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Abstract

This paper presents the applicability of an explicit time-domain finite element
method (TD-FEM) using a dispersion reduction technique called modified
integration rules (MIR) on room acoustics simulations with a frequency-
independent finite impedance boundary. First, a dispersion error analysis
and a stability analysis are performed to derive the dispersion relation and
the stability condition of the present explicit TD-FEM for three-dimensional
room acoustics simulations with an infinite impedance boundary. Secondly,
the accuracy and efficiency of the explicit TD-FEM are presented by compar-
ing with implicit TD-FEM using MIR through room acoustics simulations in
a rectangular room with infinite impedance boundaries. Thirdly, the stabil-
ity condition of the explicit TD-FEM is investigated numerically in the case
with finite impedance boundaries. Finally, the performance of the explicit
TD-FEM in room acoustics simulations with finite impedance boundaries is
demonstrated in a comparison with the implicit TD-FEM. Although the sta-
bility of the present explicit TD-FEM is dependent on the impedance values
given at boundaries, the explicit TD-FEM is computationally more efficient
than the implicit method from the perspective of computational time for
acoustics simulations of a room with larger impedance values at boundaries.
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1. Introduction

Recently, the applicability and the practicality of the wave based acous-
tics simulation techniques such as finite element method (FEM), boundary
element method and finite difference time domain method are gradually in-
creasing in room acoustics design, with the rapid progress of computer tech-
nology [1]. Among them, FEM is a powerful tool for predicting a sound field
in a room with complex boundary conditions. Because FEM is frequently
said to be computationally expensive for room acoustics simulations, the
application range is restricted to low-frequency regions in general, but the
situation is changing quickly with the development of efficient methods. Dis-
persion reduction methods such as high order finite elements (FEs) [2, 3],
Krylov subspace iterative methods [4] and parallel computation methods are
examples of techniques to increase the efficiency of the FEM. Thanks to the
FEM using these techniques, room acoustics simulations at high frequen-
cies have recently become within the scope of the analysis if the volume of
architectural space is relatively small [5].

The FEM can analyze a sound field in a room in both frequency and time
domains [6, 7, 8, 9]. Because a time-domain FEM (TD-FEM) calculates an
impulse response of a room directly in a time domain, it is attractive from
the perspective of room acoustics evaluations such as the visualization, the
auralization of sound fields and the calculation of room acoustical parame-
ters. The authors have also developed some efficient TD-FEM for large-scale
room acoustics simulations with many degrees of freedom (DOF), and the
applicability has been presented by several room acoustics simulations such
as concert halls and reverberation chambers [5, 10, 11, 12]. To analyze a
sound field efficiently, the TD-FEM uses a high order FEs called hexahedral
27-node spline acoustic elements [13, 5] or low-order FEs called hexahedral
8-node elements with modified integration rules (MIR) [15] as well as the use
of iterative methods [4] and parallel computation methods [14]. Here, MIR
is a simple dispersion reduction technique to reduce an inherent dispersion
error coming from the spatial and time discretizations of a computational
domain. Although the TD-FEM is based on an implicit method, it can be
considered as efficient because the large-scale linear system of equations with
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a sparse matrix at each time step can solve easily using an iterative method
with the good convergence property [5, 10, 11].

On the other hand, there exists an explicit TD-FEM with MIR [15], in
which fourth-order accuracy with respect to the dispersion error can be ob-
tained for the idealized case using square or cubic FEs. The explicit TD-FEM
is also very attractive for realizing an efficient room acoustics simulation be-
cause it does not need a solution of a linear system of equations at each
time step. With this advantage, it might be computationally more efficient
than the implicit TD-FEM and might become an alternative method for
room acoustics simulations. However, it has not been applied to room acous-
tics simulations so far, and the formulation including a dissipation term for
treating an absorption at boundaries has not been presented in the litera-
ture [15], which is important for room acoustics simulations. More recently,
in Ref. [16], the authors presented an explicit TD-FEM using MIR with the
dissipation term for room acoustics simulations, and showed the efficiency in
term of computational time over an implicit TD-FEM using MIR. However,
this study was conducted in limited numerical conditions without a disper-
sion error analysis and a stability analysis, as a first stage of the research.
Therefore, to properly use the method on room acoustics simulations, the ap-
plicability of explicit TD-FEM and the performance over implicit TD-FEM
need to be examined further.

