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RAISING OPERATORS OF ROW TYPE

FOR MACDONALD POLYNOMIALS

YASUSHI KAJIHARA AND MASATOSHI NOUMI

Department of Mathematics, Kobe University

Abstract. We construct certain raising operators of row type for Macdonald’s
symmetric polynomials by an interpolation method.

1. Introduction

Throughout this paper, we denote by Jλ(x; q, t) the integral form of Macdonald’s
symmetric polynomial in n variables x = (x1, . . . , xn) (of type An−1) associated
with a partition λ ([5]). For eachm = 0, 1, 2, . . . , we consider a q-difference operator
Bm which should satisfy the following condition: For any partition λ = (λ1, λ2, . . . )
whose longest part λ1 has length ≤ m, one has

BmJλ(x; q, t) =

{
J(m,λ)(x; q, t) if ℓ(λ) < n,

0 if ℓ(λ) = n,
(1.1)

where (m,λ) = (m,λ1, λ2, . . . ) stands for the partition obtained by adding a row of

length m to λ. An operator Bm having this property will be called a raising oper-
ator of row type for Macdonald polynomials. With such operators, the Macdonald
polynomial Jλ(x; q, t) for a general partition λ = (λ1, λ2, . . . , λn) can be expressed
as

Bλ1
Bλ2

. . . Bλn
.1 = Jλ(x; q, t) (λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0). (1.2)

Namely, one can obtain Jλ(x; q, t) by an successive application of the operators Bm

starting from Jφ(x; q, t) = 1.
The purpose of this paper is to give an explicit construction of such operators

Bm (m = 0, 1, 2, . . . ). These operators Bm can be considered as a dual version of
the raising operators of column type introduced by A.N. Kirillov and the second
author [3], [4]. We remark that, as to the Hall-Littlewood polynomials (the case
when q = 0), such a class of raising operators Bm of row type has been implicitly
employed in Macdonald [5], Chapter III, (2.14):

Bm = (1 − t)

n∑

i=1

xm
i


∏

j 6=i

xi − txj

xi − xj


 T0,xi

(1.3)

form = 1, 2, . . . , where T0,xi
is the “0-shift operator ” in xi, namely, the substitution

of zero for xi. Our raising operators of row type for Macdonald polynomials can be
considered as a generalization of these operators for Hall-Littlewood polynomials.
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We will propose first a theorem of unique existence for raising operators of row
type. For each multi-index α = (α1, . . . , αn) ∈ Nn, we set |α| = α1 + · · · + αn and

xα = xα1

1 · · ·xαn
n , Tα

q,x = Tα1

q,x1
· · ·Tαn

q,xn
, (1.4)

where Tq,xi
is the q-shift operator in xi, defined by

Tq,xi
f (x1, . . . , xi, . . . , xn) = f(x1, . . . , qxi, . . . , xn) (1.5)

for i = 1, . . . , n.

Theorem 1.1. For each m = 0, 1, 2, . . . , there exists a unique q-difference operator

Bm =
∑

|γ|≤m

b(m)
γ (x)T γ

q,x (1.6)

of order ≤ m satisfying the condition (1.1), where b
(m)
γ (x) are rational functions in

x with coefficients in Q(q, t). Furthermore, the operator Bm is invariant under the
action of the symmetric group Sn of degree n.

We will also determine the operator Bm explicitly by an interpolation method.
In the following, we use the notation α ≤ β for the partial ordering of multi-indices
defined by

α ≤ β ⇐⇒ αi ≤ βi (i = 1, . . . , n). (1.7)

In order to describe the coefficients of our raising operators, we introduce a variant
of q-binomial coefficients Cα,β(x; q) including the variables x = (x1, . . . , xn). For
any pair (α, β) of multi-indices such that α ≥ β, we set

Cα,β(x; q) =
∏

1≤i,j≤n

(qαi−βj+1xi/xj)βj

(qβi−βj+1xi/xj)βj

(1.8)

=

n∏

j=1

(qαj−βj+1)βj

(q)βj

∏

i6=j

(qαi−βj+1xi/xj)βj

(qβi−βj+1xi/xj)βj

with the notation (a)k = (a; q)k = (1 − a)(1 − aq) · · · (1 − aqk−1) of the q-shifted
factorial. We remark that, if n = 1, Cα,β(x; q) reduce to the ordinary q-binomial

coefficients

[
α
β

]

q

.

