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Abstract

This paper is concerned with the global dynamics of a PDE viral infection model with cell-to-cell transmission and
spatial heterogeneity. The basic reproduction number ℜ0, which is a threshold value that predicts whether the infection
will go to extinction or not, is defined in a variational characterization. In quite a general setting in which every
parameters can be spatially heterogeneous, it is shown that if ℜ0 ≤ 1, then the infection-free steady state is globally
asymptotically stable, while if ℜ0 > 1, then the system is uniformly persistent and the infection steady state is globally
asymptotically stable. The proof is based on the construction of the Lyapunov functions and usage of the Green’s first
identity. Finally, numerical simulation is performed in order to verify the validity of our theoretical results.

Keywords: HIV-1 model, Cell-to-cell transmission, Spatial heterogeneity, Global asymptotic stability, Lyapunov
functions, Basic reproduction number

1. Introduction

In recent years, the in-host viral infection models incorporating spatial dispersion have been considered. In these
models, it is assumed that only the free virus diffuse while the host cells do not (see e.g. [3, 7, 26] and the references
cited therein). Such hybrid systems of differential equations (that is, systems of two ordinary differential equations
(ODEs) for the cells and one parabolic partial differential equation (PDE) for the virus) account for the spatial disper-
sion of virus due to many factors: i) the interaction between the virus and the immune system is localized according to
the type of tissues and also in a given tissue such as lymph nodes [3]; ii) the hepatocytes can not move under normal
conditions [15, 26, 29] and viruses can move freely and their motion follows a Fickian diffusion [25]. In order to be
more realistic, these models often incorporates: i) time delays, where the delays take into account the time between
infection of a target cell and the emission of viral particles [26]; ii) heterogeneous parameters, where all parameters
are allowed to be location dependent except the diffusion coefficient [25].

Due to the PDEs formulations, the system should be analyzed under suitable spatial domain equipped with suitable
boundary condition. In Wang et al. [26], the densities of uninfected cells, infected cells and free viruses are assumed
to be located at x at time t, which are denoted by u1(x, t), u2(x, t), u3(x, t), respectively, and the spatial domain is
assumed to be one dimensional, that is, (x, t) ∈ (−∞,∞)× (0,∞). Brauner et al. [3] extended the works in [26] to a
two-dimensional square domain (0, l)×(0, l) with periodic boundary conditions, and provided that the recruitment rate
to be space dependent. In a recent work, Wang et al. [25] argued that a realistic spatial domain should be bounded but
is typically not a square, under suitable types of boundary conditions. They proposed a zero-flux boundary condition
in a general bounded domain Ω⊂ Rn with smooth boundary ∂Ω (homogeneous Neumann boundary condition). The
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model studied in [25] takes the following hybrid system of two ODEs and one PDE:

∂u1(x, t)
∂ t

= λ (x)−β1(x)u1(x, t)u3(x, t)−a(x)u1(x, t),
∂u2(x, t)

∂ t
= β1(x)u1(x, t)u3(x, t)−b(x)u2(x, t), (x, t) ∈Ω× (0,∞),

∂u3(x, t)
∂ t

= d∆u3(x, t)+ k(x)u2(x, t)−m(x)u3(x, t),
∂u3(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

ui(x,0) = u0
i (x)≥ 0, x ∈Ω, i = 1,2,3.

(1.1)

Here, for each x ∈ Ω, λ (x) denotes the number of newly produced uninfected cells, a(x), b(x) and m(x) denote the
death rates of uninfected cells, infected cells and free viruses, respectively. β1(x) is the transmission coefficient for
virus-to-cell infection, k(x) is the rate of virus production due to the lysis of infected cells, d is the diffusion coefficient
and ∆ is Laplacian. By analyzing the model and identifying the basic reproduction number, they only obtained the
global dynamics of the model when all model parameters are constants (the spatially homogeneous case), but the
global dynamics of heterogeneous parameters case was left as an open problem. Recent studies in [29], a hepatitis
B virus infection with delay, diffusion and Holling type-II infection rate was investigated. They proved the global
stability of infection-free steady state by comparison arguments when the basic reproductive number is less than
unity, and obtained sufficient conditions for the global stability of infection steady state when the basic reproductive
number is greater than unity. Chı́ et al. [5] provided a detailed analysis of similar model but with standard incidence
function. By means of an iteration technique, sufficient conditions for the global stability of the infection steady state
were obtained. In [15], McCluskey and Yang successfully proved the threshold dynamics of a viral infection model
by constructing Lyapunov functions, which contains time delay and a general incidence function.

Recent studies reveal that the high efficiency of infection by large numbers of virions can be vital to a transfer
of multiple virions to an uninfected target cell [9, 20]. The virus-induced cell-cell fusion observed from experiments
is very likely the result of gp120/gp41 proteins, on the surface of infected cells, interacting with CD4 molecules
on uninfected cells [14, 22]. In this case, viral particles can be transferred from infected target cells to uninfected
ones through virological synapses. These findings left no doubt that direct cell-to-cell contribute to understand the
mechanism(s) of HIV-1 transmission in vivo. We list some extensive literatures for studying the dynamics of cell-to-
cell spread of HIV with and without delays [10, 11, 30].

Motivated by the previous works, to examine the effects of both diffusion and spatial heterogeneity, incorporating
cell-to-cell transmission into system (1.1) leads to the following hybrid system of two ODEs coupled with one PDE
under the homogeneous Neumann boundary condition:

∂u1(x, t)
∂ t

= λ (x)−β1(x)u1(x, t)u3(x, t)−β2(x)u1(x, t)u2(x, t)−a(x)u1(x, t),
∂u2(x, t)

∂ t
= β1(x)u1(x, t)u3(x, t)+β2(x)u1(x, t)u2(x, t)−b(x)u2(x, t), (x, t) ∈Ω× (0,∞),

∂u3(x, t)
∂ t

= d∆u3(x, t)+ k(x)u2(x, t)−m(x)u3(x, t),
∂u3(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

ui(x,0) = u0
i (x)≥ 0, x ∈Ω, i = 1,2,3.

(1.2)

Here the meaning of each symbol is listed in Table 1.
It is well-known that the homogeneous Neumann boundary condition indicates that the system is self-contained

with zero-flux across the boundary. From the viewpoint of application, it is particularly relevant to study some aspects
of its global dynamics of (1.2). The organization of this paper is as follows. In Section 2, we shall establish the well-
posedness of (1.2). Questions such as the existence of a unique mild solution of (1.2) and uniform boundedness of all
solutions will be addressed. Furthermore, the basic reproduction number ℜ0, which serves as a threshold parameter
that predicts whether the infection will go to extinction or persist (see, for instance, Diekmann et al. [6] and van den
Driessche and Watmough [24]), shall be defined in a variational characterization. In Section 3, the global asymptotic
stability of the infection-free steady state for ℜ0 ≤ 1 shall be proven by using a Lyapunov function. Section 4 shall
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Symbol Meaning
u1(x, t) the density of uninfected cells at position x at time t
u2(x, t) the density of infected cells at position x at time t
u3(x, t) the density of free viruses at position x at time t
λ (x) the number of newly produced uninfected cells at position x per unit time
β1(x) the transmission coefficient for virus-to-cell infection at position x
β2(x) the transmission coefficient for cell-to-cell infection at position x
a(x) the death rate of uninfected cells at position x per capita
b(x) the death rate of infected cells at position x per capita
m(x) the death rate of free viruses at position x per capita
k(x) the rate of virus production due to the lysis of infected cells at position x

d the diffusion coefficient

Table 1: Meaning of each symbol in model (1.2).

be devoted to the proof of the uniform persistence of (1.2) and the existence of the infection steady state for ℜ0 > 1.
In Section 5, the global asymptotic stability of the infection steady state for ℜ0 > 1 shall be proven. In Section 6, the
global stability analysis shall be done again for a special case in which all parameters are independent of the space
variable. In Section 7, numerical simulation shall be performed to verify the validity of our theoretical result.