In this paper, the applicability of the present explicit TD-FEM with the
dissipation term on room acoustics simulations is discussed in more detail,
including the three-dimensional dispersion error analysis and the stability
analysis. The purpose of this paper is to show the accuracy and efficiency of
the explicit TD-FEM over the implicit TD-FEM using MIR on room acous-
tics simulations with a frequency-independent finite impedance boundary. To
this end, we conducted theoretical and numerical investigations in a step-by-
step manner. First, in Section 3, to show the basic discretization error prop-
erty of explicit TD-FEM in three-dimensions, a three-dimensional dispersion
error analysis is performed, in which we consider an idealized condition for
theoretical analysis, which is a plane wave propagation in a free field. This
section also includes the comparison of dispersion property between explicit
and implicit TD-FEM. Secondly, in Section 4, the theoretical findings are
confirmed in room acoustics simulations with infinite impedance boundaries
by a comparison between numerical solution and analytical solution because
the dispersion error analysis does not consider sound wave propagations in
a closed sound field. Thirdly, for more practical problems with frequency-
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independent finite impedance boundaries, the stability of explicit TD-FEM is
examined numerically in Section 5. Finally, the performance of explicit TD-
FEM over the implicit TD-FEM on room acoustics simulations with finite
impedance boundaries is discussed in Section 6, to show the applicability.
Note that numerical investigations are limited to rectangular rooms modeled
by the cubic FEs because the explicit TD-FEM can achieve the fourth-order
accuracy for the use of only cubic FEs.

2. Theory

2.1. Implicit TD-FEM using MIR and iterative method

We consider a closed sound field with a rigid boundary, a vibration bound-
ary, and an impedance boundary governed by the wave equation. By intro-
ducing the FE approximations to sound pressure and weight function in the
weak form derived from the wave equation, the semi-discretized matrix equa-
tion for the closed sound field is obtainable as

Mp̈ + c2
0Kp + c0Cṗ = f , (1)

where M , K, and C, respectively, denote the global mass matrix, the global
stiffness matrix, and the global dissipation matrix. Further, p, f , c0, re-
spectively, denote the sound pressure vector, the external force vector, and
the speed of sound. The symbols · and ·· respectively signify first-order and
second-order derivatives with respect to time. The implicit method solves the
above second-order ordinary differential equation (ODE) by using a direct
time integration method. In this paper, an efficient formulation for large-
scale analyses with many degree of freedom is used to solve the Eq. (1) [11].
In the formulation, a Krylov subspace iterative method called Conjugate
Gradient (CG) method is used to solve the large-scale linear system of equa-
tions at each time step efficiently. Furthermore, 8-node hexahedral FEs and
Newmark β method [17] are respectively used for spatial and time discretiza-
tions, with MIR. The MIR is a simple method to reduce the dispersion error,
in which numerical integration points of Gauss-Legendre rule in calculations
of the element stiffness matrix ke and the element mass matrix me are mod-
ified from conventional points based on the dispersion error analysis. The
modified integration points for TD-FEM with 8-node hexahedral FEs and
Newmark β method are given as [15]

αk = ±
√

2

3
, αm = ±

√
2

3
+ (

1

3
− 4β)τ 2, (2)
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where αk and αm represent the numerical integration points in me and ke,
respectively. τ and β represent the courant number c0∆t/h and a parameter
related to the accuracy and the stability in Newmark β method.

Various Newmark schemes have been used with the different values of
parameter β [17, 18]. This paper uses two Newmark β methods called the
constant average acceleration (CAA) method with β = 1/4 and the Fox-
Goodwin (FG) method with β = 1/12. For a three-dimensional analysis
using cubic FEs, the stability condition of the implicit TD-FEM used here is
given as [11]

∆tcrit ≤
h

c0

(CAA), (3)

∆tcrit ≤
h√
3c0

(FG), (4)

where ∆tcrit and h respectively represent the critical time interval and the
element length of cubic FEs. The dispersion error, which is defined as the
difference between the exact speed of sound c0 and approximate speed of
sound ch, of the implicit TD-FEM with CAA for the idealized case using
cubic FEs can be estimated by [11]

|c0 − ch|
c0

=
k4h4

1440
[A1 + A2 + A3 + A4], (5)

with

A1 = 3 − 3τ 4 − χi cos2 θ sin2 θ,

A2 = χi cos2 φ sin2 φ cos2 θ sin2 θ,

A3 = −χi cos2 φ sin2 φ sin2 θ,

A4 = 9 cos2 φ sin2 φ cos2 θ sin4 θ,

χi = 9 − 20τ 4, (6)

where k, θ and φ respectively represent the wave number, elevation and
azimuth in a spherical coordinate system. For the implicit TD-FEM with
FG, the dispersion error is [11]

|c0 − ch|
c0

=
k4h4

480
[cos6 φ sin6 θ + sin6 φ sin6 θ + cos6 θ − τ 4]. (7)

Note that only the implicit TD-FEM with FG can achieve the fourth-order
accuracy even for the use of rectangular FEs.
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2.2. Explicit TD-FEM using MIR
In contrast to the implicit method, the explicit TD-FEM solves a first

order ODE. By introducing a diagonal mass matrix D lumped from M and
a vector v = ṗ, the second order ODE of Eq. (1) is transformed into [15, 19]

Dṗ = Mv, (8)