Theorem 1.2. The q-difference operator Bm of Theorem 1.1 can be expressed in
the form

Bm =
∑

|α|=m

b(m)
α (x)φ(m)

α (x;Tq,x), (1.9)

where

b(m)
α (x) = (−1)|α|q

∑
i (

αi
2 )xα

∑

β≤α

(−1)|β|q(
|β|
2 )Cα,β(x; q) (1.10)

·

n∏

i,j=1

(tq−βj+1xi/xj)βj
(q−αj+1xi/xj)αj−βj

(qαi−αj+1xi/xj)αj

and

φ(m)
α (x;Tq,x) =

∑

β≤α

(−1)|α|−|β|q(
|α|−|β|+1

2 )Cα,β(x; q)T β
q,x (1.11)
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for each α with |α| = m.

In the course of the proof of Theorem 1.2, we will make use of a variant of
the q-binomial theorem for our Cα,β(x; q), which might also deserve attention (see
Proposition 5.3 in Section 5).

Theorem 1.3. For any α ∈ Nn, one has
∑

β≤α

(−1)|β|q(
|β|
2 )Cα,β(x; q)u|β| = (u)|α|. (1.12)

We remark that formula (1.12) also implies a generalization of q-Chu-Vandermonde
formulas

∑

β≤α,|β|=r

n∏

j=1

[
αj

βj

]

q

∏

i6=j

(qαi−βj+1xi/xj)βj

(qβi−βj+1xi/xj)βj

=

[
n
r

]

q

(1.13)

for any α with |α| = n and 0 ≤ r ≤ n.

After recalling some basic facts about Macdonald polynomials in Section 2, we
will prove the uniqueness and the existence of raising operators of row type in
Section 3 and in Section 4, respectively. Explicit formulas for the q-difference

operators φ
(m)
α (x;Tq,x) and the coefficients b

(m)
α (x) (|α| = m) of Theorem 1.2 will

be given in Section 5 and in Section 6, respectively.

2. Macdonald Polynomials

In order to fix the notation, we recall some basic facts about Macdonald’s sym-
metric polynomials of type An−1. For the details see [5].

Let K[x] = K[x1, x2, . . . , xn] be the ring of polynomials in n variables x =
(x1, x2, . . . , xn) with coefficients in K = Q(q, t), and K[x]Sn the subring of all
invariant polynomials under the natural action of the symmetric group Sn of degree
n.

Macdonald’s commuting family of q-difference operators D1, D2, . . . , Dn is de-
fined by the generating function

Dx(u; q, t) =

n∑

r=0

(−u)rDr (2.1)

=
∑

K⊂{1,... ,n}

(−u)|K|q(
|K|
2 )

∏

i∈K,j /∈K

1 − txi/xj

1 − xi/xj

∏

i∈K

Tq,xi
.

Note that Dx(u; q, t) has the determinantal formula

Dx(u; q, t) =
1

∆(x)
det(xn−i

j (1 − utn−iTq,xi
))i,j (2.2)

=
1

∆(x)

∑

w∈Sn

ǫ(w)w(

n∏

i=1

xn−i
i (1 − utn−iTq,xi

)),

where ∆(x) =
∏

i<j(xi − xj) . Macdonald’s symmetric polynomials Pλ(x) =

Pλ(x; q, t) are the joint eigenfunctions of the operators D1, . . . , Dn on K[x]Sn , sat-
isfying the equations

Dx(u)Pλ(x) = Pλ(x)

n∏

i=1

(1 − uqλitn−i); (2.3)
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each Pλ(x) is normalized so that the coefficient of xλ should be equal to 1. The
integral form Jλ(x) = Jλ(x; q, t) of Pλ(x) is defined as

Jλ(x; q, t) = cλPλ(x; q, t), cλ =
∏

s∈λ

(1 − qa(s)tl(s)+1). (2.4)

It is known in fact that Jλ(x) are linear combinations of monomial symmetric
functions with coefficients in Z[q, t] (see [3] for example).

We recall that the Macdonald polynomials have the generating function

n∏

i=1

m∏

j=1

(1 + xiyj) =
∑

λ

Pλ(x; q, t)Pλ′ (y; t, q), (2.5)

for another set of variables y = (y1, . . . , ym), where λ′ stands for the conjugate
partition of λ, and the summation is taken over all partitions λ such that l(λ′) =
λ1 ≤ m, l(λ) = λ′1 ≤ n. This formula will be the key to our study of raising
operators of row type. Notice that the dual version of the generation function (2.5)
has been employed in [3] for the construction of raising operators of column type.

