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RELLICH’S THEOREM AND N-BODY SCHRÖDINGER
OPERATORS

K. ITO AND E. SKIBSTED

Abstract. We show an optimal version of Rellich’s theorem for generalized N -
body Schrödinger operators. It applies to singular potentials, in particular to a
model for atoms and molecules with infinite mass and finite extent nuclei. Our
proof relies on a Mourre estimate [IS] and a functional calculus localization tech-
nique.

1. Introduction and results

Consider for given disjoint R1, . . . , RK ∈ Rd the N -body Schrödinger operator

H =
N∑

j=1

(
− 1

2mj

∆xj
+

∑
1≤k≤K

V k
j (xj − Rk)

)
+

∑
1≤i<j≤N

Vij(xi − xj) (1.1)

describing a system of N d-dimensional particles in Ω1 = Rd \ Θ, where Θ =
∪1≤k≤KΘk for given open and bounded (possibly empty) subsets Θ1, . . . , ΘK of Rd.
For those (possibly existing) k = 1, . . . , K where Θk 6= ∅ we demand that Rk ∈ Θk,
and for N = 1 the last term to the right in (1.1) is omitted. Furthermore we assume
that d ≥ 2 and that V k

j (y) = qjq
k|y|−1 and Vij(y) = qiqj|y|−1 (Coulomb potentials).

We consider H as an operator on the Hilbert space H = L2(Ω), Ω = (Ω1)
N , given

by imposing the Dirichlet boundary condition. In [IS] we proved that the set of
eigenvalues and thresholds (that is eigenvalues for sub-Hamiltonians) is closed and
countable and that any L2-eigenfunction corresponding to a non-threshold eigen-
value is exponentially decaying. Under the additional condition that the exterior
set Ω1 is connected we proved that H does not have positive eigenvalues.

In this paper we prove a version of Rellich’s theorem applicable to this and other
generalized N -body models. Letting Bn = {x ∈ Ω| |x| < n} we introduce the Besov
space B∗

0 of functions φ on Ω such that 1Bnφ ∈ H for all n ≥ 1 and

lim
n→∞

n−1‖1Bnφ‖2 = 0. (1.2a)

Our version of Rellich’s theorem for the atomic physics model (1.1) reads:

Proposition 1.1. Suppose H is given by (1.1) with Coulomb potentials, and that φ
is a generalized eigenfunction in B∗

0 fulfilling the Dirichlet boundary condition on Ω
and corresponding to a real non-threshold eigenvalue. Then φ ∈ H and therefore φ
is a genuine eigenstate (in fact eε|x|φ(x) ∈ L2 for some ε > 0).

We note that Isozaki in [Is] showed for a class of smooth potentials in the context
of usual N -body operators (i.e. N -body operators without hard-core interaction)
that any non-threshold generalized eigenfunction in the weighted space L2

ε−1/2 =

K.I. is supported by JSPS KAKENHI grant nr. 25800073. E.S. is supported by DFF grant nr.
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2 K. ITO AND E. SKIBSTED

〈x〉1/2−εL2 must be in L2 (here the weight 〈x〉 = (1 + |x|2)1/2 and ε > 0). This
type of problem goes back to Rellich [Re]. The optimal one-body result is that any
non-threshold generalized eigenfunction in B∗

0 must be in L2, cf. [L1, L2, AH, Hö].
The achievement of this paper is three-fold. Whence we obtain a version of Rellich’s
theorem for N -body operators 1) with singular pair potentials (with or without
hard-core interaction), 2) stated with the optimal space, and finally 3) with a proof
that appears more transparent (we think) than the one in [Is].

Introducing the Besov space B∗ of functions φ on Ω such that 1Bnφ ∈ H for all
n ≥ 1 and

sup
n≥1

n−1‖1Bnφ‖2 < ∞, (1.2b)

we note for comparison that L2
ε−1/2 ⊆ L2

−1/2 ⊆ B∗
0 ⊆ B∗ ⊆ L2

−1/2−ε.
The space B∗ is a natural space for generalized eigenfunctions. In fact the gener-

alized eigenfunctions in the range of the delta function

δ(H − E) = lim
ε→0

1
π
Im (H − E − iε)−1,

defined on yet another Besov space B ⊆ H for any non-threshold and non-eigenvalue
E, are in B∗ and they span the continuous subspace of H. We shall not here elab-
orate on the precise meaning of the above limit. For usual N -body operators an
optimal form of the limiting absorption principle was given in [JP]. For a version
of LAP that applies to more singular Hamiltonians (in particular hard-core Hamil-
tonians) we refer to [IS, Appendix B]. We claim, although here be unjustified, that
the sharp form of LAP is valid for the Hamiltonians considered in [IS] as well,
in particular for the one of Proposition 1.1. Whence for any non-threshold and
non-eigenvalue E Proposition 1.1 provides the following dichotomy for the mapping
δ(H − E) : B → B∗. For f ∈ B either φ = δ(H − E)f ∈ B∗ \ B∗