Dv̇ = f − c2
0Kp − c0Cṗ, (9)

Discretization of ṗ in Eq. (8) and v̇ in Eq. (9) by the second-order accu-
rate central difference and ṗ in Eq. (9) by the first-order accurate backward
difference lead to the following explicit scheme as [16]

pn = pn−1 + ∆tD−1Mvn− 1
2 , (10)

vn+ 1
2 = vn− 1

2 + ∆tD−1[fn − c2
0Kpn − c0

∆t
C(pn − pn−1)], (11)

where n represents the time step. In this formulation, a sparse matrix stor-
age format is used for storing M and K, which enhances the numerical
efficiency. Further, lumped dissipation matrix is also used for C to avoid
the calculation of matrix-vector products. With this treatments, two sparse
matrix-vector products, Mvn− 1

2 and Kpn, are the main numerical operation
of this explicit TD-FEM. Note that these techniques are naturally used in
the implicit method.

For this explicit TD-FEM, cubic shaped 8-node hexahedral FEs are used.
The element matrix D is lumped using standard Gauss-Legendre rule. Mean-
while, element matrices of K and M are constructed using MIR where the
respective modified integration points are given as [15]

αk = ±
√

2

3
, αm = ±

√
1

3
(4 − τ 2). (12)

With the modified integration points, a fourth-order accuracy with respect to
the dispersion error is achieved for the idealized case using cubic FEs in a free
space. The three-dimensional dispersion relation and the stability condition
are presented in the next section.

3. Dispersion error analysis

3.1. Three-dimensional dispersion relation
The three-dimensional dispersion error analysis is performed to evaluate

the dispersion error of explicit TD-FEM. The analysis follows the same proce-
dure in two-dimensions [15] using the following linear multistep form without
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Figure 1: A spherical coordinate system, where r, θ and φ respectively represent distance
from the origin, elevation and azimuth.
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Figure 2: 125 nodes 64 cubic elements patch for dispersion error analysis in three dimen-
sions.

source and dissipation terms, which is equivalent to Eqs (10) and (11):

[pn+1 − 2pn + pn−1] + ∆t2c2
0D

−1MD−1Kpn = 0. (13)

In a spherical coordinate system (Fig. 1), the approximate plane wave pn
x,y,z

at time n∆t and a location (x, y, z) is given as

pn
x,y,z = exp[i(kh

xx + kh
yy + kh

z z − ωhn∆t)], (14)
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where kh
x = kh sin θ cos φ, kh

y = kh sin θ sin φ, kh
z = kh cos θ. kh and ωh repre-

sent the approximate wave number and the approximate angular frequency.
To evaluate the dispersion error, a region that consists of 64 FEs with an

cubic shaped 8-node linear elements of size h as shown in Fig. 2 is considered.
The dispersion error can be evaluated by constructing the FE equation of
Eq. (13) at a center node (x, y, z). The first term of Eq. (13) can be
represented using Eq. (14) as

[pn+1 − 2pn + pn−1] = 2(cos ωh∆t − 1)pn
x,y,z. (15)

The element mass matrix me and the element stiffness matrix ke, which
are calculated using the Gauss quadrature rule in three-dimensions with two
integration points in each direction, are given as

me =



m0 mx mxy my mz mzx mxyz myz

m0 my mxy mzx mz myz mxyz

m0 mx mxyz myz mz mzx

m0 myz mxyz mzx mz

m0 mx mxy my

m0 my mxy

m0 mx

m0


, (16)

ke =



k0 kx kxy ky kz kzx kxyz kyz

k0 ky kxy kzx kz kyz kxyz

k0 kx kxyz kyz kz kzx

k0 kyz kxyz kzx kz

k0 kx kxy ky

k0 ky kxy

k0 kx

k0


. (17)

Here, the components of matrices me and ke are respectively given as

m0 =
h3

64
(1 + α2

m)3,

mx = my = mz =
h3

64
(1 − α4

m)(1 + α2
m),

mxy = myz = mzx =
h3

64
(α2

m − 1)2(1 + α2
m),

mxyz =
h3

64
(1 − α2

m)3, (18)
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and

k0 =
3h

16
(1 + α2

k)
2,

kx = ky = kz =
2h(1 − α4

k) − h(1 + α2
k)

2

16
,

kxy = kyz = kzx =
2h(α4

k − 1) + h(α2
k − 1)2

16
,

kxyz = −3h

16
(1 − α2

k)
2. (19)

The element lumped mass matrix de for constructing De is defined as

de =
h3

8



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0

1 0 0 0 0 0
1 0 0 0 0

1 0 0 0
1 0 0

1 0
1


. (20)

Here, only the upper triangular components are presented in the above ma-
trices due to the symmetric matrix. By using these me, ke and de, the second
term of Eq. (13) can be calculated as

