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This letter describes a simple Abel inversion scheme for marked improvement of a reflectron

time-of-flight (TOF) mass spectrometer having a reflecting electric potential U(X) along its

central axis X. To maximize the resolving power, the inverse function X(U) was determined

using the Abel inversion of the most-desirable TOF τ(E), which is a function of the total en-

ergy E. Based on the linear nature of the Abel transform, we could derive an additional con-

dition necessary for the electrostatic realization of X(U). Our numerical results demonstrated

the definite superiority of this approach compared with the conventional energy-focusing

method.

Abel’s mechanical problem (AMP)1–3 is an inverse problem of historical importance. In

terms of modern mechanics,4 AMP introduced the Abel inversion5 to determine an unknown

one-dimensional potential U(X). For this inversion, the input is the temporal period τ(E)

for a particle having total energy E to travel within the spatial region of U(X). The entire

procedure is simply the linear Abel transform of τ(E) to X(U), i.e., the inverse function of

U(X). Following recent work,6 we applied this inversion scheme to the common time-of-

flight (TOF) mass spectrometer called a reflectron7 to achieve a marked improvement. Our

theoretical discussion emphasizes the electrostatic realization of X(U) based on the linear

nature of the Abel transform. We also provide numerical results demonstrating the definite

superiority of this approach compared with the conventional energy-focusing method (see

Fig. 4). As detailed in the Supplemental Material,8 the present inversion scheme is of practical

use for suppressing the turn-around time.

Our idea is specifically intended for a reflectron.7 As sketched in Fig. 1(a), this spec-

trometer delivers a short-pulsed bunch of ions into flight and determines their mass-to-charge

ratios M/q by recording and analyzing the resultant TOF spectrum. In the X direction, the
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Fig. 1. Conventional reflectron mass spectrometer: (a) configuration consisting of two stages with uniform

fields and, (b) TOF function τ(E) satisfying the second-order energy-focusing in (2).

ions undergo an extensive field-free flight and a short reflection by the electrostatic potential

U(X). Meanwhile, they maintain uniform motion in the Z direction without affecting the total

TOF T . Therefore, our goal is to realize U(X) that maximizes the resolving power. For this

purpose, let us first recall that the speed of a charged particle is
√

2{E − U(X)}/
√

M/q at X,

because of the conservation of E, which is the sum of the potential and kinetic energies. Then,

T depends on E and M/q:

T (E,M/q) =

∣∣∣∣∣∣∣
∫ Xt(E)

Xi(E)

√
M/q dX

√
2{E − U(X)}

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫ X f

Xt(E)

√
M/q dX

√
2{E − U(X)}

∣∣∣∣∣∣∣ = √
M/q · τ(E), (1)

where Xi(E) and X f are the X coordinates of the initial and final positions, respectively. In

addition, Xt(E) represents the turning point satisfying E = U(Xt) within the reflecting po-

tential. Generally, Xi(E) and Xt(E) are functions of E, whereas X f is a constant fixed at the

detector’s position. τ(E) is the reduced TOF of T (E,M/q)/
√

M/q that depends on E alone.

In this letter, we refer to the reduced form similar to τ(E) as a TOF function or simply a TOF.

To maximize the resolving power of a reflectron, one should keep τ(E) as constant as possible

so that T makes a perfect marker of
√

M/q from (1). This constancy was achieved only in an

approximate manner by the first reflectron.7 As depicted in Fig. 1 (a), the potential U(X) was

produced, based on two stages with constant-field strengths of F1 and F2 that covered spatial

lengths of L1and L2, respectively. Next, these parameters and the total length of the field-free

flight L were adjusted to satisfy the second-order energy-focusing:(
dτ
dE

)
=

(
d2τ

dE2

)
= 0, (2)
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where the derivatives are evaluated at a given energy, say E = 0. As demonstrated in Fig.

1(b), this focusing produced

τ(E) − τ(0) ≈ (1/6)
(

d3τ

dE3

)
E3, (3)

and the constancy of τ(E) was approximately achieved within a narrow region of E. Similar

treatments have been adopted since the invention of the reflectron.7

Instead of this conventional energy-focusing method, we propose a simple and strict in-

version scheme6 to satisfy the perfect isochronicity, specifically, τ(E ≥ 0) = τ0 = constant

[cf. Fig. 2 (b)]. In this scheme, the entire spectrometer is cut into two regions: the A-

type in X > 0 and the N-type in X < 0, as shown in Fig. 2 (a). By definition, we have