0 or φ = 0. This is
a general feature for N -body Hamiltonians due to the present paper. However, this
being said, the generalized eigenfunctions in B∗ are poorly understood, see [Ya] for
some results. In particular it is not known if Ran

(
δ(H − E)

)
span all generalized

eigenfunctions in B∗ (fulfilling the Dirichlet boundary condition for hard-core Hamil-
tonians). It is believed to be true and it is believed that all scattering information
is encoded in this space (confirmed for the one-body problem).

1.1. Generalized N-body models. We will work in a generalized framework.
This is given by a real finite dimensional vector space X with an inner product and
a finite family of subspaces {Xa| a ∈ A} closed with respect to intersection. We
refer to the elements of A as cluster decompositions although this terminology is
not motivated here. The orthogonal complement of Xa in X is denoted Xa, and
correspondingly we decompose x = xa ⊕ xa ∈ Xa ⊕ Xa. We order A by writing
a1 ⊂ a2 if Xa1 ⊂ Xa2 . It is assumed that there exist amin, amax ∈ A such that
Xamin = {0} and Xamax = X. Let B = A \ {amin}. The length of a chain of cluster
decompositions a1 ( · · · ( ak is the number k. Such a chain is said to connect a = a1

and b = ak. The maximal length of all chains connecting a given a ∈ A \ {amax}
and amax is denoted by #a. We define #amax = 1 and denoting #amin = N + 1 we
say the family {Xa|a ∈ A} is of N-body type.

To define the generalized hard-core model more structure is needed: For each
a ∈ B there is given an open subset Ωa ⊂ Xa with Xa \ Ωa compact, possibly
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Ωa = Xa. Let for amin 6= b ⊂ a

Ωa
b =

(
Ωb + Xb

)
∩ Xa = Ωb + Xb ∩ Xa,

and for a 6= amin

Ωa = ∩amin 6=b⊂aΩ
a
b .

We define Ωamin = {0} and Ω = Ωamax .
Our “soft potentials” fulfill:

Condition 1.2. There exists ε > 0 such that for all b ∈ B there is a splitting into

(real-valued) terms Vb = V
(1)
b + V

(2)
b , where

(1) V
(1)
b is smooth on the closure of Ωb and

∂α
y V

(1)
b (y) = O

(
|y|−ε−|α|). (1.3a)

(2) V
(2)
b vanishes outside a bounded set in Ωb, and

V
(2)
b : H1

0 (Ωb) → H1
0 (Ωb)

∗ is compact. (1.3b)

We consider for a ∈ B the Hamiltonian

Ha = −1
2
∆xa + V a, V a(xa) =

∑
b⊂a

Vb(x
b),

on the Hilbert space L2(Ωa) with the Dirichlet boundary condition on ∂Ωa, in par-
ticular

H = Hamax = 1
2
∆ + V = H0 + V on H := L2(Ω)

with the Dirichlet boundary condition on ∂Ω. More precisely the Hamiltonian Ha,
henceforth referred to as a hard-core Hamiltonian, is given by its quadratic form.
The form domain is the standard Sobolev space H1

0 (Ωa), and the corresponding
action is the (naturally defined) Dirichlet form. Due to the continuous embedding
H1

0 (Ωa) ⊂ H1
0 (Ωa

b ) for amin 6= b ⊂ a we conclude that indeed Ha is self-adjoint,
cf. [RS, Theorem X.17]. We define Hamin = 0 on C. The thresholds of H are the
eigenvalues of sub-Hamiltonians, that is more precisely, the set of thresholds is given
by

T = ∪a∈A,#a≥2 σpp(H
a). (1.4)

This definition of thresholds conforms with the notion of thresholds for usual N -body
operators, and we recall that the so-called HVZ theorem asserts that the essential
spectrum of H is given by the formula

σess(H) = [min T ,∞),

cf. [RS, Theorem XIII.17]. We proved in [IS] that T is closed and countable. It is
also known that under rather general conditions H does not have positive eigenvalues
and the negative non-threshold eigenvalues can at most accumulate at the thresholds
and only from below, cf. [FH, IS, Pe].