∆t2c2
0D

−1MD−1Kpn =
64∆t2c2

0

h6
McKcp

n
x,y,z, (21)

with

Mc =(m0 + mxCx + myCy + mzCz + mxyCxy + myzCyz + mzxCzx + mxyzCxyz),

Kc =(k0 + kxCx + kyCy + kzCz + kxyCxy + kyzCyz + kzxCzx + kxyzCxyz), (22)

where

Cxy =CxCy, Cyz = CyCz, Czx = CzCx, Cxyz = CxCyCz,

Cx =cos(kh
xh), Cy = cos(kh

yh), Cz = cos(kh
z h). (23)

By constructing Eq. (13) from the Eqs. (15) and (21), the dispersion relation,
which represents the relation between the exact speed of sound c0 and the
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approximate speed of sound ch, becomes

c0 =

√
h6(1 − cos chkh∆t)

32∆t2McKc

. (24)

Here, kh = ωh/ch. Using Taylor expansion with respect to kh after substi-
tuting components of me and ke into Eq. (24), the dispersion error can be
evaluated as

|c0 − ch|
c0

=
k4h4

1440
[B1 + B2 + B3 + B4], (25)

where

B1 = 8 − 10τ 2 + 2τ 4,

B2 = −χ cos2 θ sin2 θ,

B3 = χ cos2 φ sin2 φ cos2 θ sin2 θ,

B4 = − cos2 φ sin2 φ sin2 θ(χ − 9 cos2 θ sin2 θ),

χ = 5τ 4 − 20τ 2 + 19. (26)

Using Eq. (25), the dispersion error of the explicit TD-FEM can be estimated
at all directions of wave propagation for given wavenumber, with various
element sizes and time intervals. Note that Eq. (25) can be reduced to
the two-dimensional dispersion error equation in Ref. [15] by transforming a
spherical coordinate system into a two-dimensional polar coordinate system.

3.2. Stability condition

We derive the stability condition of the explicit TD-FEM in three-dimensions
following the stability analysis presented in Ref. [15], which is based on Von
Neumann’s stability analysis. First, we assume a relation pn+1 = Apn, where
A is the amplification factor. Using the equation, Eq. (13) can be defined as

(A − 2 + A−1)pn + Bpn = 0, (27)

where B = ∆t2c2
0D

−1MD−1K. After simplification, we can obtain a quadratic
equation as

A2 + (B − 2)A + 1 = 0. (28)

From the quadratic formula the solution is

A =
−(B − 2) ±

√
(B − 2)2 − 4

2
. (29)
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For stable computation |A| ≤ 1 is necessary. This leads to 0 ≤ B ≤ 4.
Substituting the element components of me and ke into B, B becomes the
function of Cx, Cy, Cz and τ as presented below.

B = − τ 2

1296
C

′

xC
′

yC
′

z[CxCyCz + 3(CxCy + CyCz + CzCx) + 5(Cx + Cy + Cz) − 25],

(30)

where

C
′

x = [7 − Cx + τ 2(Cx − 1)],

C
′

y = [7 − Cy + τ 2(Cy − 1)],

C
′

z = [7 − Cz + τ 2(Cz − 1)]. (31)

Further, |Cx| ≤ 1, |Cy| ≤ 1 and |Cz| ≤ 1 from the definitions of Eq. (23). B
has the maximum value 4 at Cx = Cy = Cz = −1 and τ = 0.673988. Thus,
the stability condition of explicit TD-FEM without the dissipation term is

∆tcrit ≤
0.673988h

c0

. (32)

3.3. Comparison with implicit TD-FEM

To show the dispersion property of explicit TD-FEM, the dispersion er-
rors at all directions of wave propagation are calculated using Eq. (25) and
compared with those of two implicit TD-FEM using CAA and FG. The
dispersion errors of CAA and FG are respectively calculated using Eqs (5)
and (7). In those calculations, k = 41.04, c0 =343.7 m/s, and h = 0.03 m
are considered. Here, kh = 1.2312. To confirm the effect of time interval on
the resulting accuracy, we used 10 kinds of time intervals ∆t, as ∆t = ∆tcrit,
0.9∆tcrit, 0.8∆tcrit, 0.7∆tcrit, 0.6∆tcrit, 0.5∆tcrit, 0.4∆tcrit, 0.3∆tcrit, 0.2∆tcrit
and 0.1∆tcrit. Here, ∆tcrit is ∆t at stability limit for each method. Note that
we conducted the same investigation for other combinations of k and h with
equal kh. Two combinations (k = 20.52 and h = 0.06 m, and k = 82.08
and h = 0.015 m) were considered. For these combinations, we obtained the
same results as the case with k = 41.04 and h = 0.03 m.