U(X = 0) ≡ 0. In the A-type region, we consider that the reflecting potential UA(X) and

travel time τA(E) are unknowns to be determined later. In the N-type region, however, the

potential UN(X) and travel time τN(E) are predetermined. To maximize the resolving power,

the most-desirable TOF must be τA(E) = τ(E) − τN(E) = τ0 − τN(E) because the perfect

isochronicity is satisfied in reverse. From Eq.(13) in Ref. 6, we can determine XA(U), i.e., the

inverse function of UA(X) using the Abel inversion of τA(E) with the use of the Abel operator

A =
(
1/
√
π
) ∫ U

0
dE/
√

U − E:

XA(U) =
1
√

2π
A [τA(E)] =

1
√

2π
A [τ0 − τN(E)]

=

√
2 τ0

π

√
U − 1

√
2π

A [τN(E)] . (4)

In the last expression, the contributions from A[τ0] and A[τN(E)] are separated because A is

linear. Thus, our scheme is as simple as determining XA(U) using the Abel inversion once

τN(E) and τ(E ≥ 0) are predetermined.

Next, we mention the most crucial factor for performing the present scheme, namely, the

electrostatic realization of XA(U). Although the inversion formula in (4) demands no restric-

tion on either the TOF function τN(E) or the constant τ0, we learned a peculiar tendency

in the numerical simulations. Specifically, the resultant XA(U) can be rarely created in vac-

uum by electrostatic means if τN(E) and τ0 are freely given. Theoretically, this failure can be

attributed to the essential nature of Laplace’s equation: the potential UA(X) permits no sin-

gularity within the space of no electric charges as long as UA(X) satisfies Laplace’s equation.

In contrast, there must be some singularity at U = 0 if XA(U) is given by the Abel inversion

scheme, as reasoned below.

To discuss this singularity of XA(U), we first note that UN(X < 0) is highly smooth, which

3/8



J. Phys. Soc. Jpn. LETTERS

source

detector

X

Z

UN (X)

(a)

O

X A(U)

A-typeN-type

Predetermined

U A(X)

Unknown
(b)

E

τ

τ0

= τ0

0

   = τN(E)

τ(E)

τ(E)

= τN(E)

   Abel

inversionem

+τA(E)

τ(E)
c

   τN(E)    τA(E)

X A(U)

U A(X)

   τAτAA(E)

Fig. 2. (Color online) Abel inversion scheme: (a) configuration consisting of the predetermined N-type and

unknown A-type regions and, (b) TOF function τ(E) satisfying τ(E ≥ 0) = τ0 = constant. For comparison, the

imaginary but conventional τc(E) is also displayed as a dotted curve.

is attributed to Laplace’s equation. Therefore, UN(X < 0) is smoothly extended to the A-type

region in X > 0. For practical reflectrons, this smooth UN(X) monotonically increases near

X = U = 0 [see Fig.3 (a)]. Therefore, we also have the inverse function XN(U) that is highly

smooth near X = 0. Next, we imagine that this highly smooth UN(X) [equivalently XN(U)]

is created around X = U = 0. For this imaginary case that recalls conventional reflectrons,

the total TOF and travel time spent in the A-type region are represented by τc(E) and τc
A(E),

respectively. In the N-type region, we similarly denote the imaginary but conventional dis-

tributions by Uc
N(X > 0) and Xc

N(U > 0). Because these conventional potentials are highly

continuous, the resultant τc(E) values are usually represented by the Taylor series:

τc(E) = τc(0) + τc(1)(0)E + · · +τc(n)(0)En/n! + ··,

where τc(n)(0) is the nth-order derivatives at E = 0. Concerning the total TOF, we have τc(E) =

τN(E) + τc
A(E) and τ0 = τN(E) + τA(E). Hence, the difference of these equations yields

τA(E) − τc
A(E) = τ0 − τc(E)

= −∆τ0 − τc(1)(0)E − · · −τc(n)(0)En/n! − ··,

where ∆τ0 ≡ τc(0) − τ0. By taking the difference of the linear Abel transforms between

XA(U) = (1/
√

2π)A [τA(E)] and Xc
N(U) = (1/

√
2π)A

[
τc

A(E)
]
, we obtain

XA(U) − Xc
N(U) =

(
1/
√

2π
)

A
[
τA(E) − τc

A(E)
]
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= −A
[
∆τ0 + τ

c(1)(0)E + · · +τc(n)(0)En/n! + ··
]
/
√

2π,

performing the Abel transform in a termwise manner

= −
(√

2∆τ0/π
)

U1/2 − a1U3/2 − · · −anUn+1/2 − ··, (5)

where an = τ
c(n)(0)/

[√
2π Γ(n + 3/2)

]
. Thus, XA(U) must be a sum of the analytic XN(U)

and a non-analytic part expanded into a half-integer series of U. Because of this non-analytic

part, the higher-order derivatives of XA(U) always become singular at X = U = 0.