3. Raising operators of row type and their uniqueness

Fixing a nonnegative integer m, we will prove in this section the uniqueness of
a q-difference operator

Bm =
∑

|γ|≤m

b(m)
γ (x)T γ

q,x (b(m)
γ (x) ∈ K(x)) (3.1)

of order ≤ m such that

BmJλ(x; q, t) =

{
J(m,λ)(x; q, t) if l(λ′) ≤ m, l(λ) < n,

0 if l(λ′) ≤ m, l(λ) = n,
(3.2)

where (m,λ) = (m,λ1, λ2, . . . ). We remark that the invariance of Bm under the
action of Sn follows immediately from the uniqueness theorem. Existence of such
an operator will be established in the next section.

Lemma 3.1. A q-difference operator Bm of order ≤ m in the form (3.1) satisfies
the condition (3.2) if and only if the following equality holds:

Bm,x

n∏

i=1

m∏

j=1

(1 + xiyj) =
1

y1 . . . ym
Dy(1; t, q)

n∏

i=1

m∏

j=1

(1 + xiyj). (3.3)

Proof. Note first that, for each partition µ = (µ1, . . . , µm) of length ≤ m, one has

1

y1 . . . ym
Dy(1; t, q)Pµ(y; t, q) =

{
Pµ−(1)m(y; t, q)

∏m
i=1(1 − qm−itµi) if µm > 0,

0 if µm = 0.(3.4)
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Hence we obtain

1

y1 . . . ym
Dy(1; t, q)

n∏

i=1

m∏

j=1

(1 + xiyj) (3.5)

=
∑

l(ν)≤n,l(ν′)=m

Pν(x; q, t)Pν′−(1)m(y; t, q)

m∏

i=1

(1 − qm−it(ν
′)i)

=
∑

l(λ)≤n−1,l′(λ)≤m

P(m,λ)(x; q, t)Pλ′ (y; t, q)

m∏

i=1

(1 − qm−it(λ
′)i+1).

This implies that equation (3.3) is equivalent to the condition

BmPλ(x; q, t) =

{
0 ( if l(λ) = n )

Pλ(x; q, t)
∏m

i=1(1 − qm−it(λ
′)i+1) ( if l(λ) < n )

(3.6)

for any λ with l(λ′) ≤ m. It is easily seen that this coincides with condition (3.2)
in terms of the integral forms.

By making the action of Dy(1; t, q) in (3.3) explicit, we obtain

Proposition 3.2. A q-difference operator Bm of order ≤ m is a raising operator
of row type for Macdonald polynomials if and only if its coefficients satisfy the
following identity of rational functions:

∑

|γ|≤m

b(m)
γ (x)

n∏

i=1

m∏

j=1

1 + qγixiyj

1 + xiyj
(3.7)

=
1

y1 . . . ym

∑

K⊂{1,... ,n}

(−1)|K|q(
|K|
2 )

∏

k∈K,l/∈K

1 − qyk/yl

1 − yk/yl

n∏

i=1

∏

k∈K

1 + txiyk

1 + xiyk
.

Remark 3.3. By the determinantal representation of Dy(1; t, q), equality (3.7) can
also be rewritten in the form

∑

|γ|≤m

b(m)
γ (x)

n∏

i=1

m∏

j=1

1 + qγixiyj

1 + xiyj
(3.8)

=
1

y1 . . . ym∆(y)
det

(
ym−i

j

(
1 − qm−i

n∏

r=1

1 + txryj

1 + xryj

)
)

i,j

.

Let now B and B′ be two q-difference operators of order ≤ m and suppose that
they both satisfy the condition (3.2) of raising operators. Then by Lemma 3.1 one
has

(Bx −B′
x)

n∏

i=1

m∏

j=1

(1 + xiyj) = 0. (3.9)

Hence the uniqueness of Bm of Theorem 1.1 follows immediately from the following
general proposition on q-difference operators.

Proposition 3.4. Let P =
∑

|γ|≤m aγ(x)T γ
q,x be a q-difference operator of order

≤ m with coefficients in K(x).
(a) If Px

∏n
i=1

∏m
j=1(1 + xiyj) = 0, then P = 0 as a q-difference operator.
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(b) If Pf(x) = 0 for any symmetric polynomial f(x) ∈ K[x]Sn of degree ≤ mn,
then P = 0 as a q-difference operator.

Since the statement (b) follows from (a), we give a proof of (a) of Proposition. For
each multi-index α ∈ Nn with |α| = m, we define a point pα(x) ∈ K(x)

m
by

pα(x) = (−1/x1,−1/qx1, . . . ,−1/qα1−1x1, . . . , (3.10)

−1/xn,−1/qxn, . . . ,−1/qαn−1xn).

Then we have

Lemma 3.5. For any multi-index γ ∈ Nn, one has

n∏

i=1

m∏

j=1

(1 + qγixiyj)
∣∣
y=pα(x)

=

n∏

i=1

n∏

j=1

αj−1∏

ν=0

(1 − qγi−νxi/xj) (3.11)

=
∏

1≤i,j≤n

(qγi−αj+1xi/xj)αj
.