Figures 3(a)–(d) present the dispersion errors of explicit TD-FEM at
all wave propagation directions with ∆t = ∆tcrit, 0.8∆tcrit, 0.6∆tcrit and
0.4∆tcrit. The maximum dispersion errors occur at axial directions regardless
of ∆t values, whereas the minimum value occurs at a diagonal direction (θ,
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Figure 3: Comparison of dispersion error in explicit TD-FEM at all directions of wave
propagation with various ∆t: (a) ∆t = ∆tcrit, (b) ∆t = 0.8∆tcrit, (c) ∆t = 0.6∆tcrit, and
(d) ∆t = 0.4∆tcrit.

φ) = (55◦, 45◦). It is also confirmed that the dispersion errors become larger
for smaller ∆t.

Figures 4(a)–(d) present the dispersion errors of CAA at all wave prop-
agation directions with ∆t = ∆tcrit, 0.8∆tcrit, 0.6∆tcrit and 0.4∆tcrit. The
magnitude of dispersion error at each direction is dependent on the values of
∆t. At the stability limit, the maximum dispersion error occurs at a diago-
nal direction (θ, φ) = (55◦, 45◦), whereas the minimum errors occur at axial
directions. For smaller values of ∆t, the maximum and the minimum disper-
sion errors occur at axial directions and a diagonal direction (θ, φ) = (55◦,
45◦), respectively. Note that CAA has an interesting property at 0.8∆tcrit,
where the magnitude of dispersion errors at all wave propagation directions
are almost the same, i.e., the error is isotopic at 0.8∆tcrit.

Figures 5(a)–(d) present the dispersion errors of FG at all wave propaga-
tion directions with ∆t = ∆tcrit, 0.8∆tcrit, 0.6∆tcrit and 0.4∆tcrit. Similar to
the explicit TD-FEM, the maximum and minimum dispersion errors occur
respectively at axial directions and at (θ, φ) = (55◦, 45◦), but the magnitude
is almost the same regardless of ∆t values.

Figure 6 shows relationships between the mean dispersion error over prop-
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Figure 4: Comparison of dispersion error in implicit TD-FEM (CAA) at all directions of
wave propagation with various ∆t: (a) ∆t = ∆tcrit, (b) ∆t = 0.8∆tcrit, (c) ∆t = 0.6∆tcrit,
and (d) ∆t = 0.4∆tcrit.

agation angles and time interval for all methods. Clearly, ∆t has the most
influence on the resulting accuracy for the explicit TD-FEM. The mean dis-
persion error increases significantly for smaller ∆t. The mean error is 0.33%
at the stability limit, but the magnitude becomes 0.77% at ∆t = 0.1∆tcrit.
Meanwhile, the behavior of the mean dispersion errors in the two implicit
methods is more stable than that of explicit method with smaller values of
the error. The CAA has the maximum error at the stability limit, and the er-
ror decreases slightly for smaller ∆t. The error is 0.31% at the stability limit,
and 0.25% at ∆t = 0.1∆tcrit. In contrast to the CAA, the FG is the most
accurate at the stability limit, and the error increases slightly for smaller ∆t.
The error is 0.19% at the stability limit, and 0.25% at ∆t = 0.1∆tcrit.

From the above theoretical evaluation of dispersion error among three
methods, it can be concluded that the use of ∆t near the stability limit is
especially important for the accurate computation using the explicit TD-
FEM, whereas the two implicit TD-FEM can use an arbitrary value of ∆t
with the stable behavior of the mean dispersion error.
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Figure 5: Comparison of dispersion error in implicit TD-FEM (FG) at all directions of
wave propagation with various ∆t: (a) ∆t = ∆tcrit, (b) ∆t = 0.8∆tcrit, (c) ∆t = 0.6∆tcrit,
and (d) ∆t = 0.4∆tcrit.
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Figure 6: Comparison of mean dispersion errors over wave propagation angles for explicit
TD-FEM and two implicit TD-FEM (CAA and FG).

4. Comparison with implicit TD-FEM on room acoustics simula-
tions with an infinite impedance boundary

We performed the sound field analyses in a rectangular room with an infi-
nite impedance boundary, to confirm the results from the theoretical analysis
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Figure 8: Waveform and its frequency characteristics of sound source for numerical exper-
iments.

in previous section and to show the efficiency and accuracy of the explicit
method over the two implicit methods. The accuracy of the numerical results
are shown in a comparison with the analytical solution by the method of vari-
able separation [20]. Figure 7 shows the analyzed sound field with a source
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Table 1: Specifications of FE meshes. h, λ/h, and DOF respectively represent element
length, spatial resolution and degrees of freedom of FE mesh.

