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Non-regularly varying and non-periodic oscillation of the
on-diagonal heat kernels on self-similar fractals

Naotaka Kajino

Dedicated to my mother on the occasion of her 65th birthday

Abstract. Let pt(x, y) be the canonical heat kernel associated with a self-
similar Dirichlet form on a self-similar fractal and let ds denote the spectral
dimension of the Dirichlet space, so that tds/2pt(x, x) is uniformly bounded

from above and below by positive constants for t ∈ (0, 1]. In this article it is
proved that, under certain mild assumptions on pt(x, y), for a “generic” (in
particular, almost every) point x of the fractal, p(·)(x, x) neither varies regu-

larly at 0 (and hence the limit limt↓0 tds/2pt(x, x) does not exist) nor admits a

periodic function G : R → R such that pt(x, x) = t−ds/2G(− log t) + o(t−ds/2)

as t ↓ 0. This result is applicable to most typical nested fractals (but not to
the d-dimensional standard Sierpiński gasket with d ≥ 2 at this moment) and
all generalized Sierpiński carpets, and the assertion of non-regular variation is

established also for post-critically finite self-similar fractals (possibly without
good symmetry) possessing a certain simple topological property.
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1. Introduction

Heat kernels on fractals are believed to exhibit highly oscillatory behavior as
opposed to the classical case of Riemannian manifolds. For example, as a general-
ization of the results of [12, 30, 7] for the standard Sierpiński gasket, Lindstrøm
[32] constructed canonical Brownian motion on a certain large class of self-similar
fractals called nested fractals, and Kumagai [29] proved that its transition density
(heat kernel) p = pt(x, y) satisfies the two-sided sub-Gaussian estimate
(1.1)

c1.1

tds/2
exp

(
−

(ρ(x, y)dw

c1.1t

) 1
dw−1

)
≤ pt(x, y) ≤

c1.2

tds/2
exp

(
−

(ρ(x, y)dw

c1.2t

) 1
dw−1

)
.

Here c1.1, c1.2 ∈ (0,∞) are constants, ds ∈ [1,∞) and dw ∈ [2,∞) are also constants
called the spectral dimension and the walk dimension of the fractal, respectively,
and ρ is a suitably constructed geodesic metric on the fractal which is comparable
to some power of the Euclidean metric1. Later Fitzsimmons, Hambly and Kumagai
[10] extended these results to a larger class of self-similar fractals called affine nested
fractals. In particular, given an affine nested fractal K, for any x ∈ K we have

(1.2) c1.1 ≤ tds/2pt(x, x) ≤ c1.2, t ∈ (0, 1],

and then it is natural to ask how tds/2pt(x, x) behaves as t ↓ 0 and especially
whether the limit

(1.3) lim
t↓0

tds/2pt(x, x)

exists or not. As Barlow and Perkins conjectured in [7, Problem 10.5] in the case
of the Sierpiński gasket, this limit was believed not to exist for most self-similar
fractals, but this problem had remained open until the author’s recent paper [21].

It was proved in [21] that, under very weak assumptions on the affine nested
fractal K, the limit (1.3) does not exist for “generic” (hence almost every) x ∈ K,
and that the same is true for any x ∈ K when K is either the d-dimensional
standard (level-2) Sierpiński gasket with d ≥ 2 or the N -polygasket with N ≥ 3,
N/4 6∈ N (see Figure 2 below). The proofs of these facts, however, heavily relied on
the two important features of affine nested fractals — they are finitely ramified (i.e.
can be made disconnected by removing finitely many points) and highly symmetric.
In particular, the results of [21] were not applicable to self-similar fractals without
these properties like Hata’s tree-like set, which admits no isometric symmetry as
shown in Proposition 4.17 below, and the Sierpiński carpet, which is infinitely
ramified (see Figure 1).

The purpose of this paper is twofold. First, we replace the assumptions of
finite ramification and symmetry of the fractal with certain properties of the heat
kernel which are expected to be much robuster in many cases. In particular, our
main results imply the non-existence of the limit (1.3) for “generic” points x in the
cases of Hata’s tree-like set and of the Sierpiński carpet. Secondly, we establish not
only the non-existence of the limit (1.3) but also more detailed descriptions of the
oscillation of pt(x, x) as t ↓ 0 for “generic” points x of the self-similar fractal.

More specifically, let K be the self-similar set determined by a finite family
{Fi}i∈S of injective contraction maps on a complete metric space, so that K is a

1To be precise, the heat kernel estimate in [29] had been presented in terms of the Euclidean
metric, and the geodesic metric ρ was constructed later in [10].
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Figure 1. Examples of self-similar fractals within the reach of the
main results of this paper. From the left, two-dimensional level-3
Sierpiński gasket, pentagasket (5-polygasket), Hata’s tree-like set
and Sierpiński carpet

compact metrizable topological space satisfying K =
∪

i∈S Fi(K), and let V0 be
the set of boundary points of K (see Definition 2.3 for the precise definition of V0).
Assume K 6= V0, let µ be a Borel measure on K satisfying µ(Fw1 ◦ · · · ◦Fwm(K)) =
µw1 · · ·µwm for any w1 . . . wm ∈

∪
n∈N S

n for some (µi)i∈S ∈ (0, 1)S with
∑

i∈S µi =
1, and assume that (E ,F) is a self-similar symmetric regular Dirichlet form on
L2(K,µ) with resistance scaling factor r given by r =

(
µ

2/ds−1
i

)
i∈S

for some ds ∈
(0,∞) (see Definition 2.7 for details). Further assuming that (K,µ, E ,F) admits a
continuous heat kernel p = pt(x, y) and that the upper inequality of (1.1) holds for
t ∈ (0, 1] for some dw ∈ (1,∞) and a suitable metric ρ on K satisfying µ(Bs(x, ρ)) ≤
c1.3s

dsdw/2, (s, x) ∈ (0, 1] ×K, Bs(x, ρ) := {y ∈ K | ρ(x, y) < s}, we establish the
following assertions as the main results of this paper:
(NRV) p(·)(x, x) does not vary regularly at 0 for “generic” x ∈ K, if

(1.4) lim sup
t↓0

pt(y, y)
pt(z, z)

> 1 for some y, z ∈ K \ V0.

(NP) “Generic” x ∈ K does not admit a periodic function G : R → R such that

pt(x, x) = t−ds/2G(− log t) + o(t−ds/2) as t ↓ 0, if(1.5)

lim inf
t↓0

pt(y, y)
pt(z, z)

> 1 for some y, z ∈ K \ V0.(1.6)

Note that we still have the on-diagonal estimate (1.2) in this situation as shown
in Proposition 2.16 below, and recall (see e.g. [9, Section VIII.8]) that a Borel
measurable function f : (0,∞) → (0,∞) is said to vary regularly at 0 if and only
if the limit limt↓0 f(αt)/f(t) exists in (0,∞) for any α ∈ (0,∞). In particular, if
x ∈ K and p(·)(x, x) does not vary regularly at 0, then it also follows that the limit
(1.3) does not exist. Note also that a log-periodic behavior of the form (1.5) is
valid when x is the fixed point of Fw1 ◦ · · · ◦ Fwm for some w1 . . . wm ∈

∪
n∈N S

n

by Proposition 3.7 below, which is a slight generalization of [16, Theorems 4.6 and
5.3]. Such a log-periodic behavior has been observed in various contexts of analysis
on fractals such as Laplacian eigenvalue asymptotics on self-similar sets discussed
in [27, 16, 19] and long time asymptotics of the transition probability of the simple
random walk on self-similar graphs treated in [13, 28]. Contrary to these existent
results, the combination of (NRV) and (NP) asserts that pt(x, x) oscillates as t ↓ 0
in a non-log-periodic but still non-regularly varying way for “generic” x ∈ K as
long as the assumption (1.6) is satisfied.
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In fact, for (NP) we will actually prove the following stronger result: if (1.6)
is satisfied, then for “generic” x ∈ K and any periodic function G : R → R,

(1.7) lim sup
t↓0

∣∣∣tds/2pt(x, x) −G(− log t)
∣∣∣ ≥ My,z

2
,

where My,z := lim inft↓0 t
ds/2

(
pt(y, y) − pt(z, z)

)
∈ (0,∞) with y, z as in (1.6).

The proof of (NRV) and (NP) relies only on the self-similarity of the Dirichlet
space, the joint continuity of the heat kernel and its sub-Gaussian upper bound,
which are all known to hold quite in general, and is free of extra a priori assumptions.
Instead, however, we still need certain topological properties of the fractal K to
verify (1.4) or (1.6). Roughly speaking, (1.4) can be verified if the local geometry of
K around Fw1 ◦· · ·◦Fwm(x) is not the same for all x ∈ V0 and w1 . . . wm ∈

∪
n∈N S

n

with Fw1 ◦ · · · ◦Fwm(x) 6∈ V0, and so can (1.6) if in addition the fractal K (or more
precisely, the Dirichlet space (K,µ, E ,F)) has good symmetry.

For example, when K is the two-dimensional level-3 Sierpiński gasket in Figure
1, the barycenter is contained in three of the cells {Fi(K) | i ∈ S} but each of the
other points of

(∪
i∈S Fi(V0)

)
\ V0 is contained only in two of them, which and the

dihedral symmetry of K together imply (1.6). The pentagasket also satisfies (1.6)
for exactly the same reason, whereas only (1.4) can be verified for Hata’s tree-like
set due to the lack of symmetry although (1.6) could actually be the case. For the
Sierpiński carpet, and its generalizations called generalized Sierpiński carpets, (1.6)
is proved by using their symmetry under the isometries of the unit cube and the
fact that some faces of the cells {Fi(K) | i ∈ S} are contained only in one cell but
the others in two cells.

Unfortunately, actually the author does not have any idea whether (1.4) and
(1.6) are valid for the d-dimensional standard (level-2) Sierpiński gasket with d ≥ 2;
the argument in the previous paragraph does not work in this case since any x ∈(∪

m∈N
∪

w1...wm∈Sm Fw1 ◦ · · · ◦Fwm(V0)
)
\V0 has exactly two neighboring cells (see

Figure 2 below). In fact, it will be proved in a forthcoming paper [22] that p(·)(x, x)
does not vary regularly at 0 for any x ∈ K for certain specific post-critically finite
self-similar fractals K where very detailed information on the eigenvalues of the
Laplacian is known, including the d-dimensional standard Sierpiński gasket. This
result alone, however, does not exclude the possibility that (1.4) is not valid.

This article is organized as follows. In Section 2, we introduce our framework of
self-similar Dirichlet forms on self-similar sets and give the precise statements of our
main results (NRV) and (NP) in Theorems 2.17 and 2.18, respectively. Section 3 is
devoted to the proof of Theorems 2.17 and 2.18, and then they are applied to post-
critically finite self-similar fractals and generalized Sierpiński carpets in Sections
4 and 5, respectively. In Section 4, after recalling basics of self-similar Dirichlet
forms on post-critically finite self-similar fractals in Subsection 4.1, we verify (1.6)
for those with good symmetry such as affine nested fractals in Subsection 4.2,
and (1.4) for those possibly without good symmetry such as Hata’s tree-like set
in Subsection 4.3. Finally in Section 5, we first collect important facts concerning
generalized Sierpiński carpets and their canonical self-similar Dirichlet form and
then verify (1.6) for them.

Notation. In this paper, we adopt the following notation and conventions.
(1) N = {1, 2, 3, . . . }, i.e. 0 6∈ N.
(2) The cardinality (the number of elements) of a set A is denoted by #A.
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(3) We set sup ∅ := 0, inf ∅ := ∞ and set a ∨ b := max{a, b} and a ∧ b := min{a, b}
for a, b ∈ [−∞,∞]. All functions in this paper are assumed to be [−∞,∞]-valued.
(4) For d ∈ N, Rd is always equipped with the Euclidean norm | · |.
(5) Let E be a topological space. The Borel σ-field of E is denoted by B(E). We
set C(E) := {u | u : E → R, u is continuous}, suppE [u] := {x ∈ E | u(x) 6= 0} and
‖u‖∞ := supx∈E |u(x)| for u ∈ C(E). For A ⊂ E, intE A denotes its interior in E.
(6) Let E be a set, ρ : E × E → [0,∞) and x ∈ E. We set distρ(x,A) :=
infy∈A ρ(x, y) for A ⊂ E and Br(x, ρ) := {y ∈ E | ρ(x, y) < r} for r ∈ (0,∞).

2. Framework and main results

In this section, we first introduce our framework of a self-similar set and a
self-similar Dirichlet form on it, and then state the main theorems of this paper.

Let us start with standard notions concerning self-similar sets. We refer to
[23, Chapter 1], [25, Section 1.2] and [19, Subsection 2.2] for details. Throughout
this and the next sections, we fix a compact metrizable topological space K with
#K ≥ 2, a non-empty finite set S and a continuous injective map Fi : K → K for
each i ∈ S. We set L := (K,S, {Fi}i∈S).

Definition 2.1. (1) Let W0 := {∅}, where ∅ is an element called the empty
word, let Wm := Sm = {w1 . . . wm | wi ∈ S for i ∈ {1, . . . ,m}} for m ∈ N and let
W∗ :=

∪
m∈N∪{0}Wm. For w ∈ W∗, the unique m ∈ N ∪ {0} satisfying w ∈ Wm

is denoted by |w| and called the length of w. For i ∈ S and n ∈ N ∪ {0} we write
in := i . . . i ∈Wn.
(2) We set Σ := SN = {ω1ω2ω3 . . . | ωi ∈ S for i ∈ N}, which is always equipped
with the product topology, and define the shift map σ : Σ → Σ by σ(ω1ω2ω3 . . . ) :=
ω2ω3ω4 . . . . For i ∈ S we define σi : Σ → Σ by σi(ω1ω2ω3 . . . ) := iω1ω2ω3 . . . . For
ω = ω1ω2ω3 . . . ∈ Σ and m ∈ N ∪ {0}, we write [ω]m := ω1 . . . ωm ∈Wm.
(3) For w = w1 . . . wm ∈ W∗, we set Fw := Fw1 ◦ · · · ◦ Fwm (F∅ := idK), Kw :=
Fw(K), σw := σw1 ◦ · · · ◦ σwm (σ∅ := idΣ) and Σw := σw(Σ), and if w 6= ∅ then
w∞ ∈ Σ is defined by w∞ := www . . . in the natural manner.