In particular, one has
∏n

i=1

∏m
j=1(1 + qγixiyj)

∣∣
y=pα(x)

= 0 unless γ ≥ α.

Under the assumption of Proposition 3.4,(a), we may assume that aα(x) 6= 0 for
some α ∈ Nn with |α| = m without loosing generality. (If P is of order l < m, set
yl+1 = . . . = ym = 0 and apply the following argument by replacing m by l.) The
assumption on P implies

∑

|γ|≤m

aγ(x)

n∏

i=1

m∏

j=1

(1 + qγixiyj) = 0. (3.12)

Evaluating this equality at y = pα(x), we have

aα(x)
∏

1≤i,j≤n

(qαi−αj+1xi/xj)αj
= 0 (3.13)

by Lemma 3.5, since, if |γ| ≤ m and γ ≥ α, then γ = α. This contradicts to
the assumption aα(x) 6= 0. This completes the proofs of Proposition 3.4 and the
uniqueness of Bm in Theorem 1.1.

4. Existence of Bm

In this section, we discuss the existence of a raising operator Bm.

We begin with a lemma which will play an important role in the following argu-
ment.

Lemma 4.1. Let F (y) ∈ K(x)[y]Sm be a symmetric polynomial in y = (y1, . . . , ym)
with coefficients in K(x), and suppose that F (y) is of degree ≤ n− 1 in yj for each
j = 1, . . . ,m. If F (pα(x)) = 0 for all α ∈ Nn with |α| = m, then F (y) is identically
zero as a polynomial in y.

Proof. We prove Lemma by the induction on m. The case when m = 1 is obvious
since F (y) is of degree ≤ n − 1 and has n distinct zeros −1/x1, . . . ,−1/xn. For
m ≥ 2, we first expand F (y) in terms of ym as follows:

F (y) = F (y1, . . . , ym) =

n−1∑

i=0

Fi(y1, . . . , ym−1)y
i
m, (4.1)
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where each coefficient Fi(y1, . . . , ym−1) has degree ≤ n−1 in all yj (j = 1, . . . ,m−
1). Let β ∈ Nn a multi-index with |β| = m− 1 and consider the polynomial

f(ym) = F (pβ(x), ym) =

n−1∑

i=0

Fi(pβ(x))yi
m, (4.2)

by evaluating F (y) at (y1, . . . , ym−1) = pβ(x). From the assumption on F (y),
it follows that the polynomial f(ym) has n distinct zeros ym = −1/qβixi (i =
1, . . . , n). Hence f(ym) is identically 0 as a polynomial in ym. This implies that
Fi(pβ(x)) = 0 for each i = 0, . . . ,m − 1 and for any β ∈ Nn with |β| = m − 1.
By the induction hypothesis, we conclude that the coefficients Fi(y1, . . . , ym−1) are
identically zero as polynomials in (y1, . . . , ym−1), namely, F (y) is identically zero
as a polynomial in y = (y1, . . . , ym).

In view of Lemma 3.1, we propose to construct a q-difference operator

B =
∑

|α|≤m

bα(x)Tα
q,x (4.3)

of order ≤ m such that

Bx

n∏

i=1

m∏

j=1

(1 + xiyj) =
1

y1 . . . ym
Dy(1; t, q)

n∏

i=1

m∏

j=1

(1 + xiyj). (4.4)

In the following, we denote the left-hand side and the right-hand side of this equality
by Φ(x; y) and by Ψ(x; y), respectively. In terms of the coefficients bα(x), Φ(x; y)
is expressed as

Φ(x; y) =
∑

|α|≤m

bα(x)

n∏

i=1

m∏

j=1

(1 + qαixiyj). (4.5)

Note also that Ψ(x; y) is a polynomial in y = (y1, . . . , ym) and has degree ≤ n− 1
in each yj (j = 1, . . . ,m) as can be seen from (3.4). Hence, by Lemma 4.1, we see
that B satisfies the desired equality if and only if

1. Φ(x; y) is of degree ≤ n− 1 in each yj for j = 1, . . . ,m.
2. Φ(x; pα(x)) = Ψ(x; pα(x)) for all α ∈ Nn with |α| = m.