In [IS] we proved a version of the Mourre estimate using constructions of [De, Gr].
This is more precisely given in terms of the (rescaled) Graf vector field ω̃R(x) =
Rω̃( x

R
) and the corresponding operator

A = AR = 1
2

(
ω̃R(x) · p + p · ω̃R(x)

)
; R > 1, p = −i∇. (1.5)



4 K. ITO AND E. SKIBSTED

We introduce a function d : R → R by

d(E) =

{
infτ∈T (E)(E − τ), T (E) := T ∩ ] −∞, E] 6= ∅,
1, T (E) = ∅,

(1.6)

where T is given by (1.4).

Lemma 1.3. For all κ > 0 and compact I ⊂ R with I ∩ T = ∅ there exists R0 > 1
such that for all R ≥ R0 and all E ∈ I: There exists a neighbourhood U of E and a
compact operator K on H such that

f(H)∗i[H,AR]f(H) ≥ f(H)∗{2d(E)− κ−K}f(H) for all real f ∈ C∞
c (U). (1.7a)

The rescaled Graf vector field ω̃R is complete on Ω. The Graf vector field is a
gradient vector field, ω̃ = ∇r2/2 for some positive function r. We also note that by
definition the “commutator” i[H,AR] is given by its formal expression

i[H,AR] = pω̃∗(x/R)p − (2R2)−1
(
∆2r2

)
(x/R) − ω̃R · ∇V. (1.7b)

1.2. Rellich’s theorem in the generalized framework. We need to be pre-
cise about the meaning of generalized eigenfunctions in B∗

0 fulfilling the Dirichlet
boundary condition: We say φ ∈ B∗

0 (meaning that (1.2a) is fulfilled for the func-
tion φ : Ω → C) is a generalized Dirichlet eigenfunction with eigenvalue E if for all
n ≥ 1 the function χn(|x|)φ ∈ H1

0 and in the distributional sense (H − E)φ. Here
χ ∈ C∞(R) is real-valued,

χ(t) =

{
1 for t ≤ 1,
0 for t ≥ 2,

(1.8)

and χn(t) = χ(t/n). The main result of this paper reads

Theorem 1.4. Suppose Condition 1.2. Any generalized Dirichlet eigenfunction in
B∗

0 with a real non-threshold eigenvalue is in H = L2(Ω).

We refer the reader to the proof of [IS, Corollary 1.8] to see how Proposition
1.1 follows from Theorem 1.4. Note that it follows from [IS, Appendix C] that non-
threshold L2-eigenfunctions have exponential decay. This is a consequence of Lemma
1.3. Our proof of Theorem 1.4 is also based on Lemma 1.3, however we shall proceed
very differently. Whence exponential decay of non-threshold B∗

0-eigenfunctions is
obtained by a combination of methods. A uniform approach seems out of reach.

2. Proof of Theorem 1.4

We introduce and discuss various preliminaries needed in the proof. It is easy to
see that operators of the form f(H), f ∈ C∞

c (R), preserve any of the weighted L2-
spaces and Besov spaces introduced in Section 1, cf. Lemma A.1 stated below and
[Hö, Theorem 14.1.4]. In particular f(H) is a well-defined operator on B∗

0 . It is also
easy to see that for any generalized Dirichlet eigenfunction φ ∈ B∗

0 with eigenvalue
E we have f(H)φ = f(E)φ. Whence if f(E) = 1 we have the representation
φ = f(H)φ.

The proof of Theorem 1.4 will rely on Lemma 1.3. We abbreviate A = AR in
Lemma 1.3 using the result at a given non-threshold E leading to the following form
of the estimate

f(H)i[H,A]f(H) ≥ f(H)
(
σ − K

)
f(H), (2.1)
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where σ > 0, f ∈ C∞
c (R) is real-valued with f(E) = 1 and K is compact. Below

the positivity of σ will be crucial, but its size will not have importance.
Another ingredient of our proof is the operator

B = 1
2

(
ω(x) · p + p · ω(x)

)
,

where ω = ωR = ω̃R/rR, rR(x) = Rr( x
R
). Recall for comparison that

2A = ω̃R(x) · p + p · ω̃R(x) = rRωR · p + p · rRωR.

