

PDF issue: 2025-04-29

A note on the OU sequences of a 2-bridge knot

Funahashi, Yasunori Nakanishi, Yasutaka Satoh, Shin

(Citation)

Journal of Knot Theory and Its Ramifications, 25(13):1671001-1671001

(Issue Date) 2016-11

(Resource Type) journal article

(Version) Accepted Manuscript

(Rights)

©World Scientific Publishing. Electronic version of an article published as Journal of Knot Theory and Its Ramifications 25, 13, 2016, 1671001. DOI: 10.1142/S0218216516710012, http://www.worldscientific.com/worldscinet/rmp

(URL)

https://hdl.handle.net/20.500.14094/90003761

A NOTE ON THE OU SEQUENCES OF A 2-BRIDGE KNOT

YASUNORI FUNAHASHI, YASUTAKA NAKANISHI, AND SHIN SATOH

ABSTRACT. An OU sequence is a cyclically ordered sequence in symbols O and U such that the number of O's is equal to that of U's. Every knot diagram defines an OU sequence by reading O and U at over- and under-crossings, respectively, appeared along the diagram. In this note, we determine the OU sequences for a 2-bridge knot arising from its diagrams with two over-bridges.

An OU-sequence is a cyclically ordered sequence in symbols O and U,

$$w = O^{a_1}U^{a_2}\dots O^{a_{2n-1}}U^{a_{2n}} = \underbrace{O\dots O}_{a_1}\underbrace{U\dots U}_{a_2}\dots \underbrace{O\dots O}_{a_{2n-1}}\underbrace{U\dots U}_{a_{2n}}$$

with $n \ge 0, a_1, \ldots, a_{2n} \ge 1$, and $\sum_{i=1}^n a_{2i-1} = \sum_{i=1}^n a_{2i}$. For an oriented knot diagram D, we walk along D from some basepoint to the original position and read O or U when we meet an over- or under-crossing, respectively, so that we obtain an OU-sequence w = f(D). We remark that the number n of blocks of O in f(D) is coincident with that of longest over-bridges of D.

For an oriented knot K, we say that an OU sequence w is K-realizable if there is a diagram D of K with f(D) = w. Let 0_1 and 3_1 denote the trivial knot and the trefoil knot, respectively. In [1], we prove that any OU sequence is 0_1 -realizable, and that an OU sequence w is 3_1 -realizable if and only if

- (i) w has $n \ge 2$ blocks of O,
- (ii) for n = 2, $w = O^a U^b O^c U^d$ with $a, b, c, d \ge 2$, and
- (iii) for $n \ge 3$, $w \ne OU^a O^b UO^c U^d$, $UO^a U^b OU^c O^d$ with $a \ne b \pmod{2}$.

The aim of this paper is to generalize the property (ii) for any 2-bridge knot as follows. Here, det(K) denotes the determinant of a knot K.

Theorem 1. For a 2-bridge knot K and an OU sequence $w = O^a U^b O^c U^d$, the following are equivalent.

- (i) w is K-realizable.
- (ii) $a, b, c, d \ge \det(K) 1$.

For a 2-bridge knot K, let $c_2(K)$ denote the minimum number of crossings for all diagrams of K with two over-bridges. By Theorem 1, we have the following immediately.

Corollary 2. For any 2-bridge knot K, it holds that $c_2(K) = 2det(K) - 2$.

To prove (i) \Rightarrow (ii) in Theorem 1, we prepare a lemma concerning a Schubert normal form of a 2-bridge knot. Let D be a knot diagram with two over-bridges u_1 and u_2 , and α_i the number of over-crossings on u_i plus one (i = 1, 2). Assume that

The third author is partially supported by JSPS KAKENHI Grant Number 25400090.

²⁰¹⁰ Mathematics Subject Classification. 57M25.

 $Key\ words\ and\ phrases.$ OU sequence, 2-bridge knot, diagram, Schubert normal form, contraction.

D is located in a 2-sphere S^2 , which can be divided into two disks E_1 , E_2 and an annulus *A* such that $D \cap E_i$ consists of the over-bridge u_i and $\alpha_i - 1$ under-arcs. See the left of Figure 1. We label the $2\alpha_i$ points of $D \cap \partial E_i$ by $0, 1, \ldots, 2\alpha_i - 1 \pmod{2\alpha_i}$ as shown in the figure, where 0 and α_i are the endpoints of u_i . If $\alpha_1 = \alpha_2 = \alpha$ and any arc of $D \cap A$ connects between ∂E_1 and ∂E_2 , then *D* is called a *Schubert* normal form of *K*. Since there is an integer β such that *j* on $D \cap E_1$ and $j + \beta$ on $D \cap E_2$ are connected by an arc of $D \cap A$ for any *j*, we denote it by $S(\alpha, \beta)$ (cf. [2]). The right of the figure shows S(5, 3).