2. Preliminaries

In this section, we begin with showing some basic properties of system (1.2). In what follows, we assume that
d > 0 and all of the other parameters λ (x), a(x), β1(x), β2(x), b(x), k(x) and m(x) of system (1.2) are continuous,
strictly positive and uniformly bounded on Ω̄. The following notations will be used:

λ̄ := sup
x∈Ω̄

λ (x), c := min
(

inf
x∈Ω̄

a(x), inf
x∈Ω̄

b(x)
)
, k̄ := sup

x∈Ω̄

k(x) and m := inf
x∈Ω̄

m(x).

Let us define the functional space for system (1.2) by X := C(Ω̄,R3), which is endowed with the supremum norm
such that

‖φ‖X := sup
x∈Ω̄

‖φ(x)‖= sup
x∈Ω̄

√
|φ1(x)|2 + |φ2(x)|2 + |φ3(x)|2, φ = (φ1,φ2,φ3)

T ∈ X,

where T denotes the transpose of the vector. Let us denote its positive cone by X+.

2.1. Well-posedness of the problem
Let A be a linear operator on C2(Ω̄,R) defined by

Aϕ(x) := d∆ϕ(x), D(A) :=
{

ϕ ∈C2 (
Ω̄,R

)
:

∂ϕ

∂ν
= 0 on ∂Ω

}
.

It is seen from a well-known fact (see, e.g., Webb [27, Section 3]) that the operator A is the infinitesimal generator of
the strongly continuous semigroup

{
etA
}

t≥0 in C(Ω̄,R). Then, the operator A : X→ X defined by

A φ(x) :=

 0
0

Aφ3(x)

 , φ =

 φ1
φ2
φ3

 ∈ D(A ) :=C(Ω̄,R2)×D(A)⊂ X (2.1)

is also the infinitesimal generator of the strongly continuous semigroup
{

etA
}

t≥0 in X. Furthermore, we define the
nonlinear operator F : X+→ X+ by

F (φ)(x) :=

 λ (x)−β1(x)φ1(x)φ3(x)−β2(x)φ1(x)φ2(x)−a(x)φ1(x)
β1(x)φ1(x)φ3(x)+β2(x)φ1(x)φ2(x)−b(x)φ2(x)

k(x)φ2(x)−m(x)φ3(x)

 , φ =

 φ1
φ2
φ3

 ∈ X+. (2.2)
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Then, system (1.2) can be rewritten as the following abstract Cauchy problem in X:

d
dt

u(t) = A u(t)+F (u(t)), u(t) :=

 u1(t)
u2(t)
u3(t)

 , u0 := u(0) =

 u0
1

u0
2

u0
3

 . (2.3)

For the existence of a local solution u(t) of (2.3), we have the following proposition:

Proposition 2.1. Let A and F be defined by (2.1) and (2.2), respectively. For each u0 ∈ D(A ) ⊂ X, there exists a
positive constant T0 > 0 such that the problem (2.3) has the unique local solution

u(t) = etA u0 +
∫ t

0
e(t−s)A F (u(s))ds, t ∈ [0,T0) ,

where T0 <+∞ and limsupt→T0−0 ‖u(t)‖X =+∞ or T0 =+∞.

PROOF. It is easy to see that the operator F is continuously Fréchet differentiable on X with the derivative F ′[ψ] :
X→ X at ψ = (ψ1,ψ2,ψ3)

T ∈ X given by

F ′[ψ]φ(x) :=

 −(β1(x)ψ3(x)+β2(x)ψ2(x)+a(x))φ1(x)−β2(x)ψ1(x)φ2(x)−β1(x)ψ1(x)φ3(x)
(β1(x)ψ3(x)+β2(x)ψ2(x))φ1(x)+(β2(x)ψ1(x)−b(x))φ2(x)+β1(x)ψ1(x)φ3(x)

k(x)φ2(x)−m(x)φ3(x)

 .

Then, the claim follows from [28, Proposition 4.16]. �

In what follows, we denote the solution u of the system (1.2) with initial condition u0 by

u(x, t;u0) = (u1(x, t;u0), u2(x, t;u0), u3(x, t;u0))
T .

Next we prove the existence of the global solution u of the system (1.2). We shall use the following two lemmas.

Lemma 2.1. [31, Theorem 2.2.1] Let µ(x) be a continuous, strictly positive and uniformly bounded function on Ω.
The differential equation

∂ω(x, t)
∂ t

= λ (x)−µ(x)ω(x, t), x ∈ Ω̄, t > 0

has a unique, strictly positive and globally asymptotically stable steady state λ (x)/µ(x) in C(Ω̄,R).

Lemma 2.2. [12, Lemma 1] Let g(x) and µ(x) be continuous, strictly positive and uniformly bounded functions on
Ω. The differential equation

∂ω(x, t)
∂ t

= d∆ω(x, t)+g(x)−µ(x)ω(x, t), x ∈Ω, t > 0,

∂ω(x, t)
∂v

= 0, x ∈ ∂Ω, t > 0

has a unique, strictly positive and globally asymptotically stable steady state ω∗(x) in C(Ω̄,R). Moreover, if g(x) ≡
g, µ(x)≡ µ , then ω∗(x) = g/µ .

The positivity of the solution u can be shown as follows.

Lemma 2.3. The solution u(x, t;u0) of the system (1.2) is positive on Ω× [0,T0) provided that the initial condition u0
is positive.

4



PROOF. Integrating the first equation in (1.2), we have

u1(x, t) = u0
1(x)e

−
∫ t

0(β1(x)u3(x,s)+β2(x)u2(x,s)+a(x))ds +λ (x)
∫ t

0
e−

∫ t
s (β1(x)u3(x,ρ)+β2(x)u2(x,ρ)+a(x))dρ ds (2.4)

and hence, u1 is positive. Suppose that there exists a T̃0 ∈ (0,T0) such that u2(x, t)> 0 on Ω×
(
0, T̃0

)
and u2(x, T̃0) = 0

and ∂u2(x, T̃0)/∂ t < 0 for some x ∈Ω. In this case, from the third equation in (1.2), we have
∂u3(x, t)

∂ t
≥ d∆u3(x, t)−m(x)u3(x, t), x ∈Ω, t ∈

(
0, T̃0

]
,

∂u3(x, t)
∂v

= 0, x ∈ ∂Ω, t ∈
(
0, T̃0

]
.

(2.5)

Hence, it follows from the strong maximum principle (see, e.g., [21, Theorem 4, p.172]) and the Hopf boundary
lemma (see, e.g., [21, Theorem 3, p.170]) that u3(x, t)≥ 0 on Ω×

[
0, T̃0

]
. Hence, from the second equation in (1.2),

we have ∂u2(x, T̃0)/∂ t ≥ 0, which is a contradiction. Thus, u2(x, t) is positive. For the proof of the positivity of u3,
we obtain the differential inequality (2.5) again on Ω× [0,T0] and hence, we can apply the strong maximum principle
and the Hopf boundary lemma to conclude that the claim is true. �

To show the existence of the global solution u of the system (1.2), we set the state space

D =

{
u = (u1,u2,u3)

T ∈ X+ : u1(x, ·)≤
λ (x)
a(x)

, u1(x, ·)+u2(x, ·)≤
λ̄

c
and u3(x, ·)≤

λ̄

c
k̄
m

for all x ∈ Ω̄

}
(2.6)

and show its positive invariance. We prove the following proposition.