Definition 2.2. L is called a self-similar structure if and only if there exists a
continuous surjective map π : Σ → K such that Fi ◦ π = π ◦ σi for any i ∈ S. Note
that such π, if exists, is unique and satisfies {π(ω)} =

∩
m∈N K[ω]m for any ω ∈ Σ.

In what follows we always assume that L is a self-similar structure, so that
#S ≥ 2 by #K ≥ 2 and π(Σ) = K. For A ⊂ K, the closure of A in K is denoted
by A.

Definition 2.3. (1) We define the critical set C and the post-critical set P of
L by

(2.1) C := π−1
(∪

i,j∈S, i 6=j Ki ∩Kj

)
and P :=

∪
n∈N σ

n(C).

L is called post-critically finite, or p.c.f. for short, if and only if P is a finite set.
(2) We set V0 := π(P), Vm :=

∪
w∈Wm

Fw(V0) for m ∈ N and V∗ :=
∪

m∈N Vm.
(3) We set KI := K \ V0, KI

w := Fw(KI) for w ∈W∗ and V∗∗ :=
∪

w∈W∗
Fw(V0).

V0 should be considered as the “boundary” of the self-similar set K; recall that
Kw∩Kv = Fw(V0)∩Fv(V0) for any w, v ∈W∗ with Σw∩Σv = ∅ by [23, Proposition
1.3.5-(2)]. Note that Fw(V0) =

∪
n∈N π(σw ◦ σn(C)) ∈ B(K) for any w ∈W∗ by the

compactness of Σ. According to [23, Lemma 1.3.11], Vm−1 ⊂ Vm for any m ∈ N,
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and if V0 6= ∅ then V∗ is dense in K. Furthermore by [19, Lemma 2.11], KI
w is open

in K and KI
w ⊂ KI for any w ∈W∗.

Definition 2.4. Let (µi)i∈S ∈ (0, 1)S satisfy
∑

i∈S µi = 1. A Borel probability
measure µ on K is called a self-similar measure on L with weight (µi)i∈S if and
only if the following equality (of Borel measures on K) holds:

(2.2) µ =
∑
i∈S

µiµ ◦ F−1
i .

Let (µi)i∈S ∈ (0, 1)S satisfy
∑

i∈S µi = 1. Then there exists a self-similar
measure on L with weight (µi)i∈S . Indeed, if ν is the Bernoulli measure on Σ with
weight (µi)i∈S , then ν ◦ π−1 is such a self-similar measure on L; see [23, Section
1.4] for details. Moreover by [25, Theorem 1.2.7 and its proof], if K 6= V0 and µ is a
self-similar measure on L with weight (µi)i∈S , then µ(Kw) = µw and µ(Fw(V0)) = 0
for any w ∈ W∗, where µw := µw1 · · ·µwm for w = w1 . . . wm ∈ W∗ (µ∅ := 1). In
particular, a self-similar measure on L with given weight is unique if K 6= V0.

The following lemmas are immediate from the above-mentioned facts.

Lemma 2.5. Assume K 6= V0, let µ be a self-similar measure on L with weight
(µi)i∈S and let w ∈W∗. Then

∫
K
|u◦Fw|dµ = µ−1

w

∫
Kw

|u|dµ for any Borel measur-
able u : K → [−∞,∞]. In particular, if we set F ∗

wu := u◦Fw for u : K → [−∞,∞],
then F ∗

w defines a bounded linear operator F ∗
w : L2(K,µ) → L2(K,µ).

Lemma 2.6. Let w ∈ W∗. For u : K → [−∞,∞], define (Fw)∗u : K →
[−∞,∞] by

(2.3) (Fw)∗u :=

{
u ◦ F−1

w on Kw,
0 on K \Kw.

If u is Borel measurable then so is (Fw)∗u, and if K 6= V0 in addition then∫
K
|(Fw)∗u|dµ = µw

∫
K
|u|dµ. In particular, if K 6= V0, then (Fw)∗ defines a

bounded linear operator (Fw)∗ : L2(K,µ) → L2(K,µ).

Next we define the notion of a homogeneously scaled self-similar Dirichlet space
and state its basic properties. The following definition is a special case of [19,
Definition 3.3]. See [11, Section 1.1] for basic notions concerning regular Dirichlet
forms.

Definition 2.7 (Homogeneously scaled self-similar Dirichlet space). Assume
K 6= V0. Let µ be a self-similar measure on L with weight (µi)i∈S , let ds ∈ (0,∞)
and set ri := µ

2/ds−1
i for i ∈ S. (E ,F) is called a homogeneously scaled self-similar

Dirichlet form on L2(K,µ) with spectral dimension ds if and only if it is a non-zero
symmetric regular Dirichlet form on L2(K,µ) satisfying the following conditions:
(SSDF1) u ◦ Fi ∈ F for any i ∈ S and any u ∈ F ∩ C(K).
(SSDF2) For any u ∈ F ∩ C(K),

(2.4) E(u, u) =
∑
i∈S

1
ri
E(u ◦ Fi, u ◦ Fi).

(SSDF3) (Fi)∗u ∈ F for any i ∈ S and any u ∈ F ∩ C(K) with suppK [u] ⊂ KI .
If (E ,F) is a homogeneously scaled self-similar Dirichlet form on L2(K,µ) with
spectral dimension ds, then (L, µ, E ,F) is called a homogeneously scaled self-similar
Dirichlet space with spectral dimension ds, and we call (µi)i∈S its weight.
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In the rest of this section, we assume that (L, µ, E ,F) is a homogeneously scaled
self-similar Dirichlet space with weight (µi)i∈S and spectral dimension ds. Then by
[19, Lemma 5.5], (SSDF1) and (SSDF2) still hold if F ∩C(K) is replaced with F .

Lemma 2.8. (E ,F) is conservative (i.e. 1 ∈ F and E(1,1) = 0) and strongly
local. Moreover, V0 6= ∅.

Proof. Since K is compact and (E ,F) is regular, F ∩ C(K) is dense in
(C(K), ‖ · ‖∞), so that there exists u ∈ F ∩C(K) such that ‖1−u‖∞ ≤ 1/2. Thus
1 = min{2u,1} ∈ F , and then it easily follows from (SSDF2) and

∑
i∈S r

−1
i =∑

i∈S µ
1−2/ds
i > 1 that E(1,1) = 0. Moreover, (E ,F) is local by [19, Lemma 3.4],

and it is also easily seen to be strongly local by virtue of its conservativeness.
Suppose V0 = ∅, so that π : Σ → K is a homeomorphism by [23, Proposition

1.3.5-(3)]. Then since Kw is compact and open, we easily see from the conserva-
tiveness of (E ,F) and [11, Theorem 1.4.2-(ii) and Exercise 1.4.1] that 1Kw ∈ F and
E(1Kw ,1Kw) = 0 for any w ∈W∗. This fact together with the denseness of the lin-
ear span of {1Kw}w∈W∗ in L2(K,µ) yields F = L2(K,µ) and E = 0, contradicting
the assumption that (E ,F) is non-zero. �

We need to introduce several geometric notions to formulate the assumption of
a sub-Gaussian heat kernel upper bound which is required for our main results. We
refer the reader to [25, Sections 1.1 and 1.3] and [19, Section 2] for further details.

Definition 2.9. (1) Let w, v ∈ W∗, w = w1 . . . wm, v = v1 . . . vn. We define
wv ∈ W∗ by wv := w1 . . . wmv1 . . . vn (w∅ := w, ∅v := v). We write w ≤ v if and
only if w = vτ for some τ ∈ W∗. Note that Σw ∩ Σv = ∅ if and only if neither
w ≤ v nor v ≤ w.
(2) A finite subset Λ of W∗ is called a partition of Σ if and only if Σw ∩Σv = ∅ for
any w, v ∈ Λ with w 6= v and Σ =

∪
w∈Λ Σw.

(3) Let Λ1,Λ2 be partitions of Σ. We say that Λ1 is a refinement of Λ2, and write
Λ1 ≤ Λ2, if and only if for each w1 ∈ Λ1 there exists w2 ∈ Λ2 such that w1 ≤ w2.

Definition 2.10. (1) Set γw := µ
1/ds
w for w ∈W∗. We define Λ1 := {∅},

(2.5) Λs := {w | w = w1 . . . wm ∈W∗ \ {∅}, γw1...wm−1 > s ≥ γw}

for each s ∈ (0, 1), and S := {Λs}s∈(0,1]. We call S the scale on Σ associated with
(L, µ, E ,F).
(2) For each (s, x) ∈ (0, 1] ×K, we define Λ0

s,x := {w ∈ Λs | x ∈ Kw}, U (0)
s (x) :=∪

w∈Λ0
s,x
Kw, and inductively for n ∈ N,

(2.6) Λn
s,x := {w ∈ Λs | Kw ∩ U (n−1)

s (x) 6= ∅} and U (n)
s (x) :=

∪
w∈Λn

s,x

Kw.

Clearly lims↓0 min{|w| | w ∈ Λs} = ∞, and it is easy to see that Λs is a partition
of Σ for any s ∈ (0, 1] and that Λs1 ≤ Λs2 for any s1, s2 ∈ (0, 1] with s1 ≤ s2. These
facts together with [23, Proposition 1.3.6] imply that for any n ∈ N ∪ {0} and any
x ∈ K, {U (n)

s (x)}s∈(0,1] is non-decreasing in s and forms a fundamental system of
neighborhoods of x in K. Note also that Λn

s,x and U
(n)
s (x) are non-decreasing in

n ∈ N ∪ {0} for any (s, x) ∈ (0, 1] ×K.
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We would like to consider U (n)
s (x) to be a “ball of radius s centered at x”. The

following definition formulates the situation where U (n)
s (x) may be thought of as

actual balls with respect to a distance function on K.

Definition 2.11. (1) Let ρ : K ×K → [0,∞). For α ∈ (0,∞), ρ is called an
α-qdistance on K if and only if ρα := ρ(·, ·)α is a distance on K. Moreover, ρ is
called a qdistance on K if and only if it is an α-qdistance on K for some α ∈ (0,∞).
(2) A qdistance ρ onK is called adapted to S if and only if there exist β1, β2 ∈ (0,∞)
and n ∈ N such that for any (s, x) ∈ (0, 1] ×K,

(2.7) Bβ1s(x, ρ) ⊂ U (n)
s (x) ⊂ Bβ2s(x, ρ).

If ρ is an α-qdistance on K adapted to S, then ρα is compatible with the original
topology of K, since {U (n)

s (x)}s∈(0,1] is a fundamental system of neighborhoods of
x in the original topology of K.

Definition 2.12. We say that S is locally finite with respect to L, or simply
(L, S) is locally finite, if and only if sup{#Λ1

s,x | (s, x) ∈ (0, 1] ×K} <∞.

Note that by [23, Lemma 1.3.6], (L, S) is locally finite if and only if sup{#Λn
s,x |

(s, x) ∈ (0, 1] × K} < ∞ for any n ∈ N. The local finiteness of (L, S) is closely
related with local behavior of µ. In fact, we have the following proposition.

Proposition 2.13. Set γ := mini∈S γi and let n ∈ N ∪ {0}. Then for any
(s, x) ∈ (0, 1] ×K,

(2.8) γdssds#Λn
s,x ≤ µ

(
U (n)

s (x)
)
≤ sds#Λn

s,x.

In particular, for fixed n ∈ N, (L, S) is locally finite if and only if there exist
cV,n ∈ (0,∞) such that µ

(
U

(n)
s (x)

)
≤ cV,ns

ds for any (s, x) ∈ (0, 1] ×K,

Proof. We easily see from the definition (2.5) of Λs that

(2.9) γdssds < µw ≤ sds , s ∈ (0, 1], w ∈ Λs.

Since µ(Kw) = µw and µ(Fw(V0)) = 0 for any w ∈ W∗ by the assumption that
K 6= V0, (2.9) implies that for any (s, x) ∈ (0, 1] ×K,

γdssds#Λn
s,x ≤

∑
w∈Λn

s,x

µw =
∑

w∈Λn
s,x

µ(Kw) = µ
(
U (n)

s (x)
)
≤ sds#Λn

s,x,

proving (2.8). The latter assertion is immediate from (2.8). �
Next we prepare fundamental conditions for our main results concerning the

heat kernel of (K,µ, E ,F).

Definition 2.14 (CHK). We say that (K,µ, E ,F) satisfies (CHK), or sim-
ply (CHK) holds, if and only if the Markovian semigroup {Tt}t∈(0,∞) on L2(K,µ)
associated with (E ,F) admits a continuous integral kernel p, i.e. a continuous func-
tion p = pt(x, y) : (0,∞) × K × K → R such that for any u ∈ L2(K,µ) and any
t ∈ (0,∞),

(2.10) Ttu =
∫

K

pt(·, y)u(y)dµ(y) µ-a.e.

Such p, if exists, is unique and satisfies pt(x, y) = pt(y, x) ≥ 0 for any (t, x, y) ∈
(0,∞)×K×K by a standard monotone class argument. p is called the (continuous)
heat kernel of (K,µ, E ,F).
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Definition 2.15 (CUHK). We say that (L, µ, E ,F) satisfies (CUHK), or sim-
ply (CUHK) holds, if and only if (L, S) is locally finite, (K,µ, E ,F) satisfies (CHK)
and there exist dw ∈ (1,∞), a (2/dw)-qdistance ρ on K adapted to S and c2.1, c2.2 ∈
(0,∞) such that for any (t, x, y) ∈ (0, 1] ×K ×K,

(2.11) pt(x, y) ≤ c2.1t
−ds/2 exp

(
−c2.2

(ρ(x, y)2
t

) 1
dw−1

)
.