Because this singularity seemingly contradicts the extreme smoothness essential to the

electrostatic realization of UA(x), one naturally doubts the feasibility of the present inversion

scheme. However, our expectation is the opposite; the singularity can be neatly controlled by

eliminating ∆τ0 and an up to the highest possible order n. Specifically, we can set ∆τ0 = 0

without losing generality as τ0 is arbitrary. In addition, (5) indicates that we have a1 = a2 =

·· = an = 0 when the nth-order energy focusing is satisfied:

τc(1)(0) = τc(2)(0) = ·· = τc(n)(0) = 0, (6)

which constitutes a natural extension of the second-order energy-focusing in (2). Therefore,

our objective is to weaken the singularity by increasing the order n in (6). From (5) and (6),

we have

XA − XN ≈ −an+1Un+3/2, (7)

which is continuous up to the (n + 1)th-order derivatives at U = 0, and the singularity is

expectedly reduced if n is increased.

This anticipation was numerically confirmed for the example with n being as small as

2: the N-type region is identically configured to the two-staged reflectron in Fig. 1(a). Fig.

3(a) shows the potential distribution, consisting of the linear UN(X) to satisfy the second-

order focusing in (2) and the weakly nonlinear XA(U) for the perfect isochronicity of τ(E ≥
0) = τ(0). Specifically, we set F1 = 127.1110 V/mm, F2 = 13.50825 V/mm, L1 = 30 mm,

L2 = 132.2654 mm and the length of the field-free flight L = 1400 mm while the width

of the source was neglected for simplicity. This setting offers the highest feasibility because

the N-type region is nearly identical to conventional reflectrons. For this example, another

merit is that XA(U) can be described in an analytic form (see Section IV in Ref.6) such that

the ambiguities in numerical treatments are minimized. Our computations started with the

analytic XA(U) and proceeded to numerical simulations aimed at the electrostatic realization

of UA(X) by placing electrodes at regular intervals in vacuum. Specifically, we employed
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Fig. 3. (Color online) Potential distributions simulated for the example detailed in the text. (a) UA(X) and

UN(X). (b) UA(X)−Uc
N(X) [black solid] and the U7/2-dependence expected from (7) [dashed]. The errors of the

spline-based UA(X) [gray solid] are expanded by a factor of 105.

the spline interpolation9 of UA(X) at 5-mm intervals, which is continuous up to the 22nd-

order derivatives and provides sufficient smoothness to imitate the potential in vacuum. As

observed in Fig. 3(a), this spline-based UA(X) is smoothly connected to UN(X) at X = 0. Fig.

3(b) presents UA(X) − Uc
N(X). Although the graph is significantly enlarged, the singularity

remains indiscernible but well-explained by the U7/2-dependence expected from (7). In the

same figure, the errors of the spline-based UA(X) are observed to be less than 8 × 10−6 V. In

Fig. 4, the dimensionless TOF function ∆τ̃ ≡ [τ(E) − τ(0)] /τ(0) computed using this spline-

based UA(X) exhibits excellent constancy; the deviations from the predetermined values are

less than 7 × 10−9. For comparison, Fig. 4 also presents ∆τ̃c ≡ [τc(E) − τc(0)]/τc(0) based on

the linear and conventional Uc
N(X). Despite the anticipated singularity, the nonlinear UA(X)

thus offers a marked improvement compared with the linear potentials commonly used for

reflectrons, and the nonlinearity remains extremely small.

In conclusion, we described a simple inversion scheme, originated from AMP, for charged

particles of the energies E to satisfy the perfect isochronicity of τ(E > 0) = τ0 = constant.

Instead of the reflecting electric potential U(X), its inverse function X(U) is ideally deter-

mined by the Abel inversion of τ(E). To realize this inversion scheme, the major obstacle

is a theoretical finding that X(U ≥ 0) always behaves singularly at the origin X = U = 0:

X(U ≥ 0) = (analytic part) − a1U3/2 − a2U5/2 − · · ·. This feature is seemingly unfavorable

for the electrostatic realization of X(U). However, our theoretical and numerical analyses re-

vealed that this singularity can be neatly controlled: we can set a1 = a2 = ·· = an = 0 when
dτ
dE =

d2τ
dE2 = ·· = dnτ

dEn = 0 at E = 0.
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Further challenges are on-going to identify and suppress the small but unfamiliar errors10

still remaining for a reflectron improved using the present inversion scheme.
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Although our letter focuses on the theoretical aspect of the Abel inversion scheme, the

authors have been driven rather by a practical motivation: the significant suppression of the

turn-around time.1 As widely accepted in mass spectrometry, the turn-around time limits

the maximum resolving power of any TOF spectrometer using a static potential U(X). This

supplemental material will help in understanding how the above goal of practical importance

can be accomplished by the present inversion method while requiring nearly no familiarity

with TOF mass spectrometry.