Suppose now that the operator B has the property (1) mentioned above. Since
the degree of Φ(x; y) in yj is less than n for each j = 1, . . . ,m, we have

Φ(x; y)

n∏

i=1

m∏

j=1

(1 + xiyj)
−1|y1→∞,... ,ym→∞ = 0. (4.6)

Hence by (4.5) we obtain
∑

|α|≤m

bα(x)q|α|m = 0, i.e., b0(x) = −
∑

0<|α|≤m

bα(x)q|α|m. (4.7)

This implies that B can be represent as

B =
∑

1≤|α|≤m

bα(x)(Tα
q,x − q|α|m). (4.8)
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Note that a general B of order ≤ m has an expression of this form if and only if

F1(x; y1) = Φ(x; y)
n∏

i=1

m∏

j=1

(1 + xiyj)
−1|y2→∞,... ,ym→∞ (4.9)

is of degree ≤ n − 1 in y1. We now show inductively that, for l = 0, 1, . . . ,m, B
can be represented as follows:

B =
∑

l≤|α|≤m

bα(x)φl;α(x, Tq,x), (4.10)

where

φl;α(x, Tq,x) = Tα
q,x +

∑

β<α, |β|<l

φl;α,β(x)T β
q,x. (4.11)

Assume that we have constructed such an expression for l with l < m. Note that

Φ(x; y) =
∑

l≤|α|≤m

bα(x)

(
n∏

i=1

m∏

j=1

(1 + qαixiyj) (4.12)

+
∑

β≤α, |β|<l

φl;α,β(x)

n∏

i=1

m∏

j=1

(1 + qβixiyj)

)
.

Since property (1) of Φ(x; y) implies

Φ(x; y)

n∏

i=1

m∏

j=l+1

(1 + xiyj)
−1|yl+1→∞,... ,ym→∞ = 0, (4.13)

we obtain the relation

∑

l≤|α|≤m

bα(x)

(
q|α|(m−l)

n∏

i=1

l∏

j=1

(1 + qαixiyj) (4.14)

+
∑

β≤α, |β|<l

φl;α,β(x)q|β|(m−l)
n∏

i=1

l∏

j=1

(1 + qβixiyj)

)
= 0.

In this formula we consider to specialize y′ = (y1, . . . , yl) at pγ(x), with the notation

of (3.10), for each γ with |γ| = l. By Lemma 3.5,
n∏

i=1

l∏

j=1

(1 + qβixiyj)|y′=pγ(x) = 0

unless β ≥ γ. Hence formula (4.14) with y′ = pγ(x) gives rise to

bγ(x)ql(m−l)
∏

1≤i,j≤n

(qγi−γj+1xi/xj)γj
(4.15)

+
∑

|α|>l

bα(x)q|α|(m−l)
∏

1≤i,j≤n

(qαi−γj+1xi/xj)γj
= 0.

From this we have

bγ(x) = −
∑

α>γ

bα(x)ψα,γ(x), (4.16)
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where

ψα,γ(x) = q(|α|−|γ|)(m−|γ|)
∏

1≤i,j≤n

(qαi−γj+1xi/xj)γj

(qγi−γj+1xi/xj)γj

(4.17)

= q(|α|−|γ|)(m−|γ|)Cα,γ(x; q)

with the notation of (1.8). Note that ψα,γ(x) depends on m but does not on B.
Thus we obtain

B =
∑

|γ|=l

bγ(x)φl;γ(x, Tq,x) +
∑

l<|α|≤m

bα(x)φl;α(x, Tq,x) (4.18)

=
∑

l+1≤|α|≤m

bα(x)φl+1;α(x, Tq,x).

where φl+1;α(x, Tq,x) (l + 1 ≤ |α| ≤ m) are determined by

φl+1;α(x, Tq,x) = φl;α(x, Tq,x) −
∑

γ<α,|γ|=l

ψα,γ(x)φl;γ(x, Tq,x).
(4.19)

In other words, the coefficients of φl+1;α(x;Tq,x) are determined by the recurrence
formula

φl+1;α,β(x) = φl;α,β(x) −
∑

β<γ<α, |γ|=l

ψα,γ(x)φl;γ,β(x) (4.20)

for all β such that β < α and |β| < l. In this induction procedure, it is also seen
by Lemma 4.1 that a general B of order ≤ m has an expression of this form (4.10)
with (4.11) if and only if

Fl(x; y1, . . . , ym) = Φ(x; y)

n∏

i=1

m∏

j=1

(1 + xiyj)
−1|yl+1→∞,... ,ym→∞

(4.21)

is of degree ≤ n− 1 in yj for each j = 1, . . . , l.

In this way, we can define the q-difference operators φl;α(x;Tq,x) (l ≤ |α| ≤ m)
for l = 0, . . . ,m, inductively on l by (4.19). Note that these operators depend on
the m that we have fixed in advance, but do not on the operator B. By using the
operators we obtained at the final step l = m, we have the expression

B =
∑

|α|=m

bα(x)φ(m)
α (x;Tq,x) (4.22)

for B, where φ
(m)
α (x;Tq,x) = φm;α(x;Tq,x) .

