

PDF issue: 2025-12-05

Fundamental study of tank with MgB2 level sensor for transportation of liquid hydrogen

Maekawa, Kazuma ; Takeda, Minoru ; Matsuno, Yu ; Fujikawa, Shizuichi ; Kuroda, Tsuneo ; Kumakura, Hiroaki

(Citation)

Physics Procedia, 67:1164-1168

(Issue Date)

2015

(Resource Type)

journal article

(Version)

Version of Record

(Rights)

©2015. The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(URL)

https://hdl.handle.net/20.500.14094/90003704

Available online at www.sciencedirect.com

ScienceDirect

Procedia Procedia

Physics Procedia 67 (2015) 1164 – 1168

25th International Cryogenic Engineering Conference and the International Cryogenic Materials Conference in 2014, ICEC 25–ICMC 2014

Fundamental study of tank with MgB₂ level sensor for transportation of liquid hydrogen

Kazuma Maekawa^a*, Minoru Takeda^a, Yu Matsuno^b, Shizuichi Fujikawa^b,

Tsuneo Kuroda^c, Hiroaki Kumakura^c

^a Graduate School of Maritime Sciences, Kobe University, Hyogo 658-0022, Japan
^b Iwatani Corporation R&D Center, Hyogo 661-0965, Japan
^c National Institute for Materials Science, Ibaraki 305-0047, Japan

Abstract

We are currently developing an external-heating-type superconducting magnesium diboride (MgB₂) level sensor for a liquid hydrogen (LH₂) tank. The aim of this study is to investigate the measuring current dependence of the level-detecting characteristics of the MgB₂ level sensor for LH₂ under a static condition which has not yet been clarified. It was found that the linear correlation coefficient was 0.99 or more, indicating high linearity, regardless of the measuring current at heater inputs of 3 W and 6 W. Moreover, there was no effect of self-heating by the measuring current and it was found that a current of up to 100 mA can be used.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the organizing committee of ICEC 25-ICMC 2014

Keywords: level sensor; MgB2 wire; liquid hydrogen; superconductivity; marine transport

^{*} Corresponding author. Tel.: +81-78-431-6329; fax: +81-78-431-6329. *E-mail address*: 101w522w@stu.kobe-u.ac.jp

1. Introduction

Hydrogen is attracting attention as an alternative energy source to fossil fuels and nuclear power. In the storage and transport of large quantities of hydrogen by sea, liquid hydrogen (LH₂) is very effective because its density is about 800 times that of gaseous hydrogen (273 K, 0.1 MPa). To ensure the safety of the marine transportation of LH₂, its behavior in a tank must be elucidated using a highly precise level gage because the sloshing phenomenon inside the tank becomes a problem during the transportation. We are currently developing an external-heating-type superconducting magnesium diboride (MgB₂) level sensor for an LH₂ tank [1] [2]. We previously reported the thermal response of the MgB₂ level sensor [3]. However, the measuring current dependence of the level-detecting characteristics of the sensor for LH₂ under a static condition has not yet been clarified. We performed an experiment on board of a training ship to evaluate the measurement system. The aim of this study is to elucidate the measuring current dependence of the level-detecting characteristics of the MgB₂ level sensor for LH₂ under a static condition using the measurement system on board of the training ship.

2. External-heating-type MgB₂ level sensor

The MgB₂ wire used in this experiment was 0.32 mm in diameter, had a total length of 200 mm, and was reinforced by a CuNi (7:3) sheath. It was fabricated by an in situ method based on the powder-in-tube method. A manganin wire of 0.2 mm diameter was wound spiraling around the MgB₂ wire with a pitch of 2 mm for use as an external heater. To reduce the critical temperature T_c of the wire, 10 % SiC was added as an impurity to the MgB₂ core. The heat treatment temperature was 873.15 K and T_c was 32 K.

3. Experimental apparatus and experimental method

The measurement system consists of a cryostat, a MgB₂ sensor, a current source for the sensor, a power supply for the heater, and a nanovoltmeter as shown in Fig. 1. Fig. 2 shows the setup of the experimental apparatus on the training ship. Fig. 3 shows a photograph of the experimental apparatus. Fig. 4 shows a photograph of the training ship "Fukaemaru".

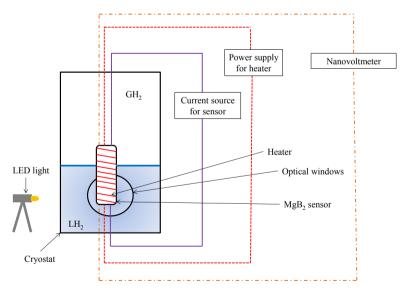


Fig. 1. Measurement system.

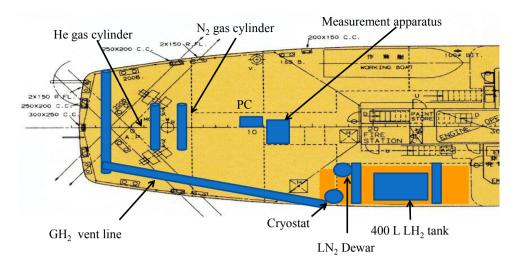


Fig. 2. Setup of experimental apparatus.