Note that (CUHK) remains the same if we replace t−ds/2 with 1/µ
(
B√

t(x, ρ)
)

in (2.11) and omit the condition that (L, S) is locally finite; indeed, this equivalence
easily follows from Definition 2.11-(2), Proposition 2.13 and [19, Proposition 5.8].

Proposition 2.16. Suppose that (CUHK) holds. Then there exist c2.3, c2.4 ∈
(0,∞) such that for any x ∈ K,

(2.12) c2.3 ≤ tds/2pt(x, x) ≤ c2.4, t ∈ (0, 1].

Proof. tds/2pt(x, x) ≤ c2.1 for any (t, x) ∈ (0, 1] ×K by (2.11). For the lower
bound we follow [24, Proof of Theorem 2.13]. Let ρ be the qdistance on K as in
Definition 2.15. Since (L, S) is assumed to be locally finite, Definition 2.11-(2) and
Proposition 2.13 easily imply that µ(Br(x, ρ)) ≤ c2.5r

ds for any (r, x) ∈ (0,∞)×K
for some c2.5 ∈ (0,∞), and the same calculation as [24, Proof of Lemma 4.6-(1)]
shows that

∫
K\Bδ

√
t(x,ρ)

pt(x, y)dµ(y) ≤ 1/2 for any (t, x) ∈ (0, 1] × K for some
δ ∈ (0,∞). Now for (t, x) ∈ (0, 1] × K, the conservativeness of (E ,F) yields∫

K
pt(x, y)dµ(y) = 1, and hence

1
2
≤ 1 −

∫
K\Bδ

√
t(x,ρ)

pt(x, y)dµ(y) =
∫

Bδ
√

t(x,ρ)

pt(x, y)dµ(y)

≤

√
µ
(
Bδ

√
t(x, ρ)

) ∫
K

pt(x, y)2dµ(y) ≤
√
c2.5δdstds/2p2t(x, x)

by the symmetry and the semigroup property of the heat kernel p, proving the
lower inequality in (2.12). �

Now we are in the stage of stating the main theorems of this paper. Note that
any Borel measure on K vanishing on V∗(∈ B(K)) is of the form ν ◦ π−1 with ν a
Borel measure on Σ, since π|Σ\π−1(V∗) : Σ\π−1(V∗) → K \V∗ is a homeomorphism.
Recall the following notions: a Borel measure ν on Σ is called σ-ergodic if and only
if ν ◦ σ−1 = ν and ν(A)ν(Σ \A) = 0 for any A ∈ B(Σ) with σ−1(A) = A, and it is
said to have full support if and only if ν(U) > 0 for any non-empty open subset U
of Σ. Recall also that we set KI := K \ V0 and V∗∗ :=

∪
w∈W∗

Fw(V0).

Theorem 2.17. Suppose that (CUHK) holds and that

(2.13) lim sup
t↓0

pt(y, y)
pt(z, z)

> 1 for some y, z ∈ KI .

Then there exists NRV ∈ B(K) satisfying V∗∗ ⊂ NRV and ν ◦π−1(NRV) = 0 for any
σ-ergodic finite Borel measure ν on Σ with full support, such that p(·)(x, x) does not

vary regularly at 0 for any x ∈ K \NRV. In particular, the limit limt↓0 t
ds/2pt(x, x)

does not exist for any x ∈ K \NRV.

Note that (2.13) does not hold if and only if limt↓0 pt(y, y)/pt(z, z) = 1 for any
y, z ∈ KI .
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Theorem 2.18. Suppose that (CUHK) holds and that

(2.14) lim inf
t↓0

pt(y, y)
pt(z, z)

> 1 for some y, z ∈ KI .

Then there exists NP ∈ B(K) satisfying V∗∗ ⊂ NP and ν ◦ π−1(NP) = 0 for any σ-
ergodic finite Borel measure ν on Σ with full support, such that for any x ∈ K \NP

and any periodic function G : R → R,

(2.15) lim sup
t↓0

∣∣∣tds/2pt(x, x) −G(− log t)
∣∣∣ ≥ My,z

2
,

where My,z := lim inft↓0 t
ds/2

(
pt(y, y) − pt(z, z)

)
∈ (0,∞) with y, z as in (2.14).

Note that by (2.12), for each y, z ∈ K, lim inft↓0 pt(y, y)/pt(z, z) > 1 if and
only if lim inft↓0 t

ds/2
(
pt(y, y) − pt(z, z)

)
∈ (0,∞).

Remark 2.19. Let y, z ∈ KI be as in (2.13) or (2.14). Then the sets NRV

in Theorem 2.17 and NP in Theorem 2.18 can be given explicitly in terms of (and
hence can be determined solely by) y, z and π; see (3.8), Lemmas 3.10 and 3.12
below.

The proof of Theorems 2.17 and 2.18 is given in the next section. As we will see
in Sections 4 and 5, the conditions (2.13) and (2.14) are satisfied for many typical
examples such as most nested fractals and all generalized Sierpiński carpets.

3. Proof of Theorems 2.17 and 2.18

Throughout this section, we fix a homogeneously scaled self-similar Dirichlet
space (L = (K,S, {Fi}i∈S), µ, E ,F) with weight (µi)i∈S and spectral dimension ds

and assume that (CUHK) holds with dw and ρ as in Definition 2.15.

Definition 3.1. Let U be a non-empty open subset of K. We define µ|U :=
µ|B(U),

(3.1) FU := {u ∈ F ∩ C(K) | suppK [u] ⊂ U} and EU := E|FU×FU
,

where the closure is taken in the Hilbert space F with inner product E1(u, v) :=
E(u, v) +

∫
K
uvdµ. (EU ,FU ) is called the part of the Dirichlet form (E ,F) on U .

Since u = 0 µ-a.e. on K \ U for any u ∈ FU , we can regard FU as a linear
subspace of L2(U, µ|U ) in the natural manner. Under this identification, we have
the following lemma.

Lemma 3.2. Let U be a non-empty open subset of K. Then (EU ,FU ) is a
strongly local regular Dirichlet form on L2(U, µ|U ) whose associated Markovian
semigroup {TU

t }t∈(0,∞) admits a unique continuous integral kernel pU = pU
t (x, y) :

(0,∞) × U × U → R, called the Dirichlet heat kernel on U , similarly to (2.10).
Moreover, 0 ≤ pU

t (x, y) = pU
t (y, x) ≤ pt(x, y) for any (t, x, y) ∈ (0,∞) × U × U .

Proof. Recall Lemma 2.8. The regularity of (E ,F) yields that of (EU ,FU )
by (3.1) and [11, Lemma 1.4.2-(ii)], and the strong locality of (E ,F) implies
that of (EU ,FU ). Since (E ,F) is conservative, a continuous integral kernel pU

of {TU
t }t∈(0,∞) exists by [19, Lemma 7.11-(2)] and (CUHK), and a monotone class

argument immediately shows the uniqueness of such pU . Finally, the last assertion
easily follows from [25, (C.2)] and a monotone class argument again. �
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Lemma 3.3. Let U be a non-empty open subset of K. Then for any (t, x, y) ∈
(0,∞) × U × U ,

(3.2) pt(x, y) − pU
t (x, y) ≤ sup

s∈[t/2, t]

sup
z∈U\U

ps(x, z) + sup
s∈[t/2, t]

sup
z∈U\U

ps(z, y).

Proof. This is immediate from [15, Theorem 5.1] (or [14, Theorem 10.4]), the
continuity of the heat kernels pt(x, y) and pU

t (x, y) and the compactness of U . �
Lemma 3.4. Let w ∈W∗. Then for any (t, x, y) ∈ (0,∞) ×KI ×KI ,

(3.3) (γ2
wt)

ds/2p
KI

w

γ2
wt

(
Fw(x), Fw(y)

)
= tds/2pKI

t (x, y).

Proof. Fw|KI : KI → KI
w is clearly a homeomorphism, and F ∗

w defines a
bijection F ∗

w : L2(KI
w, µ|KI

w
) → L2(KI , µ|KI ) such that F ∗

w(FKI
w
) = FKI by [19,

Lemma 5.5]. Moreover, γds
w

∫
KI (F ∗

wu)
2dµ =

∫
KI

w
u2dµ for any u ∈ L2(KI

w, µ|KI
w
)

by Lemma 2.5 and γds−2
w E(F ∗

wu, F
∗
wu) = E(u, u) for any u ∈ FKI

w
by (SSDF2). It

easily follows from these facts and [11, Lemma 1.3.4-(i)] that F ∗
wT

KI
w

γ2
wt = TKI

t F ∗
w for

any t ∈ (0,∞), which and the uniqueness of the continuous heat kernels pKI
w and

pKI

imply (3.3). �
Lemma 3.5. There exists c3.1 ∈ (0,∞) such that for any x ∈ K and any

w ∈W∗,

(3.4) distρ

(
Fw(x), Fw(V0)

)
≥ c3.1γw distρ(x, V0).

Proof. Let β1, β2 ∈ (0,∞) and n ∈ N be as in Definition 2.11-(2) for the
qdistance ρ, let x ∈ K, w ∈ W∗ and set δ := distρ(x, V0). The assertion is obvious
for x ∈ V0. Assuming x ∈ K \ V0 = KI , by K = U

(n)
1 (x) ⊂ Bβ2(x, ρ) we have

ρ(x, y) < β2 for any y ∈ K and hence δ ∈ (0, β2) (recall that V0 6= ∅ by Lemma
2.8), and U (n)

δ/β2
(x) ∩ V0 = ∅ since U (n)

δ/β2
(x) ⊂ Bδ(x, ρ) ⊂ KI . Then an induction in

k easily shows that Λk
γwδ/β2,Fw(x) =

{
wv

∣∣ v ∈ Λk
δ/β2,x

}
for any k ∈ {0, . . . , n}, and

hence

Bγwδβ1/β2(Fw(x), ρ) ⊂ U
(n)
γwδ/β2

(Fw(x)) = Fw

(
U

(n)
δ/β2

(x)
)
⊂ KI

w = Kw \ Fw(V0).

Thus ρ(Fw(x), y) ≥ γwδβ1/β2 = (β1/β2)γw distρ(x, V0) for any y ∈ Fw(V0) and
(3.4) follows with c3.1 := β1/β2. �

Lemma 3.6. There exist c3.2, c3.3 ∈ (0,∞) such that for any (t, x) ∈ (0, 1]×KI

and any w ∈W∗,∣∣∣(γ2
wt)

ds/2pγ2
wt

(
Fw(x), Fw(x)

)
− tds/2pt(x, x)

∣∣∣
≤ c3.2 exp

(
−c3.3 distρ(x, V0)

2
dw−1 t−

1
dw−1

)
.

(3.5)

Proof. We easily see from (2.11), Lemmas 3.3 and 3.5 that, with c3.2 :=

21+ds/2c2.1 and c3.3 := c2.2c
2

dw−1
3.1 , for any w ∈W∗ and any (t, x) ∈ (0, γ−2

w ] ×KI ,

0 ≤ (γ2
wt)

ds/2
(
pγ2

wt

(
Fw(x), Fw(x)

)
− p

KI
w

γ2
wt

(
Fw(x), Fw(x)

))
≤ c3.2 exp

(
−c3.3 distρ(x, V0)

2
dw−1 t−

1
dw−1

)
,

(3.6)

which together with Lemma 3.4 immediately shows (3.5). �
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Proposition 3.7. Let w ∈W∗ \ {∅}, set xw := π(w∞) and suppose xw ∈ KI .
Then there exist constants c3.4, c3.5 ∈ (0,∞) independent of w and a continu-
ous log(γ−2

w )-periodic function Gw : R → (0,∞) such that for any t ∈
(
0, 1 ∧

distρ(xw, V0)2
]
,

(3.7)
∣∣∣tds/2pt(xw, xw) −Gw(− log t)

∣∣∣ ≤ c3.4 exp
(
−c3.5 distρ(xw, V0)

2
dw−1 t−

1
dw−1

)
.

Proof. Note that Fw(xw) = xw ∈ KI
w. Since pKI

w ≤ pKI ≤ p on (0,∞)×KI
w×

KI
w by KI

w ⊂ KI , [25, (C.2)] and a monotone class argument, we see from (3.6) and
Lemma 3.4 that for any t ∈ (0, γ−2

w ], (γ2
wt)

ds/2pKI

γ2
wt(xw, xw) − tds/2pKI

t (xw, xw) is
subject to the same upper and lower bounds as those in (3.6) with x = xw. On the
other hand, by [8, Theorem 2.1.4], the generator ∆KI of {TKI

t }t∈(0,∞) has compact
resolvent, pKI

admits the eigenfunction expansion [8, (2.1.4)], and it easily follows
from these facts that pKI

t (x, y) ≤
(
2dsc22.4e

λ0
1
)
e−λ0

1t for any t ∈ [1,∞), where λ0
1

denotes the smallest eigenvalue of −∆KI . Moreover, we have λ0
1 > 0; indeed, if

E(u, u) = 0 for some u ∈ FKI \ {0}, then for any w ∈ W∗, (Fw)∗u ∈ FKI
w

⊂
FKI by [19, Lemma 5.5] and E

(
(Fw)∗u, (Fw)∗u

)
= 0 by (SSDF2), contradicting

dimker∆KI = dim{v ∈ FKI | E(v, v) = 0} < ∞. Now exactly the same argument
as [16, Proof of Theorem 4.6] easily shows the existence of a continuous log(γ−2

w )-
periodic function Gw : R → R satisfying (3.7) with pKI

t in place of pt (see also [23,
Proof of Theorem B.4.3] for the remainder estimate). Then (3.7) follows by using
(3.6) with xw and ∅ in place of x and w, respectively, and Proposition 2.16 implies
that Gw is (0,∞)-valued. �

In the rest of this section, we fix the following setting:

(3.8)

Let y, z ∈ KI , ωy ∈ π−1(y) and ωz ∈ π−1(z). Define wn := [ωy]n,
vn := [ωz]n, xn := π((wnvn)∞) and x̃n := π((vnwn)∞) for n ∈ N.
Also set n0 := 1 + sup{n ∈ N | {xn, x̃n} 6⊂ KI} and for n ≥ n0 let
Gn denote the periodic function Gwnvn given in Proposition 3.7 for
w = wnvn. Finally, set D := infn≥n0 distρ(xn, V0) ∧ distρ(x̃n, V0).