Proposition 2.2. Let D be defined by (2.6). D is positively invariant for the system (1.2).

PROOF. Suppose that u0 =
(
u0

1,u
0
2,u

0
3
)T ∈D . The positivity of u follows from Lemma 2.3. From (2.4), we have

u1(x, t) ≤ u0
1(x)e

−a(x)t +λ (x)
∫ t

0
e−a(x)(t−s)ds =

(
u0

1(x)−
λ (x)
a(x)

)
e−a(x)t +

λ (x)
a(x)

≤ λ (x)
a(x)

.

Hence, the first inequality in (2.6) holds. By adding the first two equations in (1.2) we have

∂

∂ t
(u1(x, t)+u2(x, t)) = λ (x)−a(x)u1(x, t)−b(x)u2(x, t)≤ λ̄ − c(u1(x, t)+u2(x, t)) .

Integration yields

u1(x, t)+u2(x, t) ≤
((

u0
1(x)+u0

2(x)
)
− λ̄

c

)
e−ct +

λ̄

c
≤ λ̄

c
.

Hence, the second inequality in (2.6) holds. From the third equation in (1.2), we have
∂u3(x, t)

∂ t
≤ d∆u3(x, t)+ k̄

λ̄

c
−mu3(x, t), x ∈Ω, t > 0,

∂u3(x, t)
∂ν

= 0, x ∈ ∂Ω, t > 0.
(2.7)

From Lemma 2.2 and the comparison principle, we see that limsupt→+∞ u3(x, t) ≤ λ̄ k̄/(c ·m) for all x ∈ Ω̄. In
particular, if u3(x̃, t̃) = λ̄ k̄/(c ·m) for some x̃ ∈ Ω̄ and t̃ > 0, then ∂u3(x̃, t̃)/∂ t ≤ 0 holds from the first equation in
(2.7) and this implies that u3(x, t)≤ λ̄ k̄/(c ·m) holds for all x ∈ Ω̄ and t > 0 provided u0

3(x)≤ λ̄ k̄/(c ·m) for all x ∈ Ω̄.
This completes the proof. �

From Propositions 2.1 and 2.2, we see that the system (1.2) has a unique global solution u ∈ D for any initial
condition u0 ∈D . Therefore, we can define the continuous semiflow {Φt}t≥0 : X+→ X+ for the system (1.2) by

Φt(u0) := u(·, t;u0), t ≥ 0.

Proposition 2.2 implies that Φt(u0) ∈D for all t ≥ 0 whenever u0 ∈D .
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2.2. Basic reproduction number
In this section, we define the basic reproduction number ℜ0 for the system (1.2). It is easy to see that the system

(1.2) always has the infection-free steady state Q0 = (u∗1(x),0,0)
T ∈D , where u∗1(x) = λ (x)/a(x). Let us define ℜ(x)

by the local basic reproduction number for cell-to-cell infection at position x ∈Ω:

ℜ(x) :=
β2(x)u∗1(x)

b(x)
=(the transmission coefficient β2(x) for cell-to-cell infection at position x ∈Ω)

× (the density u∗1(x) of uninfected cells at position x ∈Ω in the infection-free steady state)

×
(

the average period
1

b(x)
of infectiousness of infected cells at position x ∈Ω

)
.

In what follows, we assume that the infection can not be endemic only by the cell-to-cell infection, that is,

ℜ(x)< 1 (2.8)

for all x ∈ Ω. In fact, it is easy to check that if ℜ(x)> 1 for some x, then the infection-free steady state Q0 becomes
unstable due to the increase of infected cells at the position x.

The system (1.2) can be linearized around the infection-free steady state Q0 as follows.
∂u2(x, t)

∂ t
= β1(x)u∗1(x)u3(x, t)+β2(x)u∗1(x)u2(x, t)−b(x)u2(x, t), x ∈Ω, t > 0,

∂u3(x, t)
∂ t

= d∆u3(x, t)+ k(x)u2(x, t)−m(x)u3(x, t), x ∈Ω, t > 0,
∂u3(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0.

(2.9)

Substituting u2(x, t) = eηtψ2(x) and u3(x, t) = eηtψ3(x) into (2.9) and dividing both sides of the two equations by eηt ,
we arrive at the following eigenvalue problem.

ηψ(x) =
(
−b(x)+β2(x)u∗1(x) β1(x)u∗1(x)

k(x) d∆−m(x)

)
ψ(x), x ∈Ω, ψ =

(
ψ2
ψ3

)
∈C

(
Ω̄,R2) ,

∂ψ3(x)
∂ν

= 0, x ∈ ∂Ω.

(2.10)

Let us define

B =

(
−b(x)+β2(x)u∗1(x) β1(x)u∗1(x)

k(x) d∆−m(x)

)
(2.11)

and denote by s(B) the spectral bound of B.
On the other hand, we consider the following eigenvalue problem associated with (2.10):

(0,0) = Ψ
T (x)

(
−b(x)+β2(x)u∗1(x) ηβ1(x)u∗1(x)

k(x) d∆−m(x)

)
, x ∈Ω, Ψ =

(
Ψ2
Ψ3

)
∈C

(
Ω̄,R2) ,

∂Ψ3(x)
∂ν

= 0, x ∈ ∂Ω.

(2.12)

We prove the following lemma.

Lemma 2.4. The eigenvalue problem (2.12) has the principal eigenvalue η∗, which is the only positive eigenvalue
associated with a strictly positive eigenfunction Ψ∗ = (Ψ∗2,Ψ

∗
3)

T ∈C
(
Ω̄,R2

)
.

PROOF. The problem (2.12) can be rewritten as
0 =−(b(x)−β2(x)u∗1(x))Ψ2(x)+ k(x)Ψ3(x), x ∈Ω,

0 = ηβ1(x)u∗1(x)Ψ2(x)+d∆Ψ3(x)−m(x)Ψ3(x), x ∈Ω,

∂Ψ3(x)
∂ν

= 0, x ∈ ∂Ω.
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Hence, under the assumption (2.8), we can obtain

Ψ2(x) =
k(x)

b(x)−β2(x)u∗1(x)
Ψ3(x) (2.13)

and

0 = d∆Ψ3(x)−m(x)Ψ3(x)+ηβ1(x)u∗1(x)
k(x)

b(x)−β2(x)u∗1(x)
Ψ3(x). (2.14)

It is a well-known fact that (2.14) with the Neumann boundary condition ∂Ψ3/∂ν = 0 on ∂Ω has the only positive
principal eigenvalue η∗ > 0 associated with the strictly positive eigenfunction Ψ∗3 (see, for instance, [4, Theorem
2.4]). Ψ∗2 is obtained by substituting Ψ3 = Ψ∗3 into the right-hand side of (2.13) and it is strictly positive by virtue of
the assumption (2.8). This completes the proof. �

In this paper, we define the basic reproduction number ℜ0 by 1/η∗. That is, the following equality holds for the
strictly positive eigenfunction Ψ∗ = (Ψ∗2,Ψ

∗
3)

T ∈C
(
Ω̄,R2

)
:

(0,0) = Ψ
∗T (x)

 −b(x)+β2(x)u∗1(x)
β1(x)u∗1(x)

ℜ0
k(x) d∆−m(x)

 , x ∈Ω, Ψ
∗ =

(
Ψ∗2
Ψ∗3

)
∈C

(
Ω̄,R2) ,

∂Ψ∗3(x)
∂ν

= 0, x ∈ ∂Ω.