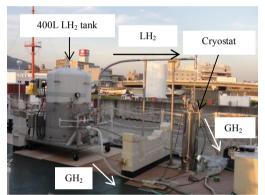


Fig. 3. Photograph of experimental apparatus.

Fig. 4. Photograph of training ship "Fukaemaru".

We experimentally investigated the level-detecting characteristics of the MgB_2 level sensor by determining the relationship between the sensor output voltage and the liquid level at atmospheric pressure as a parameter of the measuring current at heater inputs of 3 W and 6 W while the liquid level was decreased from 140 mm to 0 mm. The measuring current was varied between 10 mA and 100 mA in intervals of 10 mA.

Furthermore, we examined the effect of self-heating caused by the measuring current by determining the relationship between the sensor output voltage and the measuring current at atmospheric pressure as parameters of the heater input with liquid levels of 0 mm and 80 mm. The output voltage of the sensor was measured by a four-wire technique in these experiments.

4. Experimental results

Fig. 5 shows the level-detecting characteristics of the MgB₂ level sensor as a parameter of the measuring current at a heater input of 3 W. The linear correlation coefficient was 0.99 or more, indicating high linearity, regardless of the measuring current. Fig. 6 shows the level-detecting characteristics at a heater input of 6 W. This figure shows a similar tendency to Fig. 5; the linear correlation coefficient was 0.99 or more. Therefore, it can be concluded that the level-detecting characteristic of the MgB₂ level sensor is independent of the measuring current.

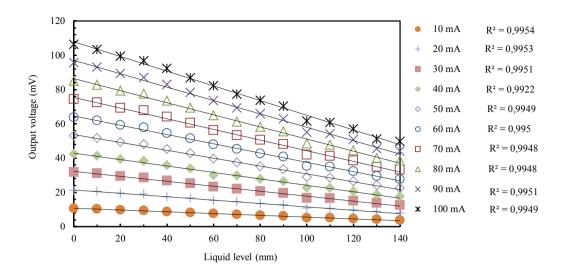


Fig. 5. Level-detecting characteristics of the MgB2 level sensor as a parameter of the measuring current at a heater input of 3 W.

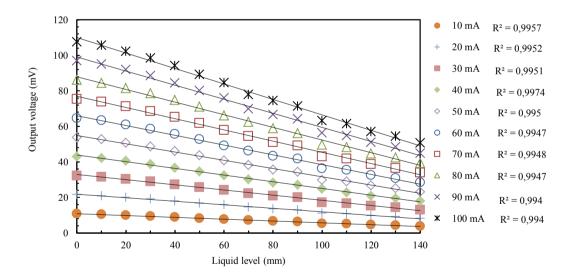


Fig. 6. Level-detecting characteristics of the MgB2 level sensor as a parameter of the measuring current at a heater input of 6 W.

Fig. 7 shows the effect of self-heating caused by the measuring current on the level-detecting characteristics of the MgB_2 level sensor at a liquid level of 0 mm. The linear correlation coefficient was 0.99 or more for both heater inputs. Fig. 8 shows the effect of self-heating caused by the measuring current at a liquid level of 80 mm. The linear correlation coefficient was 0.99 or more for both heater inputs.

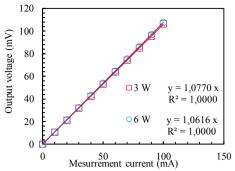


Fig. 7. Effect of self-heating caused by the measuring current at a liquid level of 0 mm.

Fig. 8. Effect of self-heating caused by the measuring current at a liquid level of 80 mm.

Thus, the performance of the MgB_2 level sensor is unaffected by self-heating caused by the measuring current and detects the liquid level precisely even if the measuring current increases. It was found that a measuring current of up to 100 mA can be used.

5. Conclusion

We clarified the measuring current dependence of the level-detecting characteristics of our MgB_2 level sensor for LH_2 . The linear correlation coefficient was 0.99 or more, indicating high linearity, regardless of the measuring current at heater inputs of 3 W and 6 W. Moreover, there was no effect of self-heating by the measuring current and a measuring current of up to 100 mA can be used.

We plan to elucidate the sloshing phenomenon inside the tank during the marine transportation with several longer MgB_2 level sensors.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research, JSPS KAKENHI Grant Number 24246143.

References

- [1] Takeda, M., Matsuno, Y., Kodama, I., Kumakura, H., Kazama, C., Application of MgB₂ Wire to Liquid Hydrogen Level Sensor External-Heating-Type MgB₂ Level Sensor. IEEE Trans. Appl. Supercond 19, 2009, 764-767.
- [2] Takeda, M., Fujikawa, S., Matsuno, Y., Maekawa, K., Kuroda, T., Kumakura, H., Synchronous measurements of liquid level, temperature and pressure inside a 2000 liter liquid hydrogen tank during a truck transportation. Proceedings of ICEC24-ICMC 2012, 2013, 311-314.
- [3] Maekawa, K., Takeda, M., Matsuno, Y., Fujikawa, S., Kuroda, T., Kumakura, H., Thermal response of MgB₂ level sensor for liquid hydrogen using external heater. Proceedings of ICEC24-ICMC 2012, 2013, 59-62.