Note that n0 <∞ and D > 0 by limn→∞ xn = y ∈ KI and limn→∞ x̃n = z ∈ KI .

Lemma 3.8. Let ε ∈ (0,∞), δ ∈ (0, 1 ∧ D2] and α ∈ (0, 1], and suppose that
c3.4 exp

(
−c3.5(D2/δ)

1
dw−1

)
≤ ε/2. Then there exists n1 ≥ n0 such that for any

n ≥ n1 and any t ∈ [αδ, δ],

(3.9)
∣∣∣tds/2pt(y, y) −Gn(− log t)

∣∣∣ ≤ ε,
∣∣∣tds/2pt(z, z) −Gn

(
− log(γ2

wn
t)

)∣∣∣ ≤ ε.

Proof. Let n ≥ n0 and let G̃n be the periodic function Gvnwn
given in Propo-

sition 3.7 for w = vnwn. Then limt↓0
∣∣G̃n(− log t)−Gn

(
− log(γ2

wn
t)

)∣∣ = 0 by Lemma
3.6 and Proposition 3.7, and hence G̃n = Gn

(
· − log(γ2

wn
)
)

in view of the fact that
Gn and G̃n are both log(γ−2

wnvn
)-periodic.

Since limn→∞ xn = y, limn→∞ x̃n = z and the heat kernel p is uniformly
continuous on [αδ, δ] ×K ×K, we can choose n1 ≥ n0 so that

(3.10) tds/2
∣∣pt(xn, xn) − pt(y, y)

∣∣ ≤ ε

2
and tds/2

∣∣pt(x̃n, x̃n) − pt(z, z)
∣∣ ≤ ε

2
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for any n ≥ n1 and any t ∈ [αδ, δ]. Now for such n and t, Proposition 3.7, (3.10),
c3.4 exp

(
−c3.5(D2/δ)

1
dw−1

)
≤ ε/2 and G̃n = Gn

(
·− log(γ2

wn
)
)

together immediately
yield (3.9). �

Lemma 3.9. Assume lim inft↓0 pt(y, y)/pt(z, z) > 1. Let ε ∈ (0,∞), δ0 ∈
(0, 1∧D2], α ∈ (0, 1] and set My,z := lim inft↓0 t

ds/2
(
pt(y, y)−pt(z, z)

)
. Then there

exist δ ∈ (0, δ0] and n2 ≥ n0 such that for any n ≥ n2 and any t ∈ [αδ, δ],

(3.11) Gn(− log t) ≥ min
R
Gn +My,z − ε.

Proof. Choose δ ∈ (0, δ0] so that inft∈(0,δ] t
ds/2

(
pt(y, y) − pt(z, z)

)
≥ My,z −

ε/3 and c3.4 exp
(
−c3.5(D2/δ)

1
dw−1

)
≤ ε/6. Also let n1 ≥ n0 be as in Lemma 3.8

for ε/3, δ, α and set n2 := n1. Then by (3.9), for any n ≥ n2 and any t ∈ [αδ, δ],

Gn(− log t) ≥ tds/2pt(y, y) − ε/3 ≥ tds/2pt(z, z) +My,z − 2ε/3

≥ Gn

(
− log(γ2

wn
t)

)
+My,z − ε ≥ min

R
Gn +My,z − ε,

completing the proof. �

Lemma 3.10. Let q ∈ KI and define Nq ⊂ K by

(3.12) Nq :=
{
x ∈ K

∣∣∣∣ π(σmk(ω)) does not converge to q as k → ∞ for any
ω ∈ π−1(x) and any strictly increasing {mk}k∈N ⊂ N

}
.

Then Nq ∈ B(K), V∗∗ ⊂ Nq and ν ◦ π−1(Nq) = 0 for any σ-ergodic finite Borel
measure ν on Σ with full support.

Proof. V∗ ⊂ Nq since σm(π−1(Vm)) = P for m ∈ N∪{0} by [23, Proposition
1.3.5-(1)]. Noting that π|Σ\π−1(V∗) : Σ \ π−1(V∗) → K \ V∗ is a homeomorphism,
we get Nq = V∗ ∪ π({ω ∈ Σ \ π−1(V∗) | lim infm→∞ ρ(π(σm(ω)), q) > 0}) ∈ B(K).
Let x ∈ V∗∗ \ V∗, so that x = Fw(π(ω)) for some w ∈ W∗ and ω ∈ π−1(V0 \ V∗).
By π(ω) ∈ V0, π−1(V0) = P and the compactness of Σ, there exist τ ∈ Σ and
{ωn}n∈N ⊂ P such that π(ωn) → π(ω) and ωn → τ as n → ∞, but then π(ω) =
π(τ) ∈ K \V∗ and hence ω = τ ∈ P. Thus σm(ω) ∈ σm(P) ⊂ P and π(σm(ω)) ∈ V0

for any m ∈ N and therefore x ∈ Nq on account of π−1(x) = {σw(ω)}, proving
V∗∗ ⊂ Nq. Finally, since Nq can be written as∪

n∈N

{
x ∈ K

∣∣∣ lim
m→∞

distρ

(
π(σm(ω)),K \B1/n(q, ρ)

)
= 0 for any ω ∈ π−1(x)

}
,

the last assertion follows in exactly the same way as [21, Proposition 3.2]. �

Lemma 3.11. Let x ∈ K, ω ∈ π−1(x), n ≥ n0 and let {mk}k∈N ⊂ N be strictly
increasing and satisfy limk→∞ π(σmk(ω)) = xn. Let ε ∈ (0,∞), let δ ∈ (0, 1 ∧D2]
satisfy c3.6 exp

(
−c3.7(D2/δ)

1
dw−1

)
< ε/3 with c3.6 := c3.2∨c3.4 and c3.7 := c3.3∧c3.5,

and let α ∈ (0, 1]. Then there exists k1 ∈ N such that for any k ≥ k1 and any
t ∈ [αδ, δ],

(3.13)
∣∣∣(γ2

[ω]mk
t
)ds/2

pγ2
[ω]mk

t(x, x) −Gn(− log t)
∣∣∣ ≤ ε.



14 NAOTAKA KAJINO

Proof. Since limk→∞ π(σmk(ω)) = xn and the heat kernel p is uniformly
continuous on [αδ, δ] ×K ×K, we can choose k1 ∈ N so that for any k ≥ k1,

tds/2
∣∣pt

(
π(σmk(ω)), π(σmk(ω))

)
− pt(xn, xn)

∣∣ ≤ ε

3
, t ∈ [αδ, δ],(3.14)

c3.6 exp
(
−c3.7 distρ

(
π(σmk(ω)), V0

) 2
dw−1 δ−

1
dw−1

)
≤ ε

3
.(3.15)

Now for such k and t, noting that π(σmk(ω)) ∈ K \Nxn ⊂ KI by Lemma 3.10, we
obtain (3.13) from Lemma 3.6 with π(σmk(ω)) and [ω]mk

in place of x and w, (3.15),
(3.14), Proposition 3.7 with w = wnvn, and c3.6 exp

(
−c3.7(D2/δ)

1
dw−1

)
< ε/3. �

Lemma 3.12. Recalling (3.12), set N :=
∪

k≥n0

∩
n≥k Nxn and let x ∈ K \N .

(1) If lim supt↓0 pt(y, y)/pt(z, z) > 1, then p(·)(x, x) does not vary regularly at 0.
(2) If lim inft↓0 pt(y, y)/pt(z, z) > 1, then (2.15) holds for any periodic function
G : R → R, where My,z := lim inft↓0 t

ds/2
(
pt(y, y) − pt(z, z)

)
.

Proof. Let ω ∈ π−1(x) and let c2.3, c2.4 ∈ (0,∞) be as in Proposition 2.16.
(1) Set M := lim supt↓0 pt(y, y)/pt(z, z) − 1 and ε := c2.3M/10. Choose δ ∈ (0, 1 ∧
D2] so that c3.6 exp

(
−c3.7(D2/δ)

1
dw−1

)
< ε/3 and pδ(y, y)/pδ(z, z) ≥ 1 +M/2, and

let n1 ≥ n0 be as in Lemma 3.8 for these ε, δ and α = 1. By x ∈ K \ N we
can take n ≥ n1 such that x ∈ K \ Nxn , and then limk→∞ π(σmk(ω)) = xn for
some strictly increasing {mk}k∈N ⊂ N. Let k1 ∈ N be as in Lemma 3.11 for these
x, ω, n, {mk}k∈N, ε, δ and α = γ2

wn
. Then by (3.13), (3.9) and (2.12), for any k ≥ k1,(

γ2
[ω]mk

δ
)ds/2

pγ2
[ω]mk

δ(x, x) −
(
γ2
[ω]mk

γ2
wn
δ
)ds/2

pγ2
[ω]mk

γ2
wn

δ(x, x)

≥ Gn(− log δ) −Gn

(
− log(γ2

wn
δ)

)
− 2ε ≥ δds/2pδ(y, y) − δds/2pδ(z, z) − 4ε

≥ (1 +M/2 − 1)δds/2pδ(z, z) − 4ε ≥ c2.3M/2 − 4ε = ε,

which together with (2.12) yields, by letting k → ∞,

(3.16) lim sup
t↓0

tds/2pt(x, x)
(γ2

wn
t)ds/2pγ2

wn
t(x, x)

≥ 1 +
ε

c2.4
> 1.

Now suppose that p(·)(x, x) varies regularly at 0, so that by [9, Section VIII.8,
Lemma 1], pt(x, x) = tβL(t) for any t ∈ (0,∞) for some β ∈ R and L : (0,∞) →
(0,∞) varying slowly at 0 (i.e. such that limt↓0 L(αt)/L(t) = 1 for any α ∈ (0,∞)).
Then (2.12) yields c2.3 ≤ tβ+ds/2L(t) ≤ c2.4 for t ∈ (0, 1], which and [9, Section
VIII.8, Lemma 2] imply β = −ds/2. It follows that tds/2pt(x, x) = L(t) varies
slowly at 0, which contradicts (3.16). Thus pt(x, x) does not vary regularly at 0.
(2) Let G : R → R be T -periodic with T ∈ (0,∞). Let ε ∈ (0,∞), let δ0 ∈ (0, 1∧D2]
be such that c3.6 exp

(
−c3.7(D2/δ0)

1
dw−1

)
< ε/3, and let δ ∈ (0, δ0] and n2 ≥ n0

be as in Lemma 3.9 for ε, δ0 and α = e−T . By x ∈ K \ N we can choose n ≥ n2

so that γ2
wnvn

≤ e−T and x ∈ K \ Nxn
, and then limk→∞ π(σmk(ω)) = xn for

some strictly increasing {mk}k∈N ⊂ N. Let k1 ∈ N be as in Lemma 3.11 for these
x, ω, n, {mk}k∈N, ε, δ and α = γ2

wnvn
. Since Gn is log(γ−2

wnvn
)-periodic, minR Gn =

Gn(− log tn,1) for some tn,1 ∈ [γ2
wnvn

δ, δ], and then there exist tn,0 ∈ [e−T δ, δ]
and ln ∈ N ∪ {0} such that − log tn,1 = − log tn,0 + lnT . Now it follows from
G = G(· + lnT ), (3.13) with α = γ2

wnvn
, (3.11) with α = e−T and Gn(− log tn,1) =
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minR Gn that for any k ≥ k1,∑
j∈{0,1}

(−1)j
((
γ2
[ω]mk

tn,j

)ds/2
pγ2

[ω]mk
tn,j

(x, x) −G
(
− log(γ2

[ω]mk
tn,j)

))
=

(
γ2
[ω]mk

tn,0

)ds/2
pγ2

[ω]mk
tn,0

(x, x) −
(
γ2
[ω]mk

tn,1

)ds/2
pγ2

[ω]mk
tn,1

(x, x)

≥ Gn(− log tn,0) −Gn(− log tn,1) − 2ε ≥My,z − 3ε,

which implies

(3.17) max
j∈{0,1}

∣∣∣(γ2
[ω]mk

tn,j

)ds/2
pγ2

[ω]mk
tn,j

(x, x)−G
(
− log(γ2

[ω]mk
tn,j)

)∣∣∣ ≥ My,z

2
−3

2
ε.

Letting k → ∞ and then ε ↓ 0 in (3.17) shows (2.15). �

Proof of Theorems 2.17 and 2.18. Setting NRV := NP := N with N ∈
B(K) as in Lemma 3.12, we conclude Theorems 2.17 and 2.18 from Lemmas 3.10
and 3.12. �

4. Post-critically finite self-similar fractals

In this and the next sections, we apply Theorems 2.17 and 2.18 to concrete ex-
amples. First in this section, we consider the case of post-critically finite self-similar
fractals, and the next section treats the case of generalized Sierpiński carpets.

Throughout this section, we assume that L = (K,S, {Fi}i∈S) is a post-critically
finite self-similar structure with K connected and #K ≥ 2; see [23, Theorem 1.6.2]
for a simple equivalent condition forK to be connected. In particular, 2 ≤ #V0 <∞
and V∗ is countably infinite and dense in K, so that K 6= V0 = V0 and V∗∗ = V∗.