We shall suppress the dependence of the parameter R (which is considered as a fixed
large number). In particular we shall slightly abuse the notation writing for example
r rather than the rescaled version rR. Using the notation D for the Heisenberg
derivative i[H, ·] we note the formal computations B = Dr, A = r1/2Br1/2 and

DB = r−1/2
(
DA − B2

)
r−1/2 + O(r−3). (2.2)

Here the function

O(r−3) = 1
4
ω · (∇2r)ω/r2 = r−3v(x),

where v belongs to the algebra V of smooth functions on Ω obeying

∀α ∈ NdimX
0 and k ∈ N0 : |∂α

x (x · ∇)kv(x)| ≤ Cα,k.

This is due to the fact that the function r2 − x2 ∈ V , cf. [IS, (2.1b)]. We note that
the expression (1.7b) for DA takes the form

DA =
∑
|α≤2

vαpα; vα ∈ V ,

which make sense as a bounded form on H1 = Q(H) = H1
0 . For computations we

will need the following rigorous version of (2.2), cf. [IS, Lemma A.8]: In the sense
of strong limit in the space of bounded operators B(H1,H−1)

DB := s–lim
t→0

t−1
(
HeitB − eitBH

)
= r−1/2

(
DA − B2

)
r−1/2 + r−2v, (2.3)

where v ∈ V . Here we use that eitB ∈ B(H1)∩B(H−1), cf. [IS, Lemma A.6]. With a
similar interpretation it follows that adB(DB) = [DB,B] ∈ B(H1,H−1). Although
this will not be needed in fact all higher order repeated commutators adk

B(DB) exist
in this sense.

The above computations were used in [GIS], in fact our proof of Theorem 1.4 will
to a large extent rely on ideas from [GIS] similarly to [Is]. On the more technical level
a certain part of Isozaki’s proof also relies on ideas of [FH], whereas the analogous
difficulty at the threshold zero for a one-body problem was treated in [Sk] using
a propagation of singularity result. We will present a new approach based on a
conveniently chosen partition of unity.

As in [GIS] phase-space localization in terms of functional calculus of the operators
B and H will be important. If f ∈ C∞

c (R) (or for example f = χ) the operator f(B)
preserves the spaces mentioned at the beginning of this section (like f(H) does),
and more generally f(B) and f(H) enjoy good properties regarding commutation
with functions of r. These properties are studied in [GIS, Section 2] and will be
used frequently below, however our presentation will be self-contained. It is based
on an abstract result in Appendix A.

We need a cut-off function ηε ∈ C∞(R) with special properties: The parameter
ε > 0 is considered small, and we define ηε(x) = 1

ε
η(x

ε
), where η′(x) > 0 for |x| < 1,
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η(x) = 0 for x ≤ −1 and η(x) = 1 for x ≥ 1. We can construct η such that η′ is
even,

√
η′ ∈ C∞(R) and for some c > 0

η′(x) ≥ c η(x) for x ∈ (−1, 1/2]. (2.4)

The optimal choice of such c (a necessary condition is c ≤ 2 ln 2) is not important
for us since we will only need (2.4) in the following disguised form: For any c̃ > 0
and all ε small enough (ε2 ≤ 2

3
cc̃ suffices)

( ε
2
− b)ηε(b) ≤ c̃ η′

ε(b) for all b ∈ R. (2.5)

Note also that since η′
ε is even ε−1 = ηε(b) + ηε(−b). We shall use the function

ζε(b) = ηε(b) − ηε(−b).
Let hκ(r) = r

1+κr
for κ ≥ 0, and let Xκ and Yκ be the operators of multiplication

by hκ and 1
1+κr

, respectively. Writing X = X0 we note that Xκ = XYκ. Note also

that ∇hκ(r) = (1 + κr)−2ω, whence for example DXκ = YκBYκ.

Proof of Theorem 1.4. Let φ ∈ B∗
0 be a given generalized Dirichlet eigenfunction

with a non-threshold eigenvalue E. We shall first show that φ ∈ L2
−1/4 and then use

this property to show by a similar procedure that φ ∈ L2. Write φ = f(H)φ where
f ∈ C∞

c (R), f(E) = 1 and (2.1) holds.

