

PDF issue: 2025-12-05

The central limit theorem for complex Riesz-Raikov sums

Fukuyama, Katusi Kuri, Noriyuki

(Citation)

Comptes Rendus Mathematique, 353(8):749-753

(Issue Date)

2015-08

(Resource Type)

journal article

(Version)

Accepted Manuscript

(Rights)

©2015 Académie des sciences. Published by Elsevier Masson. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

(URL)

https://hdl.handle.net/20.500.14094/90003828

The central limit theorem for complex Riesz-Raikov sums

Katusi FUKUYAMA Noriyuki KURI

Department of Mathematics, Kobe University, Rokko, Kobe, 657-8501, Japan

Received *****; accepted after revision +++++

Presented by ——

Abstract

For complex Riesz-Raikov sums, the central limit theorem is proved. As a byproduct, metric discrepancy results are proved for complex geometric progressions.

Résumé

Le théorème limite central pour des sommes de Riesz-Raikov complexes Nous démontrons un théorème limite central pour les sommes de Riesz-Raikov complexes. En application de nos méthodes, nous établissons aussi des résultats de discrépance pour les progressions géométriques complexes.

Let $\mathbf{I} = \mathbf{Z}[\sqrt{-1}]$, $\mathbf{K} = \mathbf{Q}[\sqrt{-1}]$, and $D = \{z \in \mathbf{C} \mid \Re z, \Im z \in [0,1)\}$. We denote by μ the Lebesgue measure on