4.1. Harmonic structures and resulting self-similar Dirichlet spaces.
First in this subsection, we briefly describe the construction of a homogeneously
scaled self-similar Dirichlet space over K; see [23, Chapter 3] for details. Let
D = (Dxy)x,y∈V0 be a real symmetric matrix of size #V0 (which we also regard as
a linear operator on RV0) such that
(D1) {u ∈ RV0 | Du = 0} = R1V0 ,
(D2) Dxy ≥ 0 for any x, y ∈ V0 with x 6= y.

We define E(0)(u, v) := −
∑

x,y∈V0
Dxyu(y)v(x) for u, v ∈ RV0 , so that (E(0),RV0)

is a Dirichlet form on L2(V0,#). Furthermore let r = (ri)i∈S ∈ (0,∞)S and define

(4.1) E(m)(u, v) :=
∑

w∈Wm

1
rw

E(0)(u ◦ Fw|V0 , v ◦ Fw|V0), u, v ∈ RVm

for each m ∈ N, where rw := rw1rw2 · · · rwm for w = w1w2 . . . wm ∈Wm (r∅ := 1).

Definition 4.1. The pair (D, r) with D and r as above is called a harmonic
structure on L if and only if E(0)(u, u) = infv∈RV1 , v|V0=u E(1)(v, v) for any u ∈ RV0 ;
note that then E(m)(u, u) = minv∈RVm+1 , v|Vm=u E(m+1)(v, v) for any m ∈ N ∪ {0}
and any u ∈ RVm . If r ∈ (0, 1)S in addition, then (D, r) is called regular.

In the rest of this section, we assume that (D, r) is a regular harmonic structure
on L. Let dH ∈ (0,∞) be such that

∑
i∈S r

dH
i = 1, set µi := rdH

i for i ∈ S and let
µ be the self-similar measure on L with weight (µi)i∈S . We set ds := 2dH/(dH +1),
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so that ri = µ
2/ds−1
i for each i ∈ S. In this case, {E(m)(u|Vm , u|Vm)}m∈N∪{0} is

non-decreasing and hence has the limit in [0,∞] for any u ∈ C(K). Then we define

F := {u ∈ C(K) | limm→∞ E(m)(u|Vm , u|Vm) <∞},

E(u, v) := limm→∞ E(m)(u|Vm , v|Vm) ∈ R, u, v ∈ F ,
(4.2)

so that (E ,F) is easily seen to satisfy the conditions (SSDF1), (SSDF2) and (SSDF3)
of Definition 2.7. By [23, Theorem 3.3.4], (E ,F) is a resistance form on K whose
resistance metric R : K ×K → [0,∞) is compatible with the original topology of
K, and then [26, Corollary 6.4 and Theorem 9.4] imply that (E ,F) is a non-zero
symmetric regular Dirichlet form on L2(K,µ); see [23, Definition 2.3.1] or [26,
Definition 3.1] for the definition of resistance forms and their resistance metrics.
Thus (L, µ, E ,F) is a homogeneously scaled self-similar Dirichlet space with weight
(µi)i∈S and spectral dimension ds. Note that ds ∈ (0, 2) in this case.

Remark 4.2. As described in [23, Sections 3.1–3.3], even for a non-regular
harmonic structure (D, r = (ri)i∈S) on L, in a similar way as above we can still
construct a resistance form (E ,F) on (a certain proper Borel subset of) K which
satisfies (suitable modifications of) (SSDF1), (SSDF2) and (SSDF3). Such (D, r),
however, does not give rise to a homogeneously scaled self-similar Dirichlet space
since ri < 1 for some i ∈ S by [23, Proposition 3.1.8] and rj ≥ 1 for some j ∈ S by
the non-regularity of (D, r). This is why we have assumed from the beginning that
our harmonic structure (D, r) on L is regular.

Let S = {Λs}s∈(0,1] be the scale on Σ associated with (L, µ, E ,F) and set dw :=
dH+1. Then (L, S) is locally finite by [23, Lemma 4.2.3] and [25, Lemma 1.3.6], and
by [23, Proof of Lemma 4.2.4] there exists cR ∈ (0,∞) such that R(x, y) ≥ cRs

2/dw

for any s ∈ (0, 1], any w, v ∈ Λs with Kw∩Kv = ∅ and any (x, y) ∈ Kw×Kv, which
and [23, Lemma 3.3.5] easily imply that Rdw/2 is adapted to S. Finally, (CHK)
holds by [26, Theorem 10.4] (or by [23, Section 5.1]) and so does (CUHK) with
ρ := Rdw/2 by [26, Theorem 15.10] (see also [21, Lemma 2.5]).

Thus in order to apply Theorems 2.17 and 2.18 to the present case, it suffices
to verify (2.13) and (2.14). In the rest of this section, we give a few criteria for
(2.13) and (2.14) and apply them to concrete examples. In Subsection 4.2 we treat
the case where (L, (D, r), µ) possesses certain good symmetry, including the case of
affine nested fractals, and Subsection 4.3 presents alternative criteria for (2.13) and
(2.14) which are applicable for some cases with weaker (or even without) symmetry.

The following definitions play central roles in the rest of this section.

Definition 4.3. (1) We define the symmetry group G of (L, (D, r), µ) by

(4.3) G :=
{
g

∣∣∣∣ g is a homeomorphism from K to itself, g(V0) = V0, µ◦g = µ,
u ◦ g, u ◦ g−1 ∈ F and E(u ◦ g, u ◦ g) = E(u, u) for any u ∈ F

}
,

which clearly forms a subgroup of the group of homeomorphisms of K.
(2) For each x ∈ V∗, we define

(4.4) mx := min{m ∈ N ∪ {0} | x ∈ Vm} and nx := #{w ∈Wmx | x ∈ Kw}.

4.2. Cases with good symmetry and affine nested fractals. Assuming
certain good symmetry of (L, (D, r), µ), we have the following criterion for (2.13)
and (2.14), which is an immediate consequence of [21, Remark 6.4].
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Proposition 4.4. Let q ∈ V0 and suppose that {g(q) | g ∈ G} = V0 and that
ri = r for any i ∈ S for some r ∈ (0, 1). Then for each x ∈ V∗, nx = #{w ∈ Wm |
x ∈ Kw} for any m ≥ mx and limt↓0 pt(x, x)/pt(q, q) = n−1

x . In particular, if

(4.5) ny 6= nz for some y, z ∈ V∗ \ V0

in addition, then the conditions (2.13) and (2.14) are satisfied.

Next we recall the definition of affine nested fractals and apply Proposition 4.4
to them. Throughout the rest of this subsection, we assume the following:

(4.6) d ∈ N, K is a compact subset of Rd, and for each i ∈ S, Fi = fi|K
for some contractive similitude fi on Rd with contraction ratio αi.

Recall that f : Rd → Rd is called a contractive similitude on Rd if and only if there
exist α ∈ (0, 1), U ∈ O(d) and b ∈ Rd such that f(x) = αUx + b for any x ∈ Rd.
Then such α is called the contraction ratio of f . According to [23, Theorem 1.2.3],
any finite family of contractive similitudes on Rd actually gives rise to a self-similar
structure satisfying (4.6) by taking the associated self-similar set.

Notation. For x, y ∈ Rd with x 6= y, let gxy : Rd → Rd denote the reflection
in the hyperplane Hxy := {z ∈ Rd | |z − x| = |z − y|}.

Definition 4.5. (1) A homeomorphism g : K → K is called a symmetry of L
if and only if, for any m ∈ N∪ {0}, there exists an injective map g(m) : Wm →Wm

such that g(Fw(V0)) = Fg(m)(w)(V0) for any w ∈Wm.
(2) We set Gs := {g | g is a symmetry of L, g = f |K for some isometry f of Rd}.
(3) L is called an affine nested fractal if and only if it is post-critically finite, K is
connected and gxy|K ∈ Gs for any x, y ∈ V0 with x 6= y. An affine nested fractal L
is called a nested fractal if and only if αi = α for any i ∈ S for some α ∈ (0, 1).
(4) A real matrix A = (Axy)x,y∈V0 is called Gs-invariant if and only if Axy =
Ag(x)g(y) for any x, y ∈ V0 and any g ∈ Gs. Also a = (ai)i∈S ∈ (0,∞)S is called
Gs-invariant if and only if ai = aj for any i, j ∈ S satisfying g(Fi(V0)) = Fj(V0) for
some g ∈ Gs.

By [23, Proof of Proposition 3.8.9], if L is an affine nested fractal, then A =
(Axy)x,y∈V0 is Gs-invariant if and only if Axy = Ax′y′ whenever |x− y| = |x′ − y′|.

Now we can conclude the following theorem for affine nested fractals.

Theorem 4.6. Assume that L = (K,S, {Fi}i∈S) is an affine nested fractal,
that D is Gs-invariant and that ri = r for any i ∈ S for some r ∈ (0, 1). Further
assume that

(4.7) #(Fi(V0) ∩ Fj(V0)) ≤ 1 for any i, j ∈ S with i 6= j.

If L satisfies (4.5), then the conclusions of Theorems 2.17 and 2.18 hold true.

Proof. We have Gs ⊂ G by [21, Proof of Theorem 4.5] and [23, Corollary
3.8.21]. Since gxy|K ∈ Gs and gxy(x) = y for any x, y ∈ V0 with x 6= y, Proposition
4.4 is applicable and hence so are Theorems 2.17 and 2.18. �

Remark 4.7. (1) If L = (K,S, {Fi}i∈S) is an affine nested fractal satisfying
(4.7), then a harmonic structure (D, r) on L as in Theorem 4.6 exists and is unique
(up to constant multiples of D). Here the existence part is essentially due to Lind-
strøm [32]; see [23, Section 3.8] and references therein for further details. Also see
[17, 33, 34, 35] for more recent results on existence of harmonic structures.
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ttt

t

Figure 2. Examples of nested fractals. From the upper left, two-
dimensional level-l Sierpiński gasket (l = 2, 3, 4), three-dimensional
standard (level-2) Sierpiński gasket, pentagasket (5-polygasket),
heptagasket (7-polygasket), snowflake and the Vicsek set. In each
fractal, the set V0 of its boundary points is marked by solid circles.

(2) For the same reason as [21, Theorem 4.5] (see [21, Remark 4.6-(2)]), it is unclear
whether the (technical) assumption (4.7) can be removed from Theorem 4.6.

At the last of this subsection, we provide some examples of nested fractals.

Example 4.8 (Sierpiński gaskets). Let d, l ∈ N \ {1}, let L = (K,S, {Fi}i∈S)
be the d-dimensional level-l Sierpiński gasket as in [21, Example 5.1] and let (D, r)
be the harmonic structure on L described there. Then clearly L is a nested fractal
and the conditions of Theorem 4.6 except (4.5) are satisfied. Moreover, it is easy
to see that (4.5) is satisfied if and only if l ≥ 3 (see Figure 2). Thus by Theorem
4.6, if l ≥ 3 then the conclusions of Theorems 2.17 and 2.18 are valid.

On the other hand, it is unclear whether (2.13) and (2.14) hold when l = 2, as
already remarked at the end of the introduction.

Example 4.9 (Polygaskets). Let L = (K,S, {Fi}i∈S) be the (N, l)-polygasket
with N, l ∈ N, N ≥ 4, l < N/2 in [21, Example 5.5] and let (D, r) be the harmonic
structure on L described there. Then we easily see that the conditions of Propo-
sition 4.4 including (4.5) are satisfied and hence the conclusions of Theorems 2.17
and 2.18 hold in this case.

Note that this example includes the case of the N -polygasket with N ∈ N,
N ≥ 5, N/4 6∈ N in [21, Example 5.3] (see Figure 2), which is the (N, dN/4e)-
polygasket with dN/4e := min{n ∈ N | n ≥ N/4} and is realized in R2 as a nested
fractal.

4.3. Cases possibly without good symmetry. We follow the framework
of Subsection 4.1 throughout this subsection. Recall that Proposition 4.4 above is
based on the assumption of good symmetry of (L, (D, r), µ). On the other hand,
even under weaker assumptions on symmetry of (L, (D, r), µ), we can still verify
(2.13) or (2.14) in some cases, as follows. Recall that KI = K \ V0 = K \ V0.
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Proposition 4.10. Let y, z ∈ KI and let Λy,Λz be partitions of Σ. Define
Γy := {w ∈ Λy | y ∈ Kw} and Γz := {w ∈ Λz | z ∈ Kw}, let wy ∈ Γy and assume
y ∈ Fwy (V0) if Γy = {wy}. Let ϕ : Γy → Γz and suppose that for each w ∈ Γy,
rϕ(w)/rw = rϕ(wy)/rwy and there exists gw ∈ G such that gw

(
F−1

w (y)
)

= F−1
ϕ(w)(z).

Set ỹ := Fϕ(wy)(y) and z̃ := Fwy (z) (note that ỹ, z̃ ∈ KI).
(1) If ϕ is injective and not surjective, then lim supt↓0 pt(ỹ, ỹ)/pt(z̃, z̃) > 1.
(2) If n ∈ N and #ϕ−1(v) = n for any v ∈ Γz, then limt↓0 pt(ỹ, ỹ)/pt(z̃, z̃) = n−1.

We need the following definition and lemma for the proof of Proposition 4.10.

Definition 4.11. Let U be a non-empty open subset of K.
(1) Let λ ∈ (0,∞) and set Eλ(u, v) := E(u, v) +

∫
K
uvdµ for u, v ∈ F . We define

capU
λ (B) := inf{Eλ(u, u) | u ∈ FU , u ≥ 1 µ-a.e. on B}, B ⊂ U open in U ,(4.8)

CapU
λ (A) := inf

{
capU

λ (B)
∣∣ B ⊂ U open in U , A ⊂ B

}
, A ⊂ U,(4.9)

so that CapU
λ is an extension of capU

λ . We call CapU
λ the λ-order capacity on U .