Step I. We outline the ideas of the proof of the property φ ∈ L2
−1/4. We shall

consider the “propagation observable”

P = Pκ = f(H)X1/4
κ ζε(B)X1/4

κ f(H), κ > 0.

The parameter ε > 0 will be fixed shortly small enough. Note that Xκ and Pκ are
bounded due to the appearance of the factor 1

1+κr
. Eventually this factor will be

removed by letting κ → 0. More precisely we shall demonstrate some “essential
positivity” of DP persisting in the κ → 0 limit. For any n the function φn =
χn(r)φ ∈ H1

0 , (H − E)φn = −i(Dχn)φ and whence the expectation

〈DP 〉φn
= −2Re 〈(Dχn)Pχn〉φ. (2.6a)

Since φ ∈ B∗
0 the term to the right vanishes as n → ∞, so it remains to study the

term to the left in this limit. We compute

4DX1/4
κ = Y 2

κ X−3/4
κ B + 3

8
iω2X−7/4

κ Y 4
κ + iκω2X−3/4

κ Y 3
κ .

With commutation errors this should give

2Re
((

DX1/4
κ

)
ζε(B)X1/4

κ

)
= 1

2
YκX

−1/4
κ Bζε(B)X−1/4

κ Yκ + X−3/4O(κ0)X−3/4.
(2.6b)

Similarly, letting θε =
√

η′
ε,

X1/4
κ (Dζε(B))X1/4

κ ≈ X1/4
κ

(
θε(B)(DB)θε(B) + θε(−B)(DB)θε(−B)

)
X1/4

κ . (2.6c)

Now we insert (2.2) into this expression and then estimate by (2.1) (here ignoring
factors of f(H)). Ignoring the contribution from the compact operator K in (2.1)
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(which should be controllable in the state φn) we should end up with the effective
lower bounds

X1/4
κ (Dζε(B))X1/4

κ

≥ (σ − ε2)X1/4
κ X−1/2

(
η′

ε(B) + η′
ε(−B)

)
X−1/2X1/4

κ + X−3/4O(κ0)X−3/4

≥ (σ − ε2)YκX
−1/4
κ

(
η′

ε(B) + η′
ε(−B)

)
X−1/4

κ Yκ + X−3/4O(κ0)X−3/4.

(2.6d)

This suggests we should have ε so small that 2ε2 < σ since then σ − ε2 ≥ σ/2. In
total we are lead to consider

1
2
YκX

−1/4
κ

(
Bηε(B) − Bηε(−B) + ση′

ε(B) + ση′
ε(−B)

)
X−1/4

κ Yκ.

Using (2.5) with c̃ = σ and any possibly smaller ε, whenceforth considered fixed, we
arrive at the lower bound

ε
4
YκX

−1/4
κ

(
ηε(B) + ηε(−B)

)
Xκ

−1/4Yκ = 1
4
X−1/2

κ Y 2
κ .

Whence, given that error terms can be controlled, we obtain from these arguments
the uniform bound

‖X−1/4
κ Yκφ‖2 = lim

n→∞
‖X−1/4

κ Yκφn‖2 ≤ Cφ. (2.7)

By letting κ → 0 in (2.7) it follows that φ ∈ L2
−1/4. The constant Cφ arises from

bounding errors in (2.6b)–(2.6d) as well as from bounding the contribution from the
operator K in (2.1) to supplement (2.6d). As we will see, in agreement with (2.6b)
and (2.6d) it can be taken of the form Cφ = C‖X−3/4φ‖2.

Step II. To implement the scheme of Step I we provide details on estimating errors
from various commutation and the outlined application of (2.1).

Right-hand side of (2.6a): We have

Dχn = χ′
nB − i

2
ω2χ′′

n,

and therefore using that BP is bounded and that φ ∈ B∗
0 indeed

lim
n→∞

Re 〈(Dχn)Pχn〉φ = 0.

Left-hand side of (2.6a): We calculate

DP = if(H)
[
H̃,X1/4

κ ζε(B)X1/4
κ

]
f(H),

where H̃ = g(H) with g(λ) = λf̃(λ) and real-valued f̃ ∈ C∞
c (R) chosen such that

f̃(λ) = 1 in a neighbourhood of the support of f . Whence denoting D̃ the Heisenberg

derivative i[H̃, ·] we need to examine (2.6b) and (2.6c) with D replaced by D̃.