Mesh h, m λ/h DOF
1 0.04 4.77 1,390,861
2 0.02 9.55 10,962,721
3 0.01 19.09 87,049,441

point S and receiving points, in which 72 receiving points were located on a
plane with 0.4 m × 0.4 m grids. c0 and the air density ρ0 were respectively
assumed to be 343.7 m/s and 1.205 kg/m3. The sound source used here is a
modulated Gaussian pulse [11]. The waveform and its frequency characteris-
tics are shown in Fig. 8. Here, the upper limit of frequency was assumed as
1.8 kHz. We calculated sound pressures at the 72 receiving points up to 200
ms. In first numerical experiments, we confirm the results in previous section
especially focusing on the effect of time interval on the resulting accuracy.
Then, we show the efficiency and accuracy of the explicit method over the
two implicit methods using three configurations of FE meshes with different
spatial resolutions. Table 1 lists the FE meshes used, element length h, the
spatial resolution of FE mesh λ/h, and the degrees of freedom of FE mesh,
where λ represents the wavelength at upper limit frequency. The convergence
tolerance for the stopping criterion of CG method was set to 10−6 for the
implicit TD-FEM. The diagonal scaling was used as a preconditioning of the
CG method.

4.1. Effect of time intervals on the resulting accuracy

To show the effect of ∆t on the resulting accuracy in the three methods,
the sound field in the rectangular room was analyzed using Mesh 1 in Ta-
ble 1 with various ∆t’s. The ∆t’s were respectively set to ∆tcrit, 0.8∆tcrit,
0.6∆tcrit, and 0.4∆tcrit. A relative error in sound pressure between the analyt-
ical method and FE analysis was used to evaluate the accuracy quantitatively,
which is given as

ep =
1

Nstep

Nstep∑
j=1

e(tj), (33)
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Figure 9: Comparison of relative errors in sound pressure among explicit TD-FEM and
implicit TD-FEM using CAA and FG.

with

e(t) =

√
1

N

∑N
i=1[pAna.(xi, t) − pFEM(xi, t)]2∑N

i=1 pAna.(xi, t)2
, (34)

where Nstep represents the number of time steps. pAna.(xi, t) and pFEM(xi, t)
represent sound pressures at receiving point xi at time t calculated using
the analytical method and TD-FEM, respectively. Figure 9 shows a com-
parison of the relative errors among the explicit TD-FEM and the implicit
TD-FEM using CAA and FG. Cleary, the numerical results follow those of
the theoretical results in previous section. The ∆t has the most influence on
the accuracy of the explicit TD-FEM, and the relative error ep increases for
smaller ∆t. Meanwhile, the influence of ∆t value on the resulting accuracy
of two implicit methods is smaller than that of the explicit method.

4.2. Computational efficiency

To show the computational efficiency of the explicit TD-FEM over the
two implicit TD-FEM, the sound field in the rectangular room was again
analyzed using Mesh 1∼3 in Table 1, which have different spatial resolutions.
Total number of sparse matrix-vector products (SMVP), which is the main
numerical operation of the explicit and implicit methods, was used to evaluate
the numerical efficiency of the method, instead of the computational time.
The accuracy was also evaluated using Eq. (33). The ∆t’s were respectively
set to the critical values for each method.
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Figure 10 shows the relationship between the total numbers of SMVP
and the relative errors among three TD-FEM. The explicit TD-FEM requires
less computational effort than the two implicit methods to obtain the same
accurate results. Meanwhile, one of the implicit methods is computationally
more efficient than the explicit method in term of the memory requirement to
obtain the same accurate results, as shown in Fig. 11. From the results of this
section, we conclude that the explicit TD-FEM with ∆tcrit is computationally
more efficient than the implicit methods in term of the computational time
in room acoustics simulations with an infinite impedance boundary.

5. Stability condition in the case with a finite impedance boundary

To examine the numerical stability of explicit TD-FEM on room acous-
tics simulations with a finite impedance boundary, we conducted numerical
experiments with various impedance conditions. The sound field in a cubic
room of 1 m3 was analyzed in the following three conditions (Fig. 12): (a)
Cond. 1: One surface has a finite impedance and the remaining surfaces
have the infinite impedance, (b) Cond. 2: Adjacent two surfaces have a fi-
nite impedance and the remaining surfaces have the infinite impedance, and
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(c) Cond. 3: Three surfaces have a finite impedance, in which two edges
of the surfaces are connected with other absorbing surfaces each other, and
the remaining surfaces have the infinite impedance. These conditions were
designed for examining the stability of scheme at a node on the plane, edge
and corner. Six normalized impedance ratio’s (zn’s) with different degrees of
absorption were systematically given for the finite impedance surface, which
are zn = 32.56, 13.44, 7.14, 3.87, 2.597 and 1.0. These zn’s respectively cor-
respond to the statistical absorption coefficient, αs, of 0.20, 0.40, 0.60, 0.80,
0.90 and 0.91 according to Paris’s formula. The upper-limit frequency of
the analysis is 1800 Hz, and sound pressure up to 1.0 s was calculated with
various time intervals to examine the stability of scheme. The time intervals
were set to ∆t = m∆tcrit, in which m was systematically set to 0.95∼0.25
with 0.05 step. The element size of FE mesh is 0.025 m.