From this construction, we obtain the following proposition.

Proposition 4.2. For each α ∈ Nn with |α| = m, define the q-difference operator

φ
(m)
α (x;Tq,x) as above. Then, for any q-difference operator B of order ≤ m with

coefficients in K(x), the following two conditions are equivalent.

(a) Φ(x; y) = Bx

∏n
i=1

∏m
j=1(1+xiyj) is of degree ≤ n−1 in yj for each

j = 1, . . . ,m.
(b) B is represented as

B =
∑

|α|=m

bα(x)φ(m)
α (x, Tq,x) (4.23)

for some bα(x) ∈ K(x).
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We now consider a q-difference operator B of the form Proposition 4.2, (b), so
that Φ(x; y) is of degree ≤ n − 1 in each yj (j = 1, . . . ,m). With Ψ(x; y) being
the right-hand side of (4.4), the equality Φ(x; y) = Ψ(x; y) holds if and only if
Φ(x; pα(x)) = Ψ(x; pα(x)) for any α with |α| = m, as we remarked before. Since

Φ(x; pα(x)) = bα(x)
∏

1≤i,j≤n

(qαi−αj+1xi/xj)αj
(4.24)

by Lemma 3.5, the coefficients bα(x) are determined as

bα(x) = Ψ(x; pα(x))
∏

1≤i,j≤n

(qαi−αj+1xi/xj)
−1
αj

(4.25)

for all α with |α| = m. This completes the proof of existence of a raising operator
Bm.

From the recurrence formula (4.20) we see that, for any α with l ≤ |α| ≤ m, the
coefficients φl;α,β(x) of φl;α(x;Tq,x) are expressed as

φl;α,β(x) =
l∑

r=1

(−1)r
∑

α>γ1>...>γr=β; |γ1|<l

ψα,γ1
(x)ψγ1,γ2

(x) · · ·ψγr−1,γr
(x)

(4.26)

for all β with β < α, |β| < l. In particular, we have

Proposition 4.3. For any pair (α, β) of multi-indices with β ≤ α, define a rational

function ψ
(m)
α,β (x) by

ψ
(m)
α,β (x) = q(|α|−|β|)(m−|β|)Cα,β(x; q) (4.27)

= q(|α|−|β|)(m−|β|)
∏

1≤i,j≤n

(qαi−βj+1xi/xj)βj

(qβi−βj+1xi/xj)βj

.

Then, for any α ∈ Nn with |α| = m, the coefficients of the q-difference operator

φ(m)
α (x;Tq,x) =

∑

β≤α

φ
(m)
α,β (x)T β

q,x (4.28)

are determined by the formula

φ
(m)
α,β (x) =

m∑

r=0

(−1)r
∑

α=γ0>γ1>...>γr=β

ψ(m)
γ0,γ1

(x) · · ·ψ(m)
γr−1,γr

(x),
(4.29)

where the summation is taken over all paths in the lattice Nn connecting α and β.

In the next section, we will give explicit formulas for these coefficients φ
(m)
α,β (x).

5. Explicit formulas for φ
(m)
α (x;Tq,x)

The goal of this section is to give the explicit formula

φ(m)
α (x;Tq,x) =

∑

β≤α

(−1)|α|−|β|q(
|α|−|β|+1

2 )Cα,β(x; q)T β
q,x (5.1)
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for φ
(m)
α (x, Tq,x) (|α| = m) as in Theorem 1.2. With the notation of Proposition

4.3, this formula is equivalent to

φ
(m)
α,β (x) = (−1)|α|−|β|q(

|α|−|β|+1

2 )Cα,β(x; q) (5.2)

= (−1)|α|−|β|q(
|α|−|β|+1

2 )
∏

1≤i,j≤n

(qαi−βj+1xi/xj)βj

(qβi−βj+1xi/xj)βj

.

for β ≤ α.

In view of the dependence of ψ
(m)
α,β (x) on m (see Proposition 4.3), we define a

function gα,β(x) by

gα,β(x) = q−(|α|−|β|)|β|Cα,β(x; q) (5.3)

for any α, β ∈ Nn with β ≤ α, so that ψ
(m)
α,β (x) = q(|α|−|β|)mgα,β(x). With these

gα,β(x), we also define a function fα,β(x) by

fα,β(x) =

|α|−|β|∑

r=0

(−1)r
∑

α=γ0>γ1>...>γr=β

gγ0,γ1
(x) · · · gγr−1,γr

(x) (5.4)

for any α, β ∈ Nn with β ≤ α. Then by Proposition 4.3 we have

φ
(m)
α,β (x) = q(|α|−|β|)mfα,β(x) (5.5)

if |α| = m and β ≤ α. Hence, the formula (5.2) follows from the following proposi-
tion.