(2.15)

From (2.14), we can obtain the following variational characterization of ℜ0 as in [1, Lemma 2.3] and [4, Theorem
2.4]:

ℜ0 = sup
ϕ∈H1(Ω), ϕ 6=0

 1∫
Ω

(
d |∇ϕ|2 +m(x)ϕ(x)2

)
dx

∫
Ω

β1(x)u∗1(x)k(x)
b(x)−β2(x)u∗1(x)

ϕ(x)2dx

 . (2.16)

For constant parameters, ℜ0 can be reduced to

ℜ0 =
β1u∗1k

m
(
b−β2u∗1

) , u∗1 =
λ

a
. (2.17)

Indeed, this ℜ0 has the same threshold property as that of ℜ1
0, which shall be defined in the spatially homogeneous

case in Section 6.
In the remainder of this section, we prove the following lemma which shall be used for the proof of the uniform

persistence of the system (1.2) (see the proof of Lemma 4.1 (iii)).

Lemma 2.5. Let B and ℜ0 be defined by (2.11) and (2.16), respectively. If ℜ0 > 1, then s(B) > 0 and it is the
principal eigenvalue of the problem (2.10) associated with a strictly positive eigenfunction.

PROOF. Let

Bℜ0 :=

 −b(x)+β2(x)u∗1(x)
β1(x)u∗1(x)

ℜ0
k(x) d∆−m(x)

 .

Then, (2.12) and Lemma 2.4 imply that s
(
Bℜ0

)
≥ 0. Since B > Bℜ0 for ℜ0 > 1 (here the inequality > between

the matrices implies that ≥ holds for each corresponding entry and these matrices are not equal), we have s(B) >
s
(
Bℜ0

)
≥ 0.

Let Y :=C
(
Ω̄,R2

)
and {Θt}t≥0 : Y→Y be the semiflow generated by the linearized system (2.9). Then, we have

Θt (ψ) = L(t)ψ +N(t)(ψ), t ≥ 0, ψ =

(
ψ2
ψ3

)
∈C

(
Ω̄,R2) ,
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where

L(t)ψ =

(
e−(b(·)−β2(·)u∗1(·))t

ψ2
0

)
, N(t)(ψ) =

( ∫ t
0 e−(b(·)−β2(·)u∗1(·))(t−s)

β1(·)u∗1(·)u3 (·,s;ψ)ds
u3 (·, t;ψ)

)
.

From the assumption (2.8) we see that there exists a positive constant b > 0 such that

b(x)−β2(x)u∗1(x) ≥ b > 0 for all x ∈ Ω̄.

Then, the operator norm of L(t) can be estimated as

‖L(t)‖op = sup
ψ∈Y

‖L(t)ψ‖Y
‖ψ‖Y

≤ e−bt sup
ψ∈Y

‖ψ‖Y
‖ψ‖Y

= e−bt .

On the other hand, it follows from the boundedness of {Θt}t≥0 and the compactness of the C0-semigroup associated
with the solution u3 that the operator N(t) is compact for each t > 0. Consequently, for any bounded subset B in Y,
we have

κ (ΘtB) = κ (L(t)B)+κ (N(t)(B)) ≤ ‖L(t)‖op κ (B)+0 ≤ e−bt
κ (B) ,

where κ(·) denotes the Kuratowski measure of noncompactness defined by

κ (B) := inf{R≥ 0 : B has a finite cover of diameter less than R} .

Thus, {Θt}t≥0 is a κ-contraction on Y with the contraction function e−bt . Then, we have

re (Θt) ≤ e−bt < 1 ≤ es(B)t = r (Θt) ,

where re(·) and r(·) denote the essential spectral radius and the spectral radius of operators, respectively. This inequal-
ity implies that the essential spectral radius is strictly less than the spectral radius and hence, from the generalized
Krein-Rutman Theorem (see [17]), we see that s(B) is the principal eigenvalue. This completes the proof. �

3. Global asymptotic stability of the infection-free steady state

In this section, for 0 < ℜ0 ≤ 1, we prove the global asymptotic stability of the infection-free steady state Q0 =
(u∗1(x),0,0)

T ∈D . Now, (2.15) can be rewritten as follows.

0 =−(b(x)−β2(x)u∗1(x))Ψ
∗
2(x)+ k(x)Ψ∗3(x), x ∈Ω,

0 =
β1(x)u∗1(x)

ℜ0
Ψ
∗
2(x)+d∆Ψ

∗
3(x)−m(x)Ψ∗3(x), x ∈Ω,

∂Ψ∗3(x)
∂ν

= 0, x ∈ ∂Ω.

(3.1)

The first and second equations in (3.1) can be rearranged as follows.

k(x)Ψ∗3(x) = (b(x)−β2(x)u∗1(x))Ψ
∗
2(x) and

β1(x)u∗1(x)
ℜ0

Ψ
∗
2(x) =−d∆Ψ

∗
3(x)+m(x)Ψ∗3(x). (3.2)

Using this strictly positive function Ψ∗(x) = (Ψ∗2(x),Ψ
∗
3(x))

T , we define the following Lyapunov function:

LIFE [u2,u3] (t) :=
∫

Ω

(
Ψ
∗
2(x)u2(x, t)+Ψ

∗
3(x)u3(x, t)

)
dx. (3.3)

Using this function, we prove the following theorem.

Theorem 3.1. Let D and ℜ0 be defined by (2.6) and (2.16), respectively. If 0 < ℜ0 ≤ 1, then the infection-free steady
state Q0 = (u∗1(x),0,0)

T ∈D is globally asymptotically stable in D .
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PROOF. The derivative of the Lyapunov function LIFE [u2,u3] along the trajectory of the system (1.2) is calculated
as follows.

L ′
IFE =

∫
Ω

(
Ψ
∗
2(x)

∂u2(x, t)
∂ t

+Ψ
∗
3(x)

∂u3(x, t)
∂ t

)
dx

=
∫

Ω

[
Ψ
∗
2(x)

(
β1(x)u1(x, t)u3(x, t)+β2(x)u1(x, t)u2(x, t)−b(x)u2(x, t)

)
+Ψ

∗
3(x)

(
d∆u3(x, t)+ k(x)u2(x, t)−m(x)u3(x, t)

)]
dx

≤
∫

Ω

[
Ψ
∗
2(x)

(
β1(x)u∗1(x)u3(x, t)+β2(x)u∗1(x)u2(x, t)−b(x)u2(x, t)

)
+Ψ

∗
3(x)

(
d∆u3(x, t)+ k(x)u2(x, t)−m(x)u3(x, t)

)]
dx

≤
∫

Ω

[
Ψ
∗
2(x)

(
β1(x)u∗1(x)

ℜ0
u3(x, t)+β2(x)u∗1(x)u2(x, t)−b(x)u2(x, t)

)
+Ψ

∗
3(x)

(
d∆u3(x, t)+ k(x)u2(x, t)−m(x)u3(x, t)

)]
dx.

From (3.2) we have

L ′
IFE ≤ d

∫
Ω

[−u3(x, t)∆Ψ
∗
3(x)+Ψ

∗
3(x)∆u3(x, t)]dx.