Let us begin by defining the turn-around time, based on Fig.1, which is a refinement of

Fig.3 in Ref.1. This figure depicts the travel time Tta, namely, the temporal interval that is

spent by a charged particle produced in the source with the initial on-axis velocity Vi to reach

the initial rest position. We also assume that the particle is initially accelerated (or decelerated,

depending on the sign of Vi) by a uniform field Fs created around the start position. Formally

we have

Tta = −(M/q) · Vi/Fs, (1)

where M/q is the mass-to-charge ratio of the ion concerned. Next, we apply (1) to a pair

of charged particles starting from the same position but initially released with the opposite

on-axis velocities of ±|Vi|. Since a static potential U(X) is used in the spectrometer, these

particles conserve the same energy E during their flights. As a result, they trace the identical

parabolic trajectories in Fig.1, which are separated by the constant interval of 2Tta. In TOF

mass spectrometry, this fixed shift of 2Tta is called the turn-around time. Obviously, this turn-

around time leads to the erroneous determination of M/q: for the above pair, their total TOFs

T always differ by 2Tta despite the same M/q. Since Tta can not be 0 in (1) but can only be

minimized, it is widely accepted that the turn-around time represents the minimum attainable

width of TOF peaks.
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Fig. 1. Turn-around time 2Tta for a pair of charged particles starting from the same position with the opposite

on-axis velocities of ±|Vi|.

For suppressing this turn-around time, we have only three solutions: (i) the maximization

of the total TOF T for a constant Tta, (ii) the minimization of |Vi| and (iii) the maximization

of |Fs|. Although the present inversion scheme is related to the solution (iii), let us first review

(i) and (ii) that have been long established in TOF mass spectrometry.

The solution (i) is as simple as follows. From Eq. (1) in our letter, T ∝
√

M and, therefore,

the resolving power of a TOF mass spectrometer is given by

M/∆M = T/(2∆T ), (2)

where ∆M is the minimum resolvable mass difference around the mass M and ∆T is the

broadening of the total TOF T , respectively. As a result, M/∆M can be improved by maxi-

mizing T in (2) for a fixed ∆T . In short, the longer TOF spectrometer offers a better chance

of improving the resolving power by reducing the relative influence of ∆T that reflects the

turn-around time, as well. Apparently, this solution is a limited one because any real instru-

ment cannot be infinitely long in its spatial size. Interestingly, this limitation is seemingly

broken by those TOF spectrometers based on multi-reflection2 and multi-turn.3 These instru-

ments enable the increase of the total TOF T , almost arbitrarily in principle, by increasing the

repetitions of the linear reflections2 or the circular turns3 in the spectrometer. However, this

increase is always accompanied by the serious degradation of the acceptable mass-window,

due to the ’overtaking’ problem.4 Specifically, fast and light ions can overtake slow and heavy

ones since all the ions repeat the periodic motion in the same closed orbit. Due to this over-

taking, the number of repetitions and, thereby, M/q must remain undetermined by each TOF

2/4



peak, unless the time-gate is severely narrowed at the time of the ion injection into the peri-

odic orbit.4

The second solution (ii) results directly from the above equation (1). There are two major

methods established for reducing |Vi| in practice. The first one is the orthogonal acceleration.5

In this method, the ions are injected into a TOF spectrometer along a line orthogonal to the

TOF axis so that the initial on-axis velocities are geometrically kept small. Second, |Vi| can

be further reduced by cooling the ions via collisions with some buffer gas6 before the ions are

injected into a TOF spectrometer.

Finally, we mention the solution (iii) that is also expected from (1) but has not been

fully studied yet. In fact, this lack of comprehensive studies is attributed to the simple reason

below: if |Fs|is increased, the ions inevitably gain the broader energy-spread ∆E ≈ |Fs ×
∆X| where ∆X is the width of the initial on-axis position. As a result, the TOF peaks are

significantly broadened unless the total TOF T is independent of the energy E. From (2),

this broadening readily leads to the degradation of the mas-resolving power. So there is a

dilemma about the magnitude of Fs. If |Fs|is too large, M/∆M can be degraded due to the

dependence of T on the energy E. On the contrary, if |Fs| is too small, this may lead to

an excessive increase of the turn-around time. There is only one way to escape from this

dilemma: making T completely independent of the energy E. The authors found that this

ideal treatment is attainable only by the present inversion scheme. In conclusion, |Fs| can be

increased for the significant suppression of the turn-around time once the inversion scheme

ensures the constant TOF T for a wide range of the energy E.
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