
, $\pi_K(x_{nn}) = 1$ and $\pi_K(x_{in}) = \pi_K(x_{nj}) = 0$ for $0 \le i$, $j < n$.

2. For a given dominant integral weight $\Lambda = \lambda_0 \varepsilon_0 + \cdots + \lambda_{n-1} \varepsilon_{n-1}$ ($\lambda_0 \ge \cdots \ge \lambda_{n-1} \ge 0$), there exists a unique irreducible right A(G)-comodule V_A with highest weight Λ . We denote by Λ_k the fundamental weight $\varepsilon_0 + \cdots + \varepsilon_{k-1}$ for $1 \le k \le n$. As a representation of $K = SU_q(n)$, V_A can be decomposed into irreducible components. It turns out that V_A has a trivial representation of K as an irreducible component if and only if the highest weight Λ is of the form $\Lambda = l\Lambda_1 + m\Lambda_n$ for some $l, m \in N$ and that the trivial representation may appear with multiplicity one. Such a representation V_A is said to be of class 1 relative to K.

If V_A is of class 1, it can be decomposed into the form

$$(2.1) V_{\mathcal{A}} = C v_0 \oplus V_{\mathcal{A}}'$$

as an A(K)-comodule, where v_0 is a K-fixed vector of V_A . Let $\{v_1, \dots, v_{N-1}\}$ be a C-basis for V_A' ($N = \dim_C V_A$) and define the matrix elements w_{ij} of the representation V_A by

(2.2)
$$R_{\scriptscriptstyle G}(v_{\scriptscriptstyle j}) = \sum_{i=0}^{N-1} v_{\scriptscriptstyle i} \otimes w_{\scriptscriptstyle ij} \quad \text{for } 0 \leq j < N.$$

Here $R_g: V_A \rightarrow V_A \otimes A(G)$ is the structure mapping of the right A(G)-comodule V_A . Then the matrix element w_{00} does not depend on the choice of v_0, \dots, v_{N-1} and is bi-K-invariant in the sense that

(2.3)
$$R_{\scriptscriptstyle K}(w_{\scriptscriptstyle 00})\!=\!w_{\scriptscriptstyle 00}\!\otimes\!1\quad\text{and}\quad L_{\scriptscriptstyle K}(w_{\scriptscriptstyle 00})\!=\!1\!\otimes\!w_{\scriptscriptstyle 00},$$
 where

 $R_{\scriptscriptstyle{K}} \! = \! (id \otimes \pi_{\scriptscriptstyle{K}}) \circ \varDelta \quad ext{and} \quad L_{\scriptscriptstyle{K}} \! = \! (\pi_{\scriptscriptstyle{K}} \! \otimes \! id) \circ \varDelta.$ We call $w_{\scriptscriptstyle{00}}$ the zonal spherical function of $V_{\scriptscriptstyle{A}}$ relative to K.

3. We introduce the notation of quantum r-minor determinants. Let I and J be two subsets of $\{0, 1, \dots, n\}$ with $\sharp I = \sharp J = r$. Arrange the elements of I and J in the increasing order: $I = \{i_0, \dots, i_{r-1}\}$ $\{0 \le i_0 < \dots < i_{r-1} \le n\}$ and $J = \{j_0, \dots, j_{r-1}\}$ $\{0 \le j_0 < \dots < j_{r-1} \le n\}$. We define the quantum r-minor determinant ξ_J^I by

(3.1)
$$\xi_J^I = \xi_{j_0 \dots j_{r-1}}^{i_0 \dots i_{r-1}} = \sum_{\sigma \in S_r} (-q)^{l(\sigma)} x_{i_0 j_{\sigma(0)}} x_{i_1 j_{\sigma(0)}} \dots x_{i_{r-1} j_{\sigma(r-1)}}.$$

If $I = \{0, 1, \dots, r-1\}$, we use the abbreviation $\xi_I = \xi_I^I$.

To investigate spherical functions, we give a geometric realization of V_A (cf. [3]).