Then, it follows from the Green’s first identity and the homogeneous Neumann boundary conditions that

L ′
IFE ≤d

[
−
∫

∂Ω

u3(x, t)∇Ψ
∗
3(x) ·νdS+

∫
Ω

∇u3(x, t) ·∇Ψ
∗
3(x)dx

+
∫

∂Ω

Ψ
∗
3(x, t)∇u3(x) ·νdS−

∫
Ω

∇Ψ
∗
3(x, t) ·∇u3(x)dx

]
=d [〈∇u3(·, t),∇Ψ

∗
3(·)〉−〈∇Ψ

∗
3(·),∇u3(·, t)〉] = 0,

where 〈·〉 denotes the L2-inner product. Hence, from the positivity of Ψ∗(x), it is easy to see that L ′
IFE ≤ 0 and the

equality holds if and only if u2 = u3 ≡ 0. Then, from the LaSalle’s invariance principle, we can conclude that the
infection-free steady state Q0 is globally asymptotically stable. �

4. Uniform persistence and existence of the infection steady state

In this section, we shall prove the uniform persistence of the system (1.2) and the existence of the infection steady
state when the basic reproduction number ℜ0 is greater than one. The definition of the uniform persistence is as
follows.

Definition 4.1. System (1.2) is said to be persistent (in X+) if any solution u(x, t;u0) with initial condition u0 ∈ X+

is bounded away from zero, i.e., for any u0 ∈ X+,

liminf
t→∞

ui (x, t;u0)> 0, i = 1,2,3;

and uniformly persistent (in X+) if there exists a constant ξ > 0 such that for any u0 ∈ X+,

liminf
t→∞

ui (x, t;u0)> ξ , i = 1,2,3.

Let us define

D0 :=
{

φ = (φ1,φ2,φ3)
T ∈D : φ2(·) 6≡ 0 or φ3(·) 6≡ 0

}
, (4.1)

∂D := D \D0 =
{

φ = (φ1,φ2,φ3)
T ∈D : φ2(·)≡ 0 and φ3(·)≡ 0

}
and

M∂ :=
{

φ = (φ1,φ2,φ3)
T ∈ ∂D : Φt (φ) ∈ ∂D for all t ≥ 0

}
. (4.2)

Let us denote by ω(φ) the omega limit set of the orbit O+(φ) := {Φt(φ) : t ≥ 0}. We prove the following lemma.

Lemma 4.1. Let ℜ0, D0 and M∂ be defined by (2.16), (4.1) and (4.2), respectively.
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(i) ω (u0) =
{
(u∗1(x),0,0)

T
}

for any u0 ∈M∂ .

(ii) For any u0 ∈D0, ui (x, t;u0)> 0 for all x ∈ Ω̄ and t > 0 (i = 1,2,3).
(iii) If ℜ0 > 1, then the infection-free steady state Q0 = (u∗1(x),0,0) is a uniform weak repeller for D0, that is, there

exists a sufficiently small constant ε > 0 such that

limsup
t→+∞

∥∥∥Φt (u0)− (u∗1(·),0,0)
T
∥∥∥
X
≥ ε

for any u0 ∈D0.

PROOF. (i) For any u0 ∈M∂ , the system (1.2) is reduced to

∂u1(x, t)
∂ t

= λ (x)−a(x)u1(x, t), u2(x, t) = u3(x, t) = 0

and hence, u1(x, t)→ u∗1(x) as t→+∞ for all x ∈ Ω̄. Thus, ω (u0) =
{
(u∗1,0,0)

T
}

.

(ii) It obviously follows from (2.4) that u1(x, t)> 0 for all x ∈ Ω̄ and t > 0. If u0
3(x) 6≡ 0, then it follows again from

(2.5) and the strong maximum principle together with the Hopf boundary lemma that u3(x, t) > 0 for all x ∈ Ω̄ and
t > 0. Then, since we have from the second equation in (1.2) that

∂u2(x, t)
∂ t

≥ β1(x)u1(x, t)u3(x, t)−b(x)u2(x, t), (4.3)

the strict positivity of u1 and u3 implies that u2(x, t) > 0 for all x ∈ Ω̄ and t > 0. On the other hand, suppose that
u0

2(x) 6≡ 0. From the third equation in (1.2), u3 can be written as

u3(x, t) = T (t)
(
u0

3(·)
)
(x)+

∫ t

0
T (t− s)(k(·)u2(·,s))(x)ds,

where {T (t)}t≥0 denotes the C0-semigroup generated by d∆−m(x). Then, from the property of C0-semigroup gen-
erated by Laplacian and the strict positivity of k(x), we see that u0

2(x) 6≡ 0 implies that u3(x, t) > 0 for all x ∈ Ω̄ and
t > 0. Then, it follows again from the inequality (4.3) that u2(x, t)> 0 for all x ∈ Ω̄ and t > 0.

(iii) From Lemma 2.5, ℜ0 > 1 implies that s(B)> 0. Therefore, there exists a sufficiently small ε > 0 such that
the eigenvalue problem

ηψ(x) =
(
−b(x)+β2(x)(u∗1(x)− ε) β1(x)(u∗1(x)− ε)

k(x) d∆−m(x)

)
ψ(x), ψ(x) :=

(
ψ2(x)
ψ3(x)

)
, x ∈Ω,

∂ψ3(x)
∂ν

= 0, x ∈ ∂Ω.

has the positive principle eigenvalue η̃ > 0, which is associated with a positive eigenfunction ψ̃(x) = (ψ̃2(x), ψ̃3(x))
T

and is the spectral bound for the corresponding linearized system.
Suppose that

limsup
t→+∞

∥∥∥Φt (u0)− (u∗1(·),0,0)
T
∥∥∥
X
< ε

for some u0 ∈ D0 and show a contradiction. This implies that there exists a t0 > 0 such that u1 (x, t) > u∗1(x)− ε for
all x ∈ Ω̄ and t ≥ t0. Hence, it follows from the second and third equations in (1.2) that

∂u2(x, t)
∂ t

≥ β1(x)(u∗1(x)− ε)u3(x, t)+β2(x)(u∗1(x)− ε)u2(x, t)−b(x)u2(x, t), x ∈Ω, t ≥ t0,
∂u3(x, t)

∂ t
= d∆u3(x, t)+ k(x)u2(x, t)−m(x)u3(x, t), x ∈Ω, t ≥ t0,

∂u3(x, t)
∂ν

= 0, x ∈ ∂Ω, t ≥ t0.
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Since u2(x, t) > 0 and u3(x, t) > 0 for all x ∈ Ω̄ and t > 0 (see (ii)), there exists a sufficiently small ε̃ > 0 such that
(u2(x, t),u3(x, t))

T > ε̃ψ̃(x). Recalling that ε̃eη̃(t−t0)ψ̃(x) is the solution of
∂u2(x, t)

∂ t
= β1(x)(u∗1(x)− ε)u3(x, t)+β2(x)(u∗1(x)− ε)u2(x, t)−b(x)u2(x, t), x ∈Ω, t ≥ t0,

∂u3(x, t)
∂ t

= d∆u3(x, t)+ k(x)u2(x, t)−m(x)u3(x, t), x ∈Ω, t ≥ t0,
∂u3(x, t)

∂ν
= 0, x ∈ ∂Ω, t ≥ t0,

we can use the comparison principle to obtain

(u2(x, t),u3(x, t))
T ≥ ε̃eη̃(t−t0)ψ̃(x).

Since η̃ > 0, u(x, t) diverges and this is a contradiction. �

Using Lemma 4.1, the uniform persistence theory, we prove the following theorem.

Theorem 4.1. Let ℜ0 be defined by (2.16). If ℜ0 > 1, then the system (1.2) is uniformly persistent in D0 and has at
least one positive infection steady state Q∗ = (û1(x), û2(x), û3(x))

T ∈D0.