Proposition 5.1. Define the rational functions fα,β(x) (β ≤ α) by the formulas
(5.4) together with (5.3). Then they can be determined as

fα,β(x) = (−1)|α|−|β|q−(|α|−|β|
2 )−(|α|−|β|)|β|Cα,β(x; q) (5.6)

for any α, β with β ≤ α.

For the proof of Proposition 5.1, notice that the functions fα,β(x) are defined
as the matrix elements of the inverse matrix of the lower unitriangular matrix
G = (gα,β(x))α,β . Hence we have only to show the inverse matrix of G is given by

G−1 = (f̃α,β(x))α,β with

f̃α,β(x) = (−1)|α|−|β|q−(|α|−|β|
2 )−(|α|−|β|)|β|Cα,β(x; q). (5.7)

Proposition 5.1 thus reduces to

Lemma 5.2. For any α, β with α > β, one has
∑

α≥γ≥β

f̃α,γ(x) gγ,β(x) = 0. (5.8)

By the definition of gα,β(x) and f̃α,β(x), we have
∑

α≥γ≥β

f̃α,γ(x)gγ,β(x) (5.9)

=
∑

α≥γ≥β

(−1)|α|−|γ|q−(|α|−|γ|
2 )−(|α|−|γ|)|γ|−(|γ|−|β|)|β|Cα,γ(x; q)Cγ,β(x; q).
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Just as in the case of binomial coefficients, it is directly shown that our Cα,β(x; q)
satisfy the following identity:

Cα,γ(x; q)Cγ,β(x; q) = Cα,β(x; q)
∏

i,j

(qγi−βj+1xi/xj)αi−γi

(qγi−γj+1xi/xj)αi−γi

(5.10)

= Cα,β(x; q)Cα−β,α−γ(1/qαx; q)

where 1/qαx = (1/qα1x1, . . . , 1/q
αnxn). Hence we obtain

∑

α≥γ≥β

f̃α,γ(x)gγ,β(x) = q−(|α|−|β|)|β|Cα,β(x; q) (5.11)

·
∑

α≥γ≥β

(−1)|α|−|γ|q−(|α|−|γ|
2 )−(|α|−|γ|)(|γ|−|β|)Cα−β,α−γ(1/qαx; q).

Setting α− β = λ and α− γ = µ, the last summation can be rewritten in the form
∑

0≤µ≤λ

(−1)|µ|q|µ|(1−|λ|)q(
|µ|
2 )Cλ,µ(1/qαx). (5.12)

Hence Lemma 5.2 is reduced to proving that this formula becomes zero. It is in
fact a special case of the following analogue of the q-binomial theorem. (Replace x
by 1/qαx and set u = q1−|λ| in (5.13) below, to see that (5.12) becomes zero.)

Proposition 5.3. For any λ ∈ Nn, one has
∑

0≤µ≤λ

(−u)|µ|q(
|µ|
2 )Cλ,µ(x; q) = (u)|λ|, (5.13)

where u is an indeterminate.

Proof. This “q-binomial theorem” follows from an identity for Macdonald’s q-
difference operator Dz(u; t, q) in N variables z = (z1, . . . , zN ) with N = |λ|. Since
Dz(u; t, q).1 = (u)N , we have

∑

K⊂{1,... ,N}

(−u)|K|q(
|K|
2 )

∏

k∈K;l/∈K

1 − qzk/zl

1 − zk/zl
= (u)N . (5.14)

For a multi-index λ ∈ Nn with |λ| = N , let us specialize (5.14) at z = pλ(x)
with the notation of (3.10). Note that, when we specialize z at pλ(x), the in-
dexing set {1, . . . , N} is divided into n blocks with cardinality λ1, . . . , λn, respec-
tively. Furthermore, for a configuration K of points in {1, . . . , N}, the product∏

k∈K;l/∈K(1 − qzk/zl)/(1 − zk/zl) becomes zero unless the elements of K should
be packed to the left in each block. Such configurations K are parameterized by
multi-indices µ ≤ λ such that |µ| = |K| and that µi denotes the number of points
of K sitting in the i-th block for i = 1, . . . , n. For such a K, one has

∏

k∈K;l/∈K

1 − qzk/zl

1 − zk/zl

∣∣∣∣
z=pλ(x)

=
∏

1≤i,j≤n

∏

µi≤a<λi;0≤b<µj

1 − qa−b+1xi/xj

1 − qa−bxi/xj
(5.15)

=
∏

1≤i,j≤n

(qλi−µj+1xi/xj)µj

(qµi−µj+1xi/xj)µj

= Cλ,µ(x; q).