Let $\Lambda = \Lambda_{\mu_0} + \Lambda_{\mu_1} + \cdots + \Lambda_{\mu_{k-1}}$ $(\mu_0 \ge \cdots \ge \mu_{k-1} > 0)$ be a dominant integral weight. Let $J = (J_0, \cdots J_{k-1})$ be a sequence of non-empty subsets of $\{0, 1, \dots, n\}$ with $\sharp J_s = \mu_s$ for $0 \le s < k$. We call J a column strict plane partition of shape Λ if the following conditions are satisfied:

(3.2)
$$\begin{cases} J_s = \{j_{0,s}, \cdots, j_{\mu_s-1,s}\} \subset \{0, 1, \cdots, n\}, \\ j_{r,s} < j_{r+1,s} \text{ and } j_{r,s} \leq j_{r,s+1}. \end{cases}$$

The irreducible representation of V_A can be realized as a right sub-A(G)-

comodule as

$$(3.3) V_{\Lambda} = \sum_{J} C \xi_{J} \subset A(G),$$

where the sum is taken over the set of all column strict plane partitions of shape Λ and

(3.4)
$$\xi_{J} = \xi_{J_0} \cdots \xi_{J_{k-1}} \quad \text{if } J = (J_0, \cdots, J_{k-1}).$$

It is seen that these vectors ξ_J are linearly independent and that they form a *C*-basis for a right A(G)-comodule. Note that the product of minor determinants

$$\xi_{01...\mu_{0}-1}\cdots\xi_{01...\mu_{k-1}-1}$$

gives the highest weight vector of V_A . We remark that V_A is identified with the vector space of all left relative B_- -invariants in $A(SL_q(n+1; C))$ with respect to the character corresponding to A, where B_- is the Borel subgroup "of lower triangular matrices" (see [3]).

If $\Lambda = l \Lambda_i + m \Lambda_n$ $(l, m \in N)$, the spherical representation V_A contains a K-fixed vector

$$(3.6) v_0 = (\xi_n^0)^l (\xi_{01...n-1}^{01...n-1})^m.$$

By using algebraic properties of quantum minor determinants, we can determine explicitly the zonal spherical function of V_A in terms of basic hypergeometric series $_2\varphi_1$:

$$(3.7) _2\varphi_1\left(\begin{matrix} a,b\\c \end{matrix}; q,z \right) = \sum_{k=0}^{\infty} \frac{(a;q)_k(b;q)_k}{(c;q)_k(q;q)_k} z^k, (a;q)_k = \prod_{j=0}^{k-1} (1-aq^j).$$

Theorem. Let $V_{\scriptscriptstyle A}$ be the representation of $G\!=\!SU_{\scriptscriptstyle q}(n\!+\!1)$ with highest weight $\Lambda\!=\!l\Lambda_1\!+\!m\Lambda_n$ ($l,m\in N$). Then the zonal spherical function $w\!=\!w_{\scriptscriptstyle 00}$ of $V_{\scriptscriptstyle A}$ relative to $K\!=\!SU_{\scriptscriptstyle q}(n)$ is expressed by a basic hypergeometric series in $z\!=\!1\!-\!x_{\scriptscriptstyle n},\!\xi_{\scriptscriptstyle 01,\ldots,n-1}^{\scriptscriptstyle 01,\ldots,n-1}$ as follows:

(3.8)
$$w = (x_{nn})^{l-m} {}_{2}\varphi_{l} \left(\begin{matrix} q^{-2m}, & q^{2(l+n)} \\ q^{2n} \end{matrix}; q^{2}, q^{2}z \right)$$
 if $l \ge m$,

and

The above polynomials in z are so-called *little q-Jacobi polynomials*. As for *zonal* spherical functions, Theorem generalizes a result of [1, 2].

References

- [1] T. Masuda *et al.*: Representations of quantum groups and a q-analogue of orthogonal polynomials. C. R. Acad. Sci. Paris, Série I, **307**, 559-564 (1988).
- [2] —: Representations of the quantum group $SU_q(2)$ and the little q-Jacobi polynomials (preprint).
- [3] M. Noumi, H. Yamada, and K. Mimachi: Representations of the quantum group $GL_q(n+1; C)$ (in preparation).
- [4] N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev: Quantization of Lie groups and Lie algebras (to appear in Algebra and Analysis) (in Russian).