PROOF. From Lemma 4.1 (i)-(ii), we see that (u∗1(x),0,0)
T is isolated in D and D0∩W s

(
(u∗1(x),0,0)

T
)
= /0, where

W s (·) denotes the stable manifold. Since there is no cycle in M∂ from (u∗1(x),0,0)
T to itself, we can use [23, Theorem

3] to conclude that there exists a constant ξ > 0 such that

min
φ∈ω(u0)

[
min

i=1,2,3
inf
x∈Ω̄

φi(x)
]
> ξ

for all u0 ∈ D0. This implies that liminft→+∞ ui (x, t;u0) > ξ for i = 1,2,3 and thus, the system (1.2) is uniformly
persistent.

From [13, Theorem 3.7], Φt : D0 → D0 admits a global attractor A0 that attracts every point in X+ Then, from
[13, Theorem 4.7], Φt has a steady state Q∗ = (û1(x), û2(x), û3(x))

T ∈D0, whose positivity is guaranteed by Lemma
4.1. �

5. Global asymptotic stability of the infection steady state

In this section, we prove the global asymptotic stability of the infection steady state Q∗ = (û1(x), û2(x), û3(x))
T ∈

D0 for ℜ0 > 1. We construct the following Lyapunov function:

LIE [u1,u2,u3] (t) :=
∫

Ω

`(x)W [u1,u2,u3] (x, t)dx, (5.1)

where `(x) is a strictly positive function to be defined later and

W [u1,u2,u3] (x, t) := (û1(x), û2(x), û3(x))


g
(

u1(x,t)
û1(x)

)
g
(

u2(x,t)
û2(x)

)
β1(x)û1(x)û3(x)

k(x)û2(x)
û3(x)g

(
u3(x,t)
û3(x)

)
 ,

where g(l) := l−1− ln l, l > 0. The partial derivative of W [u1,u2,u3] with respect to t satisfies

∂W

∂ t
=

[(
1− û1(x)

u1(x, t)

)
∂u1(x, t)

∂ t
+

(
1− û2(x)

u2(x, t)

)
∂u2(x, t)

∂ t
+

β1(x)û1(x)û3(x)
k(x)û2(x)

(
1− û3(x)

u3(x, t)

)
∂u3(x, t)

∂ t

]
.

Using this function, we shall prove the following theorem.
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Theorem 5.1. Let ℜ0 and D0 be defined by (2.16) and (4.1), respectively. If ℜ0 > 1, then the infection steady state
Q∗ = (û1(x), û2(x), û3(x))

T ∈D0 is globally asymptotically stable in D0.

PROOF. To ease of notations, we will use the following notations in the proof,

ûi = ûi(x), ui = ui(x, t), i = 1,2,3.

The derivative of the Lyapunov function LIE [u1,u2,u3] along the trajectory of the system (1.2) is calculated as fol-
lows:

L ′
IE =

∫
Ω

`(x)
[(

1− û1

u1

)(
λ (x)−β1(x)u1u3−β2(x)u1u2−a(x)u1

)
+

(
1− û2

u2

)(
β1(x)u1u3 +β2(x)u1u2−b(x)u2

)
+

β1(x)û1û3

k(x)û2

(
1− û3

u3

)(
d∆u3 + k(x)u2−m(x)u3

)]
dx. (5.2)

Since Q∗ = (û1(x), û2(x), û3(x))
T is the steady state of the system (1.2), the following equations hold. λ (x) = β1(x)û1û3 +β2(x)û1û2 +a(x)û1,

b(x)û2 = β1(x)û1û3 +β2(x)û1û2,
m(x)û3 = d∆û3 + k(x)û2.

(5.3)

Then, we first rearrange (5.2) as follows.

L ′
IE =

∫
Ω

`(x)
{(

1− û1

u1

)(
λ (x)−β1(x)u1u3−β2(x)u1u2−a(x)u1

)
+

(
1− û2

u2

)(
β1(x)u1u3 +β2(x)u1u2

)
+

(
1− u2

û2

)
b(x)û2

+
β1(x)û1û3

k(x)û2

[(
1− û3

u3

)(
d∆u3 + k(x)u2

)
+

(
1− u3

û3

)
m(x)û3

]}
dx. (5.4)

Putting (5.3) into (5.4) yields

L ′
IE =

∫
Ω

`(x)
{

a(x)û1

(
2− û1

u1
− u1

û1

)
+

(
1− û1

u1

)(
β1(x)û1û3 +β2(x)û1û2−β1(x)u1u3−β2(x)u1u2

)
+

(
1− û2

u2

)(
β1(x)u1u3 +β2(x)u1u2

)
+

(
1− u2

û2

)(
β1(x)û1û3 +β2(x)û1û2

)
+

β1(x)û1û3

k(x)û2

[(
1− û3

u3

)
d∆u3 +

(
1− u3

û3

)
d∆û3

]
+β1(x)û1û3

(
u2

û2
− u2û3

û2u3
+1− u3

û3

)}
dx.

Using the arithmetic-geometric mean, we have the following inequality.

L ′
IE ≤

∫
Ω

`(x)
{

β1(x)û1û3

(
3− û1

u1
− u1u3û2

û1û3u2
− u2û3

û2u3

)
+β2(x)û1û2

(
2− û1

u1
− u1

û1

)
+

β1(x)û1û3

k(x)û2

[(
1− û3

u3

)
d∆u3 +

(
1− u3

û3

)
d∆û3

]}
dx

≤
∫

Ω

`(x)
β1(x)û1û3

k(x)û2

[(
1− û3

u3

)
d∆u3 +

(
1− u3

û3

)
d∆û3

]
dx. (5.5)

Now we define

`(x) =
k(x)û2

β1(x)û1
.
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Then, using the Green’s first identity and the homogeneous Neumann boundary condition, we have

L ′
IE ≤ d

∫
Ω

û3

[(
1− û3

u3

)
∆u3 +

(
1− u3

û3

)
∆û3

]
dx

= d
[∫

∂Ω

û3

(
1− û3

u3

)
∇u3 ·ν dS−

∫
Ω

∇

(
û3

(
1− û3

u3

))
·∇u3dx

+
∫

∂Ω

û3

(
1− u3

û3

)
∇û3 ·ν dS−

∫
Ω

∇

(
û3

(
1− u3

û3

))
·∇û3dx

]
= −d

[∫
Ω

n

∑
j=1

(
∂ û3

∂x j
− 1

u2
3

(
2u3û3

∂ û3

∂x j
− û2

3
∂u3

∂x j

))
∂u3

∂x j
dx+

∫
Ω

n

∑
j=1

(
∂ û3

∂x j
− ∂u3

∂x j

)
∂ û3

∂x j
dx

]

= −d
∫

Ω

n

∑
j=1

(
û2

3
u2

3

(
∂u3

∂x j

)2
−2

û3

u3

∂u3

∂x j

∂ û3

∂x j
+

(
∂ û3

∂x j

)2
)

dx = −d
∫

Ω

n

∑
j=1

(
û3

u3

∂u3

∂x j
− ∂ û3

∂x j

)2
dx ≤ 0.

It is easy to see from (5.5) that the equality holds if and only if (u1(x, t),u2(x, t),u3(x, t))
T = (û1(x), û2(x), û3(x))

T .
Thus, the LaSalle’s invariance principle implies the global asymptotic stability of the infection steady state Q∗ =
(û1(x), û2(x), û3(x))

T . �

6. The spatially homogeneous case

In this section, we are concerned with a case study, where all coefficients in (1.2) are independent of the variable
x. The model to be studied takes the following form:

∂u1(x, t)
∂ t

= λ −au1(x, t)−β1u1(x, t)u3(x, t)−β2u1(x, t)u2(x, t),
∂u2(x, t)

∂ t
= β1u1(x, t)u3(x, t)+β2u1(x, t)u2(x, t)−bu2(x, t),

∂u3(x, t)
∂ t

= d∆u3(x, t)+ ku2(x, t)−mu3(x, t),
∂u3(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

ui(x,0) = u0
i (x)≥ 0, x ∈Ω, i = 1,2,3.