(2) We define the Dirichlet resolvent kernel uU = uU
λ (x, y) on U by

(4.10) uU
λ (x, y) :=

∫ ∞

0

e−λtpU
t (x, y)dt, (λ, x, y) ∈ (0,∞) × U × U,

where pU = pU
t (x, y) is the Dirichlet heat kernel on U introduced in Lemma 3.2.

By (2.11), pU ≤ p and ds ∈ (0, 2), uU
λ (x, y) ≤ uK

λ (x, y) ≤ c4.1λ
ds/2−1 for any

(λ, x, y) ∈ (0,∞)×U×U for some c4.1 ∈ (0,∞), and uU : (0,∞)×U×U → [0,∞) is
continuous by the continuity of pU . Note that CapU

λ ({x}) ∈ (0,∞) for any (λ, x) ∈
(0,∞) × U by [26, (3.1)] and hence FU = {u ∈ F | u|K\U = 0} by [11, Corollary
2.3.1]. Then since pU = pU

t (x, y) is the transition density of a µ|U -symmetric
diffusion on U whose Dirichlet form on L2(U, µ|U ) is (EU ,FU ) by [26, Theorem
10.4] (or by [19, Lemma 7.11-(2)]), we easily see from [11, (2.2.11), (2.2.13) and
Exercise 4.2.2] that CapU

λ ({x}) = 1/uU
λ (x, x) for any (λ, x) ∈ (0,∞) × U .

Lemma 4.12. Let x ∈ K, Λ be a partition of Σ and set Γ := {w ∈ Λ | x ∈ Kw}.
Assume x ∈ Fw(V0) if #Γ = 1 and Γ = {w}, so that x ∈ Fw(V0) for any w ∈ Γ.
Set U := {x}∪

∪
w∈ΓK

I
w and Uq := {q}∪KI for q ∈ V0. Then for any λ ∈ (0,∞),

(4.11)
(
uU

λ (x, x)
)−1 =

∑
w∈Γ

γds−2
w

uUF
−1
w (x)

γ2
wλ

(
F−1

w (x), F−1
w (x)

) .
Proof. Note that U and Uq, q ∈ V0, are open subsets of K by [23, Proposition

1.3.6] and #V0 < ∞. If u ∈ FU and u(x) = 1 then u ◦ Fw ∈ F
UF

−1
w (x) and u ◦

Fw

(
F−1

w (x)
)

= 1 for any w ∈ Γ, and conversely if uw ∈ F
UF

−1
w (x) and uw

(
F−1

w (x)
)

=
1 for each w ∈ Γ, then u ∈ C(K) defined by u|Kw := uw ◦ F−1

w for w ∈ Γ and
u|K\U := 0 belongs to FU by (4.2) and satisfies u(x) = 1. Therefore using [11,
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Theorem 2.1.5-(i)] and (2.4), we see that for any λ ∈ (0,∞),(
uU

λ (x, x)
)−1 = CapU

λ ({x}) = inf{Eλ(u, u) | u ∈ FU , u(x) = 1}

= inf
{∑

w∈Γ

1
rw

Eγ2
wλ(u ◦ Fw, u ◦ Fw)

∣∣∣∣ u ∈ FU , u(x) = 1
}

=
∑
w∈Γ

γds−2
w inf

{
Eγ2

wλ(uw, uw)
∣∣∣ uw ∈ F

UF
−1
w (x) , uw

(
F−1

w (x)
)

= 1
}

=
∑
w∈Γ

γds−2
w CapUF−1

w (x)

γ2
wλ

(
F−1

w (x)
)

=
∑
w∈Γ

γds−2
w

uUF
−1
w (x)

γ2
wλ

(
F−1

w (x), F−1
w (x)

) ,
proving (4.11). �

Proof of Proposition 4.10. Set Γỹ := {ϕ(wy)w | w ∈ Γy}, Γz̃ := {wyw |
w ∈ Γz} and define ϕ̃ : Γỹ → Γz̃ by ϕ̃(ϕ(wy)w) := wyϕ(w) for w ∈ Γy, so
that rw = rϕ̃(w) for any w ∈ Γỹ. Also set U ỹ := {ỹ} ∪

∪
w∈Γỹ

KI
w and U z̃ :=

{z̃} ∪
∪

w∈Γz̃
KI

w. By ỹ ∈ KI
ϕ(wy) and z̃ ∈ KI

wy
we can choose partitions Λỹ,Λz̃

of Σ so that Γỹ = {w ∈ Λỹ | ỹ ∈ Kw} and Γz̃ = {w ∈ Λz̃ | z̃ ∈ Kw}, and in
the situations of (1) and (2) we have ỹ ∈ Fw(V0) for any w ∈ Γỹ and z̃ ∈ Fw(V0)
for any w ∈ Γz̃. Note that uUq

λ (a, b) = uUg(q)

λ (g(a), g(b)) for g ∈ G, q ∈ V0 and
(λ, a, b) ∈ (0,∞) × Uq × Uq, where Uq := {q} ∪KI for q ∈ V0. Therefore recalling
that gw

(
F−1

ϕ(wy)w(ỹ)
)

= F−1
wyϕ(w)(z̃) for each w ∈ Γy, we see from Lemma 4.12 that

for any λ ∈ (0,∞),(
uU ỹ

λ (ỹ, ỹ)
)−1(4.12)

=
∑

w∈Γỹ

γds−2
w

uUF
−1
w (ỹ)

γ2
wλ

(
F−1

w (ỹ), F−1
w (ỹ)

) =
∑

w∈Γỹ

γds−2
ϕ̃(w)

uU
F

−1
ϕ̃(w)(z̃)

γ2
ϕ̃(w)λ

(
F−1

ϕ̃(w)(z̃), F
−1
ϕ̃(w)(z̃)

)
=


(
uU z̃

λ (z̃, z̃)
)−1 −

∑
w∈Γz̃\ϕ̃(Γỹ)

γds−2
w

uUF
−1
w (z̃)

γ2
wλ

(F−1
w (z̃),F−1

w (z̃))
for (1),

n
(
uU z̃

λ (z̃, z̃)
)−1 for (2).

(1) By Proposition 2.16, there exist c4.2, c4.3 ∈ (0,∞) such that for any x ∈ K,

(4.13) c4.2 ≤ λ1−ds/2uK
λ (x, x) ≤ c4.3, λ ∈ [1,∞).

We easily see from Lemma 3.3, (2.11) and (4.13) that limλ→∞ uU
λ (x, x)/uK

λ (x, x) =
1 for any non-empty open subset U of K and any x ∈ U . It follows from this fact,
(4.12) and (4.13) that lim infλ→∞ uK

λ (ỹ, ỹ)/uK
λ (z̃, z̃) ≥ 1+c4.2c

−1
4.3#(Γz\ϕ(Γy)) > 1,

which immediately implies lim supt↓0 pt(ỹ, ỹ)/pt(z̃, z̃) > 1.
(2) (4.12) implies that pU z̃

t (z̃, z̃) = npU ỹ

t (ỹ, ỹ) for any t ∈ (0,∞), from which the
assertion is immediate since limt↓0 p

U
t (x, x)/pt(x, x) = 1 for any non-empty open

subset U of K and any x ∈ U by Lemma 3.3 and (2.11). �

Remark 4.13. As shown in the previous proof, in the situation of Proposition
4.10-(1) it actually holds that lim infλ→∞ uK

λ (ỹ, ỹ)/uK
λ (z̃, z̃) > 1. Unfortunately,

however, here we cannot conclude from this fact that lim inft↓0 pt(ỹ, ỹ)/pt(z̃, z̃) > 1,
for p(·)(ỹ, ỹ) and p(·)(z̃, z̃) may not vary regularly at 0 and hence Tauberian theorems
for the Laplace transform may not be applicable to them.
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c = π(12∞)

0 = π(1∞) 1 = π(2∞)

|c|2 = π(112∞) = π(21∞)

F2(c) = π(212∞)

Figure 3. Hata’s tree-like set (c = 0.4 + 0.3
√
−1) and the set V1

Now a simple application of Proposition 4.10-(1) yields the following theorem.
Recall (4.4) for the definition of nx for x ∈ V∗.

Theorem 4.14. If nx = 1 for some x ∈ V∗\V0, then the conclusions of Theorem
2.17 are valid for any regular harmonic structure (D, r) on L, where the set NRV

can be chosen independently of (D, r).

Proof. By x ∈ Vmx there exist q ∈ V0 and wx ∈ Wmx such that x = Fwx(q),
and {w ∈Wmx | x ∈ Kw} = {wx} by nx = 1. On the other hand, by V0 = π(P) and
(2.1) we can choose ω ∈ P and v ∈W∗ \ {∅} so that q = π(ω) and σv(ω) ∈ C. Then
taking τ ∈W∗ such that Kτ ⊂ KI , which is possible by [23, Proposition 1.3.6], we
see that z := Fτv(q) = Fτ (π(σv(ω))) ∈ KI and that #{w ∈ W|τv| | z ∈ Kw} ≥ 2.
Now for any regular harmonic structure (D, r) on L, Proposition 4.10-(1) easily
yields lim supt↓0 pt(Fτv(x), Fτv(x))/pt(Fwx(z), Fwx(z)) > 1, and hence Theorem
2.17 applies with NRV determined solely by Fτv(x), Fwx(z) and π. �

At the last of this section, we apply Proposition 4.10 and Theorem 4.14 to some
examples.

Example 4.15. Let L = (K,S, {Fi}i∈S) be any one of the (N, l)-polygasket
with N, l ∈ N, N ≥ 4, l < N/2 in [21, Example 5.5], the snowflake and the Vicsek
set (see Figure 2). Then the assumption of Theorem 4.14 is clearly satisfied and
hence the conclusions of Theorem 2.17 hold for any regular harmonic structure on
L.

Example 4.16 (Hata’s tree-like set). Following [23, Example 1.2.9], let c ∈
C \ R satisfy |c|, |1 − c| ∈ (0, 1), set S := {1, 2} and define fi : C → C for i ∈ S by
f1(z) := cz and f2(z) := (1 − |c|2)z + |c|2. Let K be the self-similar set associated
with {fi}i∈S , i.e. the unique non-empty compact subset of C ∼= R2 that satisfies
K =

∪
i∈S fi(K), and set Fi := fi|K for i ∈ S. Then L := (K,S, {Fi}i∈S) is a

self-similar structure with K connected, P = {12∞, 1∞, 2∞} and V0 = {c, 0, 1}.
Also F2(c) ∈ V1 \ V0 and nF2(c) = 1. L is called Hata’s tree-like set (see Figure 3).

Let r ∈ (0, 1), set r = (ri)i∈S := (r, 1− r2) and let D = (Dxy)x,y∈V0 be the real
symmetric matrix given by Dc0 = −Dcc := 1/r, D01 = −D11 := 1, Dc1 := 0 and
D00 := −1 − 1/r. Then (D, r) is a regular harmonic structure on L and, except
for constant multiples of D, any harmonic structure on L is of this form. Now
Theorem 4.14 applies again and hence the conclusions of Theorem 2.17 are valid in
this case. Note that this case is beyond the reach of the author’s preceding result
[21, Theorem 3.4], since G = {idK} by virtue of the following proposition.
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Proposition 4.17. Let L = (K,S, {Fi}i∈S) and (D, r) be as in Example 4.16
and let R : K×K → [0,∞) be the resistance metric of the resistance form (E ,F) on
K resulting from (D, r) by (4.2). If g : K → K is surjective and satisfies g(V0) = V0

and R(g(x), g(y)) = R(x, y) for any x, y ∈ K, then g = idK .

Proof. Since r−1R(F1(x), F1(y)) = (1 − r2)−1R(F2(x), F2(y)) = R(x, y) for
any x, y ∈ K by K1 ∩K2 = {|c|2}, (4.2) and (2.4), an induction in m easily implies
that supx∈K\K2m R(0, x) < 1 for m ∈ N, so that 1 = maxx∈K R(0, x) is attained
only by x = 1. Then since R(F21(x), F21(y)) = r(1−r2)R(x, y) for any x, y ∈ K by
(4.2) and (2.4) again, r(1−r2) = maxx∈K21 R(|c|2, x) is attained only by x = F2(c).

Let GR be the collection of surjections g : K → K satisfying g(V0) = V0 and
R(g(x), g(y)) = R(x, y) for any x, y ∈ K, and let g ∈ GR. We first show g|V1 = idV1

and g(Ki) = Ki, i ∈ S. It follows from R(c, 0) < R(0, 1) < R(c, 1) and g(V0) = V0

that g|V0 = idV0 . Define γ : [0, 2] → K by γ(t) := (1 − t)c for t ∈ [0, 1] and γ(t) :=
t− 1 for t ∈ [1, 2]. We easily see that R(c, γ(t)) = R(c, γ(s)) +R(γ(s), γ(t)) for any
s, t ∈ [0, 2] with s ≤ t, so that R(c, γ(·)) is strictly increasing. By K1 ∩K2 = {|c|2},
a continuous path g ◦ γ : [0, 2] → K from c ∈ K1 to 1 ∈ K2 has to admit t ∈ (0, 2)
such that g ◦ γ(t) = |c|2. Then R(c, |c|2) = R(c, g ◦ γ(t)) = R(c, γ(t)) and hence
t = 1 + |c|2 by the strict monotonicity of R(c, γ(·)). Thus g(|c|2) = |c|2, and in
particular g defines a homeomorphism g|K\{|c|2} : K \ {|c|2} → K \ {|c|2}. Set
U :=

∪
m∈N∪{0}K12m2. Then since g(c) = c ∈ K1 \ {|c|2}, g(1) = 1 ∈ F2(U) and

K \{|c|2} consists of three connected components K1 \{|c|2}, F2(U) and F21(U), it
follows that g(K1\{|c|2}) = K1\{|c|2}, g(F2(U)) = F2(U) and g(F21(U)) = F21(U).
Thus g(K1) = K1 and g(K2) = K2. Moreover, maxx∈K21 R(|c|2, x) is attained by
g(F2(c)) ∈ K21 and hence g(F2(c)) = F2(c).