(2.6b) with D̃: Based on the representation (A.1b) (applied to B = H) we compute

4D̃Xκ
1/4 = g′(H)Y 2

κ X−3/4
κ B + X−3/4O(κ0)X−1,

and therefore

4f(H)
(
D̃Xκ

1/4
)

= f(H)Y 2
κ X−3/4

κ B + X−3/4O(κ0)X−1.
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Using again Lemma A.1 we then obtain

2f(H)Re
((

D̃X1/4
κ

)
ζε(B)X1/4

κ

)
f(H)

= 1
2
f(H)YκXκ

−1/4Bζε(B)Xκ
−1/4Yκf(H) + X−3/4O(κ0)X−3/4.

(2.6c) and (2.6d) modified : Using (2.3) and Lemma A.1 we can write

X1/4
κ

(
D̃ζε(B)

)
X1/4

κ = X1/4
κ

(
θε(B)(D̃B)θε(B) + θε(−B)(D̃B)θε(−B)

)
X1/4

κ

+ X−3/4O(κ0)X−3/4.
(2.8)

Indeed by (A.1b) (with interchanged roles of B and H) and (2.3)

D̃B =

∫
C
(H − z)−1(DB)(H − z)−1dµ(z) ∈ B(H),

and therefore in turn similarly

[D̃B,B] = s–lim
t→0

1
it

((
D̃B

)
eitB − eitB

(
D̃B

))
=

∫
C
(H − z)−1[DB,B](H − z)−1dµ(z)

+ 2i

∫
C
(H − z)−1(DB)(H − z)−1(DB)(H − z)−1dµ(z) ∈ B(H).

In fact it follows this representation that

Xs[D̃B,B]X2−s ∈ B(H) for all s ∈ R.

Now we use this property with s = 1 and (A.1g) with Dr = 0 although we could

take Dr to be the contribution to D̃B from the last term in (2.3). In any case (2.8)
follows.

We multiply by f(H) from the left and from the right and commute these factors

next to the factor D̃B in the middle. We note

[f(H), X1/4
κ ] = X−3/4O(κ0),

and therefore we can bound the commutation errors obtaining

f(H)X1/4
κ

(
D̃ζε(B)

)
X1/4

κ f(H)

= X1/4
κ

(
θε(B)f(H)(D̃B)f(H)θε(B) + θε(−B)f(H)(D̃B)f(H)θε(−B)

)
X1/4

κ

+ X−3/4O(κ0)X−3/4.

Now we can replace D̃ by D, use (2.3) and implement (2.1) after commutation of
factors of r−1/2 (recall that f was chosen with small support so that (2.1) applies)
and then move the factors of f(H) back where they came from. As in (2.6d) we
then obtain a lower bound of the form

(σ − ε2)f(H)X1/4
κ X−1/2

(
η′

ε(B) + η′
ε(−B)

)
X−1/2X1/4

κ f(H) + X−3/4O(κ0)X−3/4

plus the contribution from K that was ignored in the heuristic bound (2.6d). This
contribution is treated by first fixing a big m ∈ N such that (with ε given as before)

σ − ε2 − ‖K − χmKχm‖ ≥ σ/2,

and then noting that the contribution from the operator χmKχm is bounded by
C‖X−3/4φ‖2.
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In total we have proved

‖X−1/4
κ Yκφ‖2 = lim

n→∞
‖X−1/4

κ Yκf(H)φn‖2 ≤ C‖X−3/4φ‖2,

leading to the desired conclusion, φ ∈ L2
−1/4, by letting κ → 0.

Step III. We complete the proof of the assertion φ ∈ L2. This part is very similar
to the previous part and therefore we leave out the details of the proof. We consider
the observable

P = Pκ = f(H)X1/2
κ ζε(B)X1/2

κ f(H), κ > 0,

where ε > 0 is chosen with 2ε2 < σ and such that (2.5) applies with c̃ = σ/2 (rather
than c̃ = σ as before). Redoing the commutator arguments with slight modifications
and by using that φ ∈ L2

−1/4 ⊆ L2
−1/2 with the proven bound

‖X−1/4φ‖2 ≤ C‖X−3/4φ‖2,

we obtain the bound

‖Yκφ‖2 = lim
n→∞

‖Yκf(H)φn‖2 ≤ C‖X−3/4φ‖2. (2.9)

By letting κ → 0 we deduce that φ ∈ L2. ¤

Appendix A. Functional calculus

The following abstract result is a particular time-independent version of [HS,
Lemma 3.5] adapted to the proof of Theorem 1.4, although the notation for operators
does not conform with that of the proof of Theorem 1.4. There are many similar
results in the literature, see for example [GIS, Section 2] or [DG, Appendix C]. The
function η referred to in C) below is the function introduced at (2.4).