(6.1)

Clearly, system (6.1) has an infection-free steady-state solution Q0
(6.1) = (ũ1,0,0)T , where ũ1 = λ/a. The constant

positive steady-state solution is uniquely given by

Q∗(6.1) := (ū1, ū2, ū3)
T =

(
bm

β1k+β2m
,

am(ℜ1
0−1)

β1k+β2m
,

ak(ℜ1
0−1)

β1k+β2m

)T

,

where

ℜ
1
0 =

β1λk
abm

+
β2λ

ab
. (6.2)

The existence of Q∗(6.1) is guaranteed if and only if ℜ1
0 > 1. In fact, ℜ1

0 > 1 is equivalent to

β1λk
am

+
β2λ

a
> b ⇔ β1ũ1k

m
> b−β2ũ1 ⇔

β1ũ1k
m(b−β2ũ1)

> 1

for b−β2ũ1 > 0. The last expression is ℜ0 > 1 as mentioned in (2.17) and hence, ℜ1
0 and ℜ0 may have the same

threshold property. In the following, we are concerned with the global asymptotic stability of the steady states of (6.1)
by using the technique of Lyapunov functions.

Theorem 6.1. Let D , D0 and ℜ1
0 be defined by (2.6), (4.1) and (6.2), respectively. Then the following statements

hold:
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(i) If ℜ1
0 < 1, then the infection-free steady state Q0

(6.1) = (ũ1,0,0)
T ∈D is globally asymptotically stable in D;

(ii) If ℜ1
0 > 1, then the infection steady state Q∗(6.1) = (ū1, ū2, ū3)

T ∈D0 is globally asymptotically stable in D0.

PROOF. Proof of (i). For an arbitrary positive solution (u1(x, t),u2(x, t),u3(x, t))
T of (6.1), we define

LDFE [u1,u2,u3] (t) :=
∫

Ω

U2 [u1,u2,u3] (x, t)dx,

where

U2 [u1,u2,u3] (x, t) := (ũ1,u2(x, t),u3(x, t))

 g
(

u1(x,t)
ũ1

)
1

λβ1
am

 .

Recalling that ũ = λ/a, we obtain the following inequality by direct computation:

∂U2

∂ t
=

∂U2

∂u1

∂u1

∂ t
+

∂U2

∂u2

∂u2

∂ t
+

∂U2

∂u3

∂u3

∂ t

=

(
1− ũ1

u1

)
(aũ1−au1−β1u1u3−β2u1u2)+(β1u1u3 +β2u1u2−bu2)+

λβ1

am
(ku2−mu3)

= aũ1

(
2− ũ1

u1
− u1

ũ1

)
+β1ũ1u3 +β2ũ1u2−bu2 +

λβ1k
am

u2−
λβ1

a
u3

= aũ1

(
2− ũ1

u1
− u1

ũ1

)
+bu2

(
β1λk
abm

+
β2λ

ab
−1
)

= aũ
(

2− u1

ũ1
− ũ1

u1

)
+bu2(ℜ

1
0−1)≤ 0.

Hence, LDFE is the Lyapunov function for the system (6.1). It is easy to see that
{
(u1,u2,u3)

T ∈ X+ : L ′
DFE = 0

}
={

Q0
(6.1) = (ũ1,0,0)

T
}

. Therefore, LaSalle’s invariance principle (see, e.g., [8, Theorem 1.1]) implies that the system

(6.1) admits a connected global attractor on X+ and

lim
t→∞

(u1(·, t),u2(·, t),u3(·, t))T = (ũ1,0,0)
T ,

that is, Q0
(6.1) = (ũ1,0,0)

T is globally asymptotically stable for (6.1).
Proof of (ii). Suppose u(x, t,φ) is the solution of system (6.1) with u(·, t,φ) = φ ∈ R+. We define

LEE [u1,u2,u3] (t) :=
∫

Ω

U1 [u1,u2,u3] (x, t)dx,

where

U1 [u1,u2,u3] (x, t) := (ū1, ū2, ū3)


g
(

u1(x,t)
ū1

)
g
(

u2(x,t)
ū2

)
β1ū1ū3

kū2
g
(

u3(x,t)
ū3

)

 .

The partial derivative of U1 [u1,u2,u3] with respect to t satisfies

∂U1

∂ t
=

[(
1− ū1

u1(x, t)

)
∂u1(x, t)

∂ t
+

(
1− ū2

u2(x, t)

)
∂u2(x, t)

∂ t
+

β1ū1ū3

kū2

(
1− ū3

u3(x, t)

)
∂u3(x, t)

∂ t

]
.
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Note that the steady state of the system (6.1) satisfy the following equations: λ = β1ū1ū3 +β2ū1ū2 +aū1,
bū2 = β1ū1ū3 +β2ū1ū2,
mū3 = kū2.

(6.3)

Directly computing the derivative of LEE gives

L ′
EE =

∫
Ω

{(
1− ū1

u1

)(
λ −β1u1u3−β2u1u2−au1

)
+

(
1− ū2

u2

)(
β1u1u3 +β2u1u2

)
+

(
1− u2

ū2

)
bū2

+
β1ū1ū3

kū2

[(
1− ū3

u3

)(
d∆u3 + ku2

)
+

(
1− u3

ū3

)
mū3

]}
dx. (6.4)

Putting (6.3) into (6.4) yields

L ′
EE =

∫
Ω

{
aû1

(
2− ū1

u1
− u1

ū1

)
+

(
1− ū1

u1

)(
β1ū1ū3 +β2ū1ū2−β1u1u3−β2u1u2

)
+

(
1− ū2

u2

)(
β1u1u3 +β2u1u2

)
+

(
1− u2

ū2

)(
β1ū1ū3 +β2ū1ū2

)
+

β1ū1ū3

kū2

(
1− ū3

u3

)
d∆u3 +β1ū1ū3

(
u2

ū2
− u2ū3

ū2u3
+1− u3

ū3

)}
dx.

Using the arithmetic-geometric mean, we have the following inequality.

L ′
EE ≤

∫
Ω

{
β1ū1ū3

(
3− ū1

u1
− u1u3ū2

ū1ū3u2
− u2ū3

ū2u3

)
+β2ū1ū2

(
2− ū1

u1
− u1

ū1

)
+

β1ū1ū3

kū2

(
1− ū3

u3

)
d∆u3

}
dx

≤
∫

Ω

β1ū1ū3

kū2

(
1− ū3

u3

)
d∆u3dx = d

β1ū1 (ū3)
2

kū2

∫
Ω

(
1
ū3
− 1

u3

)
∆u3dx.

Hence, using the Green’s first identity, we have

L ′
EE ≤−d

β1ū1 (ū3)
2

kū2

∫
Ω

|∇u3|2

u2
3

dx≤ 0.

Therefore, LEE is a Lyapunov function for the system (6.1). Similar to the proof of (i), it can be easily verified that
{(u1,u2,u3)

T ∈ X+ : L ′
EE = 0}= {Q∗(6.1) = (ū1, ū2, ū3)

T} and we can use LaSalle’s invariance principle to show that
the system (6.1) admits a connected global attractor on X+ and

lim
t→∞

(u1(·, t),u2(·, t),u3(·, t))T = (ū1, ū2, ū3)
T .