Figure 1

Lemma 3. Let D be a diagram of a 2-bridge knot K. If D has two over-bridges, then there is a finite sequence of diagrams $D = D_0, D_1, \ldots, D_m$ such that

- (i) D_k is obtained from D_{k-1} by a Reidemeister move I or II which reduces the number of crossings (k = 1, 2, ..., m),
- (ii) each D_k has two over-bridges, and
- (iii) D_m is a Schubert normal form $S(\alpha, \beta)$ for $\alpha = \det(K)$ and some β .

Proof. If D is a Schubert normal form $S(\alpha, \beta)$, then we have $\alpha = \det(K)$. Now we assume that D is not a Schubert normal form. Since A is an annulus, the innermost argument induces the existence of an arc t of $D \cap A$ such that

- (i) the endpoints of t are both on the same boundary ∂E_i , and
- (ii) the disk component of $A \setminus t$ misses any arcs of $D \cap A$.

If one of the endpoints of t is 0 or α_i , then we perform a Reidemeister move I containing t to remove a crossing from u_i . If the endpoints of t are neither 0 nor α_i , then we perform a Reidemeister move II containing t to cancel a pair of crossings from u_i . In any case, we can reduce the number of crossings with keeping a diagram having two over-bridges. By repeating this process, we obtain a Schubert normal form finally.

Proof of Theorem 1(i) \Rightarrow (ii). Assume that there is a diagram D of K with $f(D) = O^a U^b O^c U^d$. Since D has two over-bridges, there is a finite sequence of diagrams of $K, D = D_0, D_1, \ldots, D_m$, as in Lemma 3. Put $f(D_k) = O^{a_k} U^{b_k} O^{c_k} U^{d_k}$.

If D_k is obtained from D_{k-1} by a Reidemeister move I, then $f(D_k)$ is obtained from $f(D_{k-1})$ by removing a subsequence OU or UO. If D_k is obtained from D_{k-1} by a Reidemeister move II, then $f(D_k)$ is obtained from $f(D_{k-1})$ by removing a pair of subsequences O^2 and U^2 . In any case, we may assume that

$$a_{k-1} \ge a_k, \ b_{k-1} \ge b_k, \ c_{k-1} \ge c_k, \ \text{and} \ d_{k-1} \ge d_k$$

Since $D_m = S(\alpha, \beta)$ is a Schubert normal form with $\alpha = \det(K)$, it holds that

$$a_m = b_m = c_m = d_m = \alpha - 1.$$

Therefore, we have $a, b, c, d \ge \alpha - 1 = \det(K) - 1.$

We say that an OU sequence w' is obtained from w by a *contraction* if w' is obtained by deleting a subsequence OU or UO in w. To prove (ii) \Rightarrow (i) in Theorem 1, we use the following lemma.

Lemma 4 ([1]). Let K be an oriented knot, and w and w' OU sequences. Suppose that w' is obtained from w by a finite sequence of contractions. If w' is K-realizable, then so is w. \Box

Proof of Theorem 1(ii) \Rightarrow (i). Since $w = O^a U^b O^c U^d$ is cyclically ordered and satisfies a + c = b + d, we may assume that $a \leq b$. By contractions $a - (\alpha - 1)$ times between O^a and U^b , we obtain

$$w_1 = O^{\alpha - 1} U^{b - a + (\alpha - 1)} O^c U^d$$

where $\alpha = \det(K) - 1$. Next, by contractions $b - a \geq 0$ times between the second and third blocks of w_1 , we obtain

$$w_2 = O^{\alpha - 1} U^{\alpha - 1} O^{c - b + a} U^d = O^{\alpha - 1} U^{\alpha - 1} O^d U^d.$$

Finally, by contractions $d - (\alpha - 1)$ times between O^d and U^d , we obtain

$$w' = O^{\alpha - 1} U^{\alpha - 1} O^{\alpha - 1} U^{\alpha - 1}.$$

Since K is presented by a Schubert normal form $S(\alpha, \beta)$ for some β , w' is K-realizable. Therefore, w is also K-realizable by Lemma 4.

References

- R. Higa, Y. Nakanishi, S. Satoh, and T. Yamamoto, Crossing information and warping polynomials about the trefoil knot, J. Knot Theory Ramifications 21 (2012), no. 10, 1250095, 18 pp.
- [2] H. Schubert, Knoten mit zwei Brücken, (German) Math. Z. 65 (1956), 133–170.

Department of Mathematics, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-0013, Japan

Department of Mathematics, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-0013, Japan

E-mail address: nakanisi@math.kobe-u.ac.jp

Department of Mathematics, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan

E-mail address: shin@math.kobe-u.ac.jp