(The indices are renamed by k → (j, b), l → (i, a).) Hence we obtain (5.13).

This completes the proof of formula (5.1).
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Remark 5.4. In the case of one variable, equation (5.13) reduces the ordinary q-
binomial theorem

l∑

k=0

(−1)kq(
k
2)uk

[
l
k

]

q

= (u)l. (5.16)

If we take the coefficient of uk in formula (5.13), we obtain

∑

µ≤λ,|µ|=k

n∏

j=1

[
λj

µj

]

q

∏

i6=j

(qλi−µj+1xi/xj)µj

(qµi−µj+1xi/xj)µj

=

[
|λ|
k

]

q

, (5.17)

for k = 0, 1, . . . , |λ|. This gives a generalization of the q-Chu-Vandermonde formula.
From (5.13), we also obtain another type of q-Chu-Vandermonde formula for our
Cα,β(x; q):

∑

µ≤α,ν≤β
|µ|+|ν|=k

q(|α|+|µ|)|ν|Cα,µ(x; q)Cβ,ν(x; q) =

[
|α| + |β|

k

]

q

. (5.18)

6. Determination of b
(m)
α (x)

We have already proved that our raising operator

Bm =
∑

|γ|≤m

b(m)
γ (x)T γ

q,x (6.1)

of row type for Macdonald polynomials has an expression

Bm =
∑

|α|=m

b(m)
α (x)φ(m)

α (x;Tq,x), (6.2)

with the q-difference operators φ
(m)
α (x;Tq,x) of (5.1). In this section, we give explicit

formulas for b
(m)
α (x) for all α with |α| = m.

As we already remarked in Section 4, the coefficients b
(m)
α (x) (|α| = m) are

determined by

bα(x) = Ψ(x; pα(x))
∏

1≤i,j≤n

(qαi−αj+1xi/xj)
−1
αj
, (6.3)

where

Ψ(x; y) =
1

y1 . . . yn
Dy(1; t, q)

n∏

i=1

m∏

j=1

(1 + xiyj). (6.4)

(See (4.25).) Recall that

Ψ(x; y) =
1

y1 · · · ym

∑

K∈{1,...m}

(−1)|K|q(
|K|
2 )

∏

k∈K,l/∈K

1 − qyk/yl

1 − yk/yl

n∏

i=1

{ ∏

k∈K

(1 + txiyk)
∏

l/∈K

(1 + xiyl)

}
.

We specialize this formula at y = pα(x) for each α with |α| = m, in the same way as
we did in the proof of Proposition 5.3. All the subsets K that give rise to nonzero
summands after the specialization y = pα(x) are parameterized by the multi-indices
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β such that β ≤ α and |β| = K. With this parameterization, we already showed
that

∏

k∈K,l/∈K

1 − qyk/yl

1 − yk/yl

∣∣∣∣
y=pα(x)

= Cα,β(x; q). (6.5)

Renaming the indices by k → (j, b), we have
n∏

i=1

{ ∏

k∈K

(1 + txiyk)
∏

l/∈K

(1 + xiyl)

}
(6.6)

=
∏

1≤i,j≤n

βj−1∏

b=0

(1 − tq−bxi/xj)

αj−1∏

b=βj

(1 − q−bxi/xj)

=
∏

1≤i,j≤n

(tq−βj+1xi/xj)βj
(q−αj+1xi/xj)αj−βj

.

Hence we have

Ψ(x; pα(x)) = (−1)mq
∑

i (
αi
2 )xα

∑

β≤α

(−1)|β|q(
|β|
2 )Cα,β(x; q)

∏

1≤i,j≤n

(tq−βj+1xi/xj)βj
(q−αj+1xi/xj)αj−βj

.

By (6.3), we finally obtain

b(m)
α (x) = q

∑
i (

αi
2 )xα

∑

β≤α

(−1)|α|−|β|q(
|β|
2 )Cα,β(x; q)

·
∏

1≤i,j≤n

(tq−βj+1xi/xj)βj
(q−αj+1xi/xj)αj−βj

(qαi−αj+1xi/xj)αj

= q
∑

i (
αi
2 )xα

∑

β≤α

(−1)|α|−|β|q(
|β|
2 )

·
∏

1≤i,j≤n

(tq−βj+1xi/xj)βj
(q−αj+1xi/xj)αj−βj

(qβi−βj+1xi/xj)βj
(qαi−αj+1xi/xj)αj−βj

,

for any α with |α| = m. This completes the proof of Theorem 1.2.
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