That is, Q∗(6.1) = (ū1, ū2, ū3)
T is globally asymptotically stable for (6.1). This completes the proof. �

7. Numerical simulation

In this section, we perform numerical simulation in order to verify the validity of our theoretical result.

7.1. For artificial parameters

First, we consider the spatially homogeneous case (6.1) in Section 6. Let d = 0.01 and fix

λ = 0.35, a = 1, b = 1, β2 = 2, k = 2, m = 1,
u0

1(x) = 0.99, u0
2(x) = 0, u0

3(x) = e−(x−5)2 ×10−3, x ∈Ω = [0,10]⊂ R
(7.1)
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(a) ℜ1
0 ≈ 0.9761 < 1 (β1 = 0.47)
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0 ≈ 0.9761 < 1 (β1 = 0.47)
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(c) ℜ1
0 ≈ 1.0292 > 1 (β1 = 0.55)
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(d) ℜ1
0 ≈ 1.0292 > 1 (β1 = 0.55)

Figure 1: Time variation of the density of free virus u3(x, t) in model (6.1) with parameters (7.1) and d = 0.01.
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Parameter Value (unit) Reference
L 10 Assumed

λ (x) 0.5×106/L (cells/day ml) Nakaoka et al. [16]
β1(x) β̄ ×10−8 Varied
β2(x) 1.0×10−10 Assumed
a(x) 0.01 (ml/cells day) Boer and Perelson [2]
b(x) 0.7 (ml/cells day) Perelson et al. [19]
m(x) 30 (ml/viruses day) Perelson et al. [18]
k(x) 1.0×103 (ml viruses/cells) Nakaoka et al. [16]

d 1.0×10−5 Assumed

Table 2: Parameters for numerical simulation in Section 7.2.

and vary β1. In this case, b−β2u∗1 = 0.3360 > 0 and hence, the assumption (2.8) holds. For β1 = 0.47, we have ℜ1
0 =

0.9761< 1 and hence, it follows from Theorem 6.1 (i) that the infection-free steady state Q0 is globally asymptotically
stable. In fact, in Figure 1 (a) and (b), the density of free virus u3(x, t) converges to zero. On the other hand, for
β1 = 0.55, we have ℜ1

0 = 1.0292 > 1 and hence, it follows from Theorem 6.1 (ii) that the infection steady state Q∗ is
globally asymptotically stable. In fact, in Figure 1 (c) and (d), the density of free virus u3(x, t) converges to a spatially
homogeneous positive distribution.

Next we consider the spatially heterogeneous case. As in the argument in [1, Theorem 2 (a)], we can obtain the
following approximation of the basic reproduction number ℜ0:

ℜ0 ≈


max

{
β1(x)u∗1(x)k(x)

m(x)
(
b(x)−β2(x)u∗1(x)

)} , for sufficiently small d,

1∫
Ω

m(x)dx

∫
Ω

β1(x)u∗1(x)k(x)
b(x)−β2(x)u∗1(x)

dx, for sufficiently large d.
(7.2)

In what follows, we fix the parameters as in (7.1) and vary d and β1(x) with the following form:

β1(x) = β̃

(
1+0.1sin

9πx
10

)
,

where β̃ is a positive parameter. Let d = 1.0× 10−5. In this case, the approximate value of ℜ0 can be calculated as
the first expression in (7.2). For β̃ = 0.45, we have ℜ0 ≈ 0.9782 < 1. Hence, it follows from Theorem 3.1 that the
infection-free steady state Q0 is globally asymptotically stable. In fact, in Figure 2 (a) and (b), the density of free
virus u3(x, t) converges to zero. On the other hand, for β̃ = 0.5, we have ℜ0 ≈ 1.0869 > 1. Hence, it follows from
Theorem 5.1 that the infection steady state Q∗ is globally asymptotically stable. In fact, in Figure 2 (c) and (d), the
density of free virus u3(x, t) converges to a positive distribution.

Let d = 1.0×105. In this case, the approximate value of ℜ0 can be calculated as the second expression in (7.2).
For β̃ = 0.48, we have ℜ0 ≈ 0.9553 < 1. Hence, from Theorem 3.1, we see that the infection-free steady state Q0 is
globally asymptotically stable. In fact, in Figure 3 (a) and (b), the density of free virus u3(x, t) converges to zero. On
the other hand, for β̃ = 0.53, we have ℜ0 ≈ 1.0548 > 1. Hence, it follows from Theorem 5.1 that the infection steady
state Q∗ is globally asymptotically stable. In fact, in Figure 3 (c) and (d), the density of free virus u3(x, t) converges
to a positive distribution.

7.2. For biologically justified parameters
For the HIV infection models, some parameter values have been estimated in previous studies (see, for instance,

[2, 16, 18, 19]). Using biologically justified parameter values as in Table 2, we observe the stability change with
different transmission coefficient β1(x) = β̄ × 10−8. For β̄ = 0.40, we have ℜ0 ≈ 0.9531 < 1. From Theorem 3.1,
we see that the infection-free steady state Q0 is globally asymptotically stable. In fact, we obtain Figure 4 (a) and
(b) which exhibit the density of free virus u3(x, t) converging to zero. On the other hand, for β̄ = 0.45, we have
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(c) ℜ0 ≈ 1.0869 > 1
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Figure 2: Time variation of the density of free virus u3(x, t) in model (1.2) with parameters (7.1) and d = 1.0×10−5.
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Figure 3: Time variation of the density of free virus u3(x, t) in model (1.2) with parameters (7.1) and d = 1.0×105.
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Figure 4: Time variation of the density of free virus u3(x, t) in model (1.2) with parameters (7.1) and d = 10−5.
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ℜ0 ≈ 1.0722 > 1. Hence, from Theorem 5.1, we see that the endemic steady state Q∗ is globally asymptotically
stable. In fact, in Figure 4 (c) and (d), the density of free virus u3(x, t) converges to a positive distribution.

8. Discussion

In this paper, we have investigated the in-host viral infection model (1.2) incorporating the cell-to-cell infection
and spatial heterogeneity. We have obtained the basic reproduction number ℜ0 in a variational characterization (see
(2.16)). For ℜ0 ≤ 1, the Lyapunov function LIFE was constructed as in (3.3) and L ′

IFE ≤ 0 was shown by using
the Green’s first identity. Thus, using the LaSalle’s invariance principle, we have obtained that the infection-free
steady state Q0 = (u∗1(x),0,0)

T ∈ D is globally asymptotically stable (see Theorem 3.1). On the other hand, for
ℜ0 > 1, it was shown that the spectral bound s(B) corresponding to the linearized system (2.9) is positive and hence,
from Lemma 2.5, it is the principal eigenvalue associated with a strictly positive eigenfunction. Using this fact,
the uniform persistence of the system (1.2) was shown and it results in the existence of the infection steady state
Q∗ = (û1(x), û2(x), û3(x))

T ∈ D0 (see Theorem 5.1). Then, constructing the Lyapunov function LIE as in (5.1) and
using the Green’s first identity and the LaSalle’s invariance principle again, we have proved the global asymptotic
stability of the infection steady state Q∗. For the case of constant parameters, it was shown that the basic reproduction
number ℜ0 has a similar threshold property as that of ℜ1

0 = β1λk/(abm)+β2λ/(ab) (see Section 6). The numerical
simulation was performed to verify the validity of these theoretical results (see Section 7).

Our construction method of Lyapunov functions may be applicable to other epidemic models including a single
PDE with a diffusion term. However, if they include two or more PDEs with diffusion terms, our method may not
be applicable. The global asymptotic stability of the infection equilibrium has been an open problem even for some
spatially heterogeneous ODE epidemic models with patch structure, in which every patches are strongly connected.
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