Table 2 lists the maximum values of m for stable computations obtained
from the numerical analysis. The stability of scheme becomes worse for
smaller zn and with increasing the absorbing surfaces. These results indicate
that the stability of the explicit TD-FEM is dependent on the impedance
values of boundaries, and the node on the corner has the hardest stability
condition because the stability of Cond. 3 is the worst. Considering the
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(a) Cond. 1 (b) Cond. 2 (c) Cond. 3

Figure 12: Absorption conditions of surfaces for the numerical stability analysis. Surfaces
in gray color have a finite impedance value.

Table 2: The maximum value of m for stable computation.

zn (αs)
Cond. 32.56 (0.2) 13.44 (0.4) 7.14 (0.6) 3.87 (0.8) 2.597 (0.9) 1.0 (0.91)

1 0.95 0.95 0.90 0.85 0.75 0.50
2 0.95 0.95 0.85 0.75 0.65 0.35
3 0.95 0.90 0.80 0.65 0.55 0.25

results in the case with an infinite impedance boundary, the explicit TD-FEM
might be effective for room acoustics simulations with moderate absorption
up to zn = 7.140 at boundaries. For this condition the use of ∆t = 0.8∆tcrit
is possible as shown in Cond. 3 of Table 2, which is not so hard. In addition,
when the only one surface has high absorption, the use of ∆t = 0.85∆tcrit is
possible up to zn = 3.870 as shown in Cond. 1 of Table 2. In actual rooms,
some rooms such as a classroom and a office typically have only a high
absorption surface and the remaining boundaries are reflective. The present
explicit TD-FEM might be useful for the sound field analysis of these rooms.
This point is further investigated by comparison with the implicit methods in
the next section. Meanwhile the scheme is not effective for higher absorption
conditions with smaller impedance values at boundaries. For the conditions
the use of smaller time interval is necessary, but the dispersion error at nodes
in the room increases significantly as shown in the results from the theoretical
analysis. Thus, the use of implicit TD-FEM is recommended for the higher
absorbing conditions.
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6. Comparison with implicit TD-FEM on room acoustics simula-
tions with a finite impedance boundary

The sound field in a rectangular room (Fig. 7) was analyzed with a
frequency-independent finite impedance boundary, to show the efficiency and
accuracy of the explicit method over the two implicit methods in the case
with absorbing conditions. Note that the investigation was limited to the
case with less-restricted stability condition for the explicit method, based on
the results in previous section. We assumed two absorbing conditions for the
boundary surfaces: (a) Cond. 4: the ceiling has zn = 13.44 (αs = 0.4) and
the remaining boundaries have zn = 71.519 (αs = 0.1), and (b) Cond. 5:
the ceiling has zn = 3.87 (αs = 0.8) and the remaining boundaries have zn

= 71.519 (αs = 0.1). The sound pressure was respectively calculated up to
0.53 s and 0.36 s for each condition, which correspond to the reverberation
times calculated by Eyring formula. The sound source used here is the same
as that shown in Fig. 8. Also, Meshes 1∼3 in Table 1 were used for the inves-
tigation. Regarding the stability of the explicit TD-FEM for each condition,
we again conducted the numerical stability analysis. As the results, we use
∆t = 0.90∆tcrit and ∆t = 0.85∆tcrit for Cond. 4 and Cond. 5, respectively.
Note that the stability is not so hard if absorption coefficients of the remain-
ing boundaries are up to 0.4. In this case, ∆t = 0.80∆tcrit can be used. For
the two implicit TD-FEM the ∆t’s were respectively set to their critical val-
ues. The accuracy was evaluated by the relative error in Eq. (33), in which a
reference solution was used instead of the analytical solution. The reference
solution was calculated by the most accurate implicit TD-FEM with FG,
using Mesh 3 which is the finest mesh.

Figure 13(a) and (b) show the relationship between the total numbers
of SMVP and the relative errors among three TD-FEM for Cond. 4 and
Cond. 5. For both conditions the explicit TD-FEM is computationally more
efficient than the implicit methods to obtain the same accurate results, with
less total numbers of SMVP. Figure 14(a) and (b) show the relationship
between memory requirements and the relative errors among three TD-FEM
for Cond. 4 and Cond. 5. The explicit method requires larger memory than
the implicit methods to obtain the same accurate results. From these results,
we can conclude that the explicit TD-FEM is effective than the implicit TD-
FEM in term of computational time for room acoustics simulations with
larger impedance values at boundaries because ∆t near the stability limit
can be used.
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Figure 13: Relationship between the total numbers of SMVP and the relative errors among
explicit TD-FEM and implicit TD-FEM using CAA and FG: (a) Cond. 4 and (b) Cond.
5.
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5.