Now let m ∈ N and assume that g|Vm = idVm for any g ∈ GR. Then for g ∈ GR

and i ∈ S, by g|V1 = idV1 and g(Ki) = Ki we have gi := F−1
i ◦ g ◦ Fi ∈ GR, hence

gi|Vm = idVm and therefore g|Vm+1 = idVm+1 . Thus g|V∗ = idV∗ for any g ∈ GR by
induction in m, which proves GR = {idK} since V∗ is dense in K. �

Example 4.18. Following [23, Example 4.4.9], let S := {1, 2, 3, 4} and define
fi : C → C for i ∈ S by f1(z) := 1

2 (z + 1), f2(z) := 1
2 (z − 1), f3(z) :=

√
−1
4 (z + 1)

and f4(z) :=
√
−1
4 (z− 1). Let K be the self-similar set associated with {fi}i∈S and

set Fi := fi|K , i ∈ S. Then L := (K,S, {Fi}i∈S) is a self-similar structure with K
connected, P = {1∞, 2∞} and V0 = {−1, 1}. Defining g, h : C → C by g(z) := −z
and h(z) := z, we easily see that Gs = {idK , g|K , h|K , gh|K}, and thus L is an affine
nested fractal. Moreover, F3(1) =

√
−1/2 ∈ V1 \ V0 and nF3(1) = 1.

Set D = (Dxy)x,y∈V0 :=
(−1 1

1 −1

)
, which is Gs-invariant, and let r = (ri)i∈S ∈

(0, 1)S be such that r1 +r2 = 1. Then (D, r) is clearly a regular harmonic structure
on L and the conclusions of Theorem 2.17 hold by Theorem 4.14.

Next assume r1 = r2 = 1
2 and that r3 = r4 =

(
1
2

)m for some m ∈ N, so
that r is Gs-invariant and hence g|K ∈ Gs ⊂ G by [21, Proof of Theorem 4.5] and
[23, Corollary 3.8.21]. Set y := 0, z :=

√
−1
2 , Λy := {iw | i ∈ {1, 2}, w ∈Wm} ∪

{ij | i ∈ {3, 4}, j ∈ S}, Λz := S and let Γy,Γz be as in Proposition 4.10. Then
Γy = {12m, 21m, 32, 41}, Γz = {3} and rw =

(
1
2

)m+1 for any w ∈ Γy, from which
and g|K ∈ G we can easily verify the assumptions of Proposition 4.10-(2) with
ϕ(w) := 3, w ∈ Γy. Thus (2.14) is satisfied and hence the conclusion of Theorem
2.18 is valid in this case.
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5. Sierpiński carpets

In this last section, we apply Theorems 2.17 and 2.18 to the canonical heat
kernel on generalized Sierpiński carpets, which are among the most typical examples
of infinitely ramified self-similar fractals and have been intensively studied e.g. in
[1, 2, 3, 4, 5, 6, 31, 25, 16, 19, 18].

We fix the following setting throughout this section.

Framework 5.1. Let d, l ∈ N, d ≥ 2, l ≥ 2 and set Q0 := [0, 1]d. Let
S ⊂ {0, 1, . . . , l − 1}d be non-empty, and for each i ∈ S define fi : Rd → Rd by
fi(x) := l−1i + l−1x. Set Q1 :=

∪
i∈S fi(Q0), which satisfies Q1 ⊂ Q0. Let K

be the self-similar set associated with {fi}i∈S , i.e. the unique non-empty compact
subset of Rd that satisfies K =

∪
i∈S fi(K), and set Fi := fi|K for i ∈ S, so that

GSC(d, l, S) := (K,S, {Fi}i∈S) is a self-similar structure. Also let ρ : K × K →
[0,∞) be the Euclidean metric on K given by ρ(x, y) := |x − y|, set df := logl #S
and let µ be the self-similar measure on L with weight (1/#S)i∈S .

Recall that df is the Hausdorff dimension of (K, ρ) and that µ is a constant
multiple of the df -dimensional Hausdorff measure on (K, ρ); see e.g. [23, Theorem
1.5.7 and Proposition 1.5.8].

The following definition is essentially due to M. T. Barlow and R. F. Bass [5].

Definition 5.2 (Generalized Sierpiński carpets). GSC(d, l, S) is called a gen-
eralized Sierpiński carpet if and only if S satisfies the following four conditions:
(GSC1) (Symmetry) f(Q1) = Q1 for any isometry f of Rd with f(Q0) = Q0.
(GSC2) (Connectedness) Q1 is connected.
(GSC3) (Non-diagonality) intRd

(
Q1∩

∏d
k=1[(ik−εk)l−1, (ik+1)l−1]

)
is either empty

or connected for any (ik)d
k=1 ∈ Zd and any (εk)d

k=1 ∈ {0, 1}d.
(GSC4) (Borders included) {(x1, 0, . . . , 0) ∈ Rd | x1 ∈ [0, 1]} ⊂ Q1.

As special cases of Definition 5.2, GSC(2, 3, SSC) and GSC(3, 3, SMS) are called
the Sierpiński carpet and the Menger sponge, respectively, where SSC := {0, 1, 2}2 \
{(1, 1)} and SMS :=

{
(i1, i2, i3) ∈ {0, 1, 2}3

∣∣ ∑3
k=1 1{1}(ik) ≤ 1

}
(see Figure 4).

We remark that there are several equivalent ways of stating the non-diagonality
condition, as in the following proposition.

Proposition 5.3 ([20, §2]). Set |x|1 :=
∑d

k=1 |xk| for x = (xk)d
k=1 ∈ Rd.

Then (GSC3) is equivalent to any one of the following three conditions:

(ND)N intRd

(
Q1∩

∏d
k=1[(ik −1)l−m, (ik +1)l−m]

)
is either empty or connected for

any m ∈ N and any (ik)d
k=1 ∈ {1, . . . , lm − 1}d.

(ND)2 The case of m = 2 of (ND)N holds.
(NDF) For any i, j ∈ S with fi(Q0) ∩ fj(Q0) 6= ∅ there exists {n(k)}|i−j|1

k=0 ⊂ S
such that n(0) = i, n(|i − j|1) = j and |n(k) − n(k + 1)|1 = 1 for any
k ∈ {0, . . . , |i− j|1 − 1}.

Remark 5.4. Only the case of m = 1 of (ND)N was assumed in the original
definition of generalized Sierpiński carpets in [5, Section 2], but Barlow, Bass,
Kumagai and Teplyaev [6] have recently realized that it is too weak for [5, Proof
of Theorem 3.19] and has to be replaced by (ND)N (or equivalently, by (GSC3)).

Now in view of (NDF) in Proposition 5.3, (GSC2) and (GSC3) together imply
that intRd Q1 is connected, so that Definition 5.2 turns out to be equivalent to the
definition of generalized Sierpiński carpets in [6, Subsection 2.2].
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Figure 4. Sierpiński carpet, some other generalized Sierpiński
carpets with d = 2 and Menger sponge

In the rest of this section, we assume that L := GSC(d, l, S) = (K,S, {Fi}i∈S)
is a generalized Sierpiński carpet. Then we easily see the following proposition.

Proposition 5.5. Set Sk,ε := {(in)d
n=1 ∈ S | ik = (l−1)ε} for k ∈ {1, 2, . . . , d}

and ε ∈ {0, 1}. Then P =
∪d

k=1(S
N
k,0 ∪ SN

k,1), V0 = V0 = K \ (0, 1)d and V∗∗ = V∗.

Analysis on generalized Sierpiński carpets was initiated by M. T. Barlow and
R. F. Bass in [1]: they obtained a non-degenerate µ-symmetric diffusion X on K
in the case of d = 2 by taking a certain scaling limit of (a suitable subsequence
of) the reflecting Brownian motions X(m) on Qm :=

∪
w∈Wm

fw(Q0), where fw :=
fw1 ◦· · ·◦fwm (f∅ := idRd) for w = w1 . . . wm ∈W∗. Then they studied the diffusion
X intensively in a series of papers [2, 3, 4] and extended their results to the case
of d ≥ 3 in [5]. On the other hand, Kusuoka and Zhou [31] also obtained a non-
degenerate diffusion on K in the case of d = 2 by constructing a (homogeneously
scaled self-similar) Dirichlet form on L2(K,µ) via a discrete approximation of K.
It had been a long-standing problem to prove that the constructions in [1, 5] and in
[31] give rise to the same diffusion on K, until Barlow, Bass, Kumagai and Teplyaev
[6] finally solved it by proving the uniqueness of a non-zero conservative symmetric
regular Dirichlet form on L2(K,µ) possessing certain local symmetry properties.
The following is a summary of the main results of [6].

Definition 5.6. (1) We define

(5.1) G0 := {f |K | f is an isometry of Rd with f(Q0) = Q0},

which forms a subgroup of the group of homeomorphisms of K by virtue of (GSC1).
(2) Define ψ : Rd → Q0 by ψ

(
(xk)d

k=1

)
:=

(
minn∈Z |xk−2n|

)d

k=1
. For each w ∈W∗,

we set qw := Fw(0) and define the folding map ϕw : K → Kw into Kw by

(5.2) ϕw(x) := qw + l−|w|ψ
(
l|w|(x− qw)

)
,

so that ϕw|Kw = idKw and ϕw ◦ ϕv = ϕw for any w, v ∈W∗ with |w| = |v|.
(3) For u ∈ L2(K,µ) and δ ∈ (0,∞), we define

(5.3) Jδ(u) := δ−df

∫
K

∫
Bδ(x,ρ)

(u(x) − u(y))2dµ(y)dµ(x).

Note that µ ◦ g = µ for any g ∈ G0. We set µ|A := µ|B(A) for A ∈ B(K). For
each w ∈ W∗, if u : Kw → [−∞,∞] is Borel measurable then

∫
K
|u ◦ ϕw|dµ =

(#S)|w| ∫
Kw

|u|dµ, so that ϕ∗
wu := u ◦ ϕw defines a bounded linear operator ϕ∗

w :
L2(Kw, µ|Kw) → L2(K,µ), which is called the unfolding operator from Kw.
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Theorem 5.7 ([6, Theorem 1.2 and Subsection 4.7]). (1) There exists a unique
(up to constant multiples of E) non-zero conservative symmetric regular Dirichlet
form (E ,F) on L2(K,µ) satisfying the following conditions:
(BBKT1) u ◦ ϕw ∈ F for any u ∈ F and any w ∈W∗.
(BBKT2) For any m ∈ N and any u ∈ F ,

(5.4) E(u, u) =
1

(#S)m

∑
w∈Wm

E(u ◦ ϕw, u ◦ ϕw).

(BBKT3) Let w, v ∈W∗, |w| = |v| and g ∈ G0. If u ∈ L2(Kv, µ|Kv ) and u◦ϕv ∈ F ,
then ug

w,v := u◦Fv◦g◦F−1
w ◦ϕw ∈ F and E(ug

w,v, u
g
w,v) = E(u◦ϕv, u◦ϕv).

(2) (K,µ, E ,F) satisfies (CHK) and there exist dw ∈ [2,∞) and c5.1, c5.2 ∈ (0,∞)
such that, with ds := 2df/dw, for any (t, x, y) ∈ (0, 1] ×K ×K,
(5.5)

c5.1

tds/2
exp

(
−

(ρ(x, y)dw

c5.1t

) 1
dw−1

)
≤ pt(x, y) ≤

c5.2

tds/2
exp

(
−

(ρ(x, y)dw

c5.2t

) 1
dw−1

)
.

(3) F = {u ∈ L2(K,µ) | lim supδ↓0 δ
−dwJδ(u) < ∞}, and there exist c5.3, c5.4 ∈

(0,∞) such that for any u ∈ F ,

(5.6) c5.3E(u, u) ≤ lim sup
δ↓0

δ−dwJδ(u) ≤ sup
δ∈(0,∞)

δ−dwJδ(u) ≤ c5.4E(u, u).

Remark 5.8. The strict inequality dw > 2 holds if #S < ld. In the case of
d = 2, this estimate follows from [3, Proof of Proposition 5.2] (see also [4, (2.5)]),
whereas for d ≥ 3 this fact is only stated in [5, Remarks 5.4-1.] without proof.

In fact, by virtue of [18, Proof of Proposition 5.1], we can also deduce from
Theorem 5.7-(1),(3) the following simpler characterization of (E ,F) although it is
more restrictive than that in Theorem 5.7-(1).

Proposition 5.9. (E ,F) is the unique (up to constant multiples of E) non-zero
conservative symmetric regular Dirichlet form on L2(K,µ) possessing the following
properties:
(GSCDF1) If u ∈ F ∩C(K) and g ∈ G0 then u◦g ∈ F and E(u◦g, u◦g) = E(u, u).
(GSCDF2) F ∩ C(K) = {u ∈ C(K) | u ◦ Fi ∈ F for any i ∈ S}.
(GSCDF3) There exists r ∈ (0,∞) such that for any u ∈ F ∩ C(K),

(5.7) E(u, u) =
∑
i∈S

1
r
E(u ◦ Fi, u ◦ Fi).

Moreover, dw = logl(#S/r) and ds = 2 log#S/r #S.

We need the following lemma, which easily follows by a direct calculation.

Lemma 5.10. Let w, v, τ ∈W∗, |w| = |v|, εw,v = (εw,v
k )d

k=1 := ψ
(
l|w|(qv − qw)

)
and define fw,v : Rd → Rd by fw,v(x) :=

(
εw,v
k +(1−2εw,v

k )xk

)d

k=1
for x = (xk)d

k=1 ∈
Rd, so that gw,v := fw,v|K ∈ G0. Then ϕwτ ◦ Fv = Fw ◦ ϕτ ◦ gw,v.