Lemma A.1. Suppose B is a self-adjoint operator on a complex Hilbert space H, and
that H is a symmetric operator on H with domain D = D(H) = D(B). Suppose
that the commutator form i[H,B] defined on D is a symmetric operator with the
same domain D. Let D = i[H, ·] Then:

A) For any given F ∈ C∞
c (R) we let F̃ ∈ C∞

c (C) denote an almost analytic
extension. In particular

F (B) = 1
π

∫
C

(
∂̄F̃

)
(z)(B − z)−1dudv, z = u + iv, (A.1a)

and

DF (B) = − 1
π

∫
C

(
∂̄F̃

)
(z)(B − z)−1(DB)(B − z)−1dudv. (A.1b)

In particular if DB is bounded then for any ε > 0 (with 〈z〉 = (1 + |z|2)
1
2 )

‖DF (B)‖ ≤ Cε sup
z∈C

(
〈z〉ε+2|Im z|−2|

(
∂̄F̃

)
(z)|

)
‖DB‖. (A.1c)

B) Suppose in addition that we can split DB = D + Dr, where D and Dr are
symmetric operators on D, and that similarly for k = 1 the form ikadk

B(D) =
i
[
ik−1adk−1

B (D), B
]

defined on D is a symmetric operator on D. Here by

definition ad0
B(D) = D, and we note that the form ad2

B(D) appearing below
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makes sense without further assumptions. Then the contribution from D to
(A.1b) can be written as

− 1
π

∫
C

(
∂̄F̃

)
(z)(B − z)−1D(B − z)−1dudv

= 1
2
(F ′(B)D + DF ′(B)) + R1(t); (A.1d)

R1 = 1
2π

∫
C

(
∂̄F̃

)
(z)(B − z)−2ad2

B(D)(B − z)−2dudv.

For all f ∈ C∞
c (R)

1
2

(
f2(B)D + Df 2(B)

)
= f(B)Df(B) + R2; (A.1e)

R2(t) = 1
2π2

∫
C

∫
C

(
∂̄f̃

)
(z2)

(
∂̄f̃

)
(z1)(B − z2)

−1(B − z1)
−1

ad2
B(D)(B − z1)

−1(B − z2)
−1du1dv1du2dv2.

C) Suppose in addition to the previous assumptions that the operator Dr extends
to a bounded self-adjoint operator. Let F = η where η is the function from
above. Then there exists an almost analytic extension with∣∣(∂̄F̃

)
(z)

∣∣ ≤ Ck〈z〉−1−k|Im z|k; k ∈ N, (A.1f)

yielding the representation

DF (B) = F ′1
2 (B)DF ′1

2 (B) + R1 + R2 + R3, (A.1g)

where R1 is given by (A.1d), R2 by (A.1e) with f =
√

F ′ and R3 is the
contribution from Dr to (A.1b) (the latter possibly estimated as in (A.1c)
with ε = 1).
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[DG] J. Dereziński and C. Gérard, Scattering theory of classical and quantum N -particle systems,
Texts and Monographs in Physics, Berlin, Springer 1997.

[FH] R. Froese and I. Herbst, Exponential bounds and absence of positive eigenvalues for N -body
Schrödinger operators, Comm. Math. Phys. 87 no. 3 (1982/83), 429–447.

[GIS] C. Gérard, H. Isozaki and E. Skibsted, N -body resolvent estimates, J. Math. Soc. Japan
48 no. 1 (1996), 135–160.

[Gr] G.M. Graf, Asymptotic completeness for N -body short-range quantum systems: a new
proof, Commun. Math. Phys. 132 (1990), 73–101.

[HS] I. Herbst, E. Skibsted, Absence of quantum states corresponding to unstable classical chan-
nels, Ann. Henri Poincaré 9 (2008), 509–552.
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