7. Conclusions

In this paper, the performance of the explicit TD-FEM using MIR on
room acoustics simulations with a frequency-independent finite impedance
boundary have been demonstrated by comparison with the two implicit TD-
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FEM using MIR. The three-dimensional dispersion error analysis revealed
that the accuracy of explicit TD-FEM is dependent on the value of time
interval. This method is the most accurate at the stability limit, and the
accuracy becomes worse with the use of smaller time interval. Meanwhile, for
the implicit TD-FEM using CAA and FG the influence of time interval on the
resulting accuracy is not significant. These results were also confirmed by the
numerical experiments, in which the sound field in a rectangular room with
an infinite impedance boundary was analyzed. Numerical stability analysis
for the room acoustics simulation with a finite impedance boundary revealed
that the stability of this explicit TD-FEM is dependent on the impedance
values at boundary surfaces, and the stability becomes worse for smaller
impedance values. Numerical experiments indicated that the explicit TD-
FEM is computationally more efficient than the implicit TD-FEM in term of
computational time for acoustics simulations of a room with larger impedance
values at boundaries and with cubic FEs. The development of improved
method is now undergoing.

Acknowledgment

This work was in part supported by JSPS KAKENHI Grant Number
15K18167. The computation was partly carried out using the computer fa-
cilities at Research Institute for Information Technology, Kyushu University.

References

[1] Sakuma T, Sakamoto S, Otsuru T, Computational simulation in archi-
tectural and environmental acoustics-Methods and applications of wave-
based computation, Springer; 2014.

[2] LL Thompson, A review of finite-element methods for time-harmonic
acoustics, J Acoust Soc Am 2006; 119(3):1315–30.

[3] Marburg S, Nolte B, Computational acoustics of noise propagation in
fluids-finite and boundary element methods, Springer; 2008.

[4] Saad Y, Iterative methods for sparse linear systems, Second edition,
SIAM; 2003.

23



[5] Okuzono T, Otsuru T, Tomiku R, Okamoto N, A finite-element method
using dispersion reduced spline elements for room acoustics simulation,
Appl Acoust 2014;79:1–8.

[6] Choi S, Tachibana H, Estimation of impulse response in a room by
the finite element method, J Acoust Soc Jpn 1993; 49(5):328–33.(in
Japanese)

[7] Otsuru T, Fujii K, Finite elemental analysis of sound field in rooms with
sound absorbing materials, Proc Inter-noise 1994; 94:2011–4.

[8] Easwaran V, Craggs A, Transient response of lightly damped rooms: a
finite element approach, J Acoust Soc Am 1996; 99(1):108–13.

[9] Easwaran V, Craggs A, An application of acoustic finite element mod-
els to finding the reverberation times of irregular rooms, Acoust Acta
Acoust 1996; 82:54–64.

[10] Okuzono T, Otsuru T, Tomiku R, Okamoto N, Fundamental accuracy
of time domain finite element method for sound-field analysis of rooms,
Appl Acoust 2010;71(10):940–6.

[11] Okuzono T, Otsuru T, Tomiku R, Okamoto N, Application of modi-
fied integration rule to time-domain finite-element acoustic simulation
of rooms, J Acoust Soc Am 2012;132(2):804–13.

[12] Otsuru T, Okuzono T, Tomiku R, Asniawaty K, Large-scale finite ele-
ment sound field analysis of rooms using a practical boundary modeling
technique, In: Proc 19th international congress on sound and vibration
2012 on CD-ROM(No.632);2012.

[13] Otsuru T, Tomiku R, Basic characteristics and accuracy of acoustic ele-
ment using spline function in finite element sound field analysis, Acoust
Sci Technol 2000; 21(2):87–95.

[14] Okuzono T, Otsuru T, Tomiku R, Okamoto N, Minokuchi T, Speedup
of time domain finite element sound field analysis of rooms, Proc Inter-
noise 2008 on CD-ROM(0877); 2008.

[15] Yue B, Guddati MN, Dispersion-reducing finite elements for transient
acoustics, J Acoust Soc Am 2005; 118(4):2132–41.

24



[16] Okuzono T, Otsuru T, Sakagami K, Applicability of an explicit time-
domain finite-element method on room acoustics simulation, Acoust Sci
Technol 2015; 36(4):377–380.

[17] Newmark NM, A method of computation for structural dynamics, J Eng
Mech Div 1959; 85:67–94.

[18] Hughes TJR, The finite element method linear static and dynamic finite
element analysis, Dover; 2000.

[19] Krenk S, Dispersion-corrected explicit integration of the wave equation,
Comput Methods Appl Mech Engrg 2001; 191:975–87.

[20] Sakamoto S, Phase-error analysis of high-order finite difference time-
domain scheme and its influence on calculation results of impulse re-
sponse in closed sound field, Acoust Sci Technol 2007; 28(5):295–309.

25