Proof of Proposition 5.9. We first prove that (E ,F) as in Theorem 5.7-
(1) possesses the stated properties. (GSCDF1) is immediate from (BBKT3) with
w = v = ∅. We easily see from Theorem 5.7-(3) that u ◦ Fw ∈ F for any w ∈ W∗
and any u ∈ F , and [18, Proof of Proposition 5.1] shows that u ∈ F whenever
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u ∈ C(K) and u ◦Fi ∈ F for any i ∈ S, proving (GSCDF2). (Note that [18, Proof
of Proposition 5.1] for f ∈ C(K) is based only on Theorem 5.7-(3) and (NDF).)

(GSCDF3) is stated in [6, Theorem 1.2] without explicit proof. In fact, it can
be directly deduced from Theorem 5.7-(1),(3), as follows. Noting that u ◦ Fi ∈ F
for i ∈ S and u ∈ F , define RE : F×F → R by (RE)(u, v) :=

∑
i∈S E(u◦Fi, v◦Fi).

By (5.6) there exists c5.5 ∈ (0,∞) such that (RE)(u, u) ≤ c5.5E(u, u) for any u ∈ F ,
and we can easily verify (BBKTk), k = 1, 2, 3 for (RE ,F) from those for (E ,F)
and Lemma 5.10. It follows that (E +RE ,F) is a non-zero conservative symmetric
regular Dirichlet form on L2(K,µ) satisfying (BBKTk), k = 1, 2, 3, and hence
E + RE = θE for some θ ∈ (0,∞) by Theorem 5.7-(1). Since (E ,F) is non-zero,
λ := θ− 1 ∈ [0,∞) and RE = λE . Furthermore take u ∈ F ∩C(K) \ {0} such that
suppK [u] ⊂ KI . Then E(u, u) > 0 by Theorem 5.7-(3) and V0 6= ∅. For any w ∈W∗,
(Fw)∗u ∈ F by (GSCDF2), E

(
(Fw)∗u, (Fw)∗u

)
= λ|w|E(u, u) by RE = λE , and

we easily see from E(u, u) > 0 and (5.6) that (λ#S/ldw)|w| ∈ [c5.3/c5.4, c5.4/c5.3].
Letting |w| → ∞ yields λ = ldw/#S > 0, proving (GSCDF3), dw = logl(#S/r)
and ds = 2 log#S/r #S with r := λ−1.

Next for the proof of the uniqueness, suppose that (E ′,F ′) is a non-zero con-
servative symmetric regular Dirichlet form on L2(K,µ) with the stated properties.
The regularity of (E ′,F ′) easily implies that u◦Fi ∈ F ′ for any i ∈ S and any u ∈ F ′

and that (GSCDF1) and (GSCDF3) with F ′ in place of F ′ ∩C(K) are valid. Fur-
thermore we see from Lemma 5.10 with τ = ∅ and the assumed properties of (E ′,F ′)
that for w ∈W∗ and u ∈ L2(Kw, µ|Kw), u ◦ϕw ∈ F ′ if and only if u ◦Fw ∈ F ′, and
if u◦ϕw ∈ F ′ then E ′(u◦ϕw, u◦ϕw) = (#S/r)|w|E ′(u◦Fw, u◦Fw). Now it is imme-
diate from these facts and (GSCDF1) that (E ′,F ′) satisfies (BBKTk), k = 1, 2, 3,
and hence (E ′,F ′) = (θE ,F) for some θ ∈ (0,∞) by Theorem 5.7-(1). �

It follows from Proposition 5.9 that (L, µ, E ,F) is a homogeneously scaled self-
similar Dirichlet space with weight (1/#S)i∈S and spectral dimension ds. Moreover
for its associated scale S = {Λs}s∈(0,1] on Σ, we easily see that #Λ1

s,x ≤ 4d for any
(s, x) ∈ (0, 1]×K and that ρdw/2 is a (2/dw)-qdistance on K adapted to S, so that
(L, µ, E ,F) satisfies (CUHK) by Theorem 5.7-(2).

Finally, we verify that Theorems 2.17 and 2.18 are applicable to (L, µ, E ,F) if
#S < ld. Recall that L = GSC(d, l, S) = (K,S, {Fi}i∈S) is a generalized Sierpiński
carpet, that µ is the self-similar measure on L with weight (1/#S)i∈S and that
(E ,F) is the Dirichlet form on L2(K,µ) as in Theorem 5.7 and Proposition 5.9.

Theorem 5.11. If #S < ld, then the conclusions of Theorems 2.17 and 2.18
hold true for the continuous heat kernel p = pt(x, y) of (K,µ, E ,F).

Since (L, µ, E ,F) satisfies (CUHK), for the proof of Theorem 5.11 it suffices
to verify (2.14), which is an easy consequence of the following Proposition. Recall
that pU = pU

t (x, y) denotes the Dirichlet heat kernel on U introduced in Lemma 3.2
for a non-empty open subset U of K. Note that for any w, v ∈ W∗ with |w| = |v|,
ϕv|Kw = Fv ◦gv,w ◦F−1

w by Lemma 5.10 and hence ϕv|Kw : Kw → Kv is a surjective
isometry with respect to the metric ρ.

Proposition 5.12. Let ε = (εk)d
k=1 ∈ {0, 1}d, m ∈ N ∪ {0}, i = (ik)d

k=1 ∈
l−mZd, set Ri,ε

m :=
∏d

k=1[ik − εkl
−m, ik + l−m], W i,ε

m := {w ∈ Wm | Kw ⊂ Ri,ε
m }

and suppose W i,ε
m 6= ∅. Also set U i,ε

m := K ∩ intRd Ri.ε
m , Uε := K ∩

∏d
k=1(−εk, 1),

V ε
0 := Uε ∩

∏d
k=1[0, 1− εk], let τ ∈W i.ε

m and let gτ ∈ G0 be such that Fτ ◦ gτ (Uε) =
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Kτ ∩ U i,ε
m . Then with γ :=

√
r/#S, for any (t, x, y) ∈ (0,∞) × Uε × Uε,

(5.8) pUε

t (x, y) = γmds
∑

w∈W i,ε
m

p
Ui,ε

m

γ2mt

(
Fτ ◦ gτ (x), (ϕτ |Kw)−1 ◦ Fτ ◦ gτ (y)

)
.

In particular, for any t ∈ (0,∞) and any (x, y) ∈ (Uε × V ε
0 ) ∪ (V ε

0 × Uε),

(5.9) pUε

t (x, y) = (#W i,ε
m )γmdsp

Ui,ε
m

γ2mt

(
Fτ ◦ gτ (x), Fτ ◦ gτ (y)

)
.

Note that V ε
0 = K ∩

(
(0, 1){k∈{1,...,d}|εk=0} × {0}{k∈{1,...,d}|εk=1}) 6= ∅; indeed,(

l−1(1 − εk)
)d

k=1
∈ V ε

0 by (GSC1) and (GSC4).

Proof. Recalling Definition 3.1, throughout this proof we regard FUi,ε
m

and
FUε as linear subspaces of L2

(
U i,ε

m , µ|Ui,ε
m

)
and L2(Uε, µ|Uε), respectively, in the

natural manner. For w ∈ W i,ε
m , noting that ϕw(U i,ε

m ) = Kw ∩ U i,ε
m and µ|Ui,ε

m
◦(

ϕw|Ui,ε
m

)−1 = (#W i,ε
m )µ|Kw∩Ui,ε

m
, we set ϕ?

wu := u◦ϕw|Ui,ε
m

for u : U i,ε
m → [−∞,∞],

so that it defines a bounded linear operator ϕ?
w : L2

(
U i,ε

m , µ|Ui,ε
m

)
→ L2

(
U i,ε

m , µ|Ui,ε
m

)
.

Then define Θ := Θi,ε
m := (#W i,ε

m )−1
∑

w∈W i,ε
m
ϕ?

w. We have Θ2 = Θ by ϕw ◦ϕw′ =
ϕw, w,w′ ∈Wm. We claim that Θ is self-adjoint on L2

(
U i,ε

m , µ|Ui,ε
m

)
and that

(5.10) Θ
(
FUi,ε

m

)
⊂ FUi,ε

m
and E(Θu, v) = E(u,Θv), u, v ∈ FUi,ε

m
.

Indeed, let w ∈W i,ε
m and let u ∈ F ∩C(K) satisfy suppK [u] ⊂ U i,ε

m . Then we have
(u ◦ ϕw)1Ui,ε

m
∈ C(K), suppK

[
(u ◦ ϕw)1Ui,ε

m

]
⊂ U i,ε

m ,
(
(u ◦ ϕw)1Ui,ε

m

)
◦ Fw′ = 0 for

w′ ∈ Wm \W i,ε
m and

(
(u ◦ ϕw)1Ui,ε

m

)
◦ Fw′ = u ◦ Fw ◦ gw,w′ ∈ F for w′ ∈ W i,ε

m by
Lemma 5.10, so that (u ◦ ϕw)1Ui,ε

m
∈ F ∩ C(K) by (GSCDF2) and

E
(
(u ◦ ϕw)1Ui,ε

m
, (u ◦ ϕw)1Ui,ε

m

)
= (#W i,ε

m )r−mE(u ◦ Fw, u ◦ Fw) ≤ (#W i,ε
m )E(u, u).

These facts together with the regularity of (E ,F) easily implies ϕ?
w

(
FUi,ε

m

)
⊂ FUi,ε

m

and hence Θ
(
FUi,ε

m

)
⊂ FUi,ε

m
. Moreover for u, v ∈ FUi,ε

m
, by Lemma 5.10,

(#W i,ε
m )E(Θu, v) =

∑
w∈W i,ε

m

E(ϕ?
wu, v) =

∑
w,w′∈W i,ε

m

1
rm

E(u ◦ Fw ◦ gw,w′ , v ◦ Fw′),

which is seen to be equal to (#W i,ε
m )E(u,Θv) by the same calculation in the converse

direction and g−1
w,w′ = gw,w′ = gw′,w. Thus (5.10) follows, and a similar calculation

also shows that Θ is self-adjoint on L2
(
U i,ε

m , µ|Ui,ε
m

)
. As a consequence, we can

easily verify that TUi,ε
m

t Θ = ΘTUi,ε
m

t for any t ∈ (0,∞), in exactly the same way as
[6, Proof of Proposition 2.21, (b) ⇒ (c)].

Next we set ιi,εm u := u◦ (g−1
τ ◦F−1

τ ◦ϕτ )|Ui,ε
m

for u : Uε → [−∞,∞] and κi,ε
m u :=

u ◦ (Fτ ◦ gτ )|Uε for u : U i,ε
m → [−∞,∞], so that they define bounded linear oper-

ators ι := ιi,εm : L2(Uε, µ|Uε) → L2
(
U i,ε

m , µ|Ui,ε
m

)
and κ := κi,ε

m : L2
(
U i,ε

m , µ|Ui,ε
m

)
→

L2(Uε, µ|Uε). Clearly κι = idL2(Uε,µ|Uε ) and hence ι is injective. Similarly to the
proof of (5.10), we easily see κ

(
FUi,ε

m

)
⊂ FUε , ι(FUε) ⊂ FUi,ε

m
, hence

(5.11) ι−1
(
FUi,ε

m

)
= FUε , and E(ιu, ιu) = (#W i,ε

m )r−mE(u, u), u ∈ FUε .

On the other hand, it follows by ϕw◦ϕw′ = ϕw, w,w′ ∈Wm, that Θι = ι and ικΘ =
Θ, which and the last assertion of the previous paragraph imply that for any t ∈
(0,∞), TUi,ε

m
t ι = T

Ui,ε
m

t Θι = ΘTUi,ε
m

t ι = ικΘTUi,ε
m

t ι and hence TUi,ε
m

t ι
(
L2(Uε, µ|Uε)

)
⊂
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ι
(
L2(Uε, µ|Uε)

)
. Therefore

{
ι−1T

Ui,ε
m

γ2mtι
}

t∈(0,∞)
is a well-defined symmetric strongly

continuous contraction semigroup on L2(Uε, µ|Uε), and then in view of [11, Lemma
1.3.4-(i)], (5.11) means that its associated closed symmetric form is (EUε

,FUε).

Thus TUε

t = ι−1T
Ui,ε

m

γ2mtι for any t ∈ (0,∞), which together with the uniqueness of
pUε

immediately yields (5.8). Since Fτ ◦ gτ (V ε
0 ) ⊂

∩
w∈W i,ε

m
Kw, (5.9) follows from

(5.8) and the symmetry of pUε

t (x, y) and pUi,ε
m

t (x, y) in x, y. �

Proof of Theorem 5.11. We follow the notation of Proposition 5.12 in this
proof. Let ε := (1, 0, . . . , 0) ∈ {0, 1}d and 0 := (0, . . . , 0) ∈ Zd, so that W l−1ε,ε

1 =
{0, ε} by (GSC4). By #S < ld and (GSC1), i− ε ∈ {0, 1, . . . , l − 1}d \ S for some
i ∈ S, and then W i,ε

1 = {i}. Now for x ∈ V ε
0 , Fε(x), Fi(x) ∈ KI , and (5.9) implies

that 2pU l−1ε,ε
1

t

(
Fε(x), Fε(x)

)
= p

Ui,ε
1

t

(
Fi(x), Fi(x)

)
for any t ∈ (0,∞), from which

it follows that limt↓0 pt

(
Fi(x), Fi(x)

)
/pt

(
Fε(x), Fε(x)

)
= 2 by virtue of Lemma 3.3

and (5.5). Thus (2.14) holds and hence Theorems 2.17 and 2.18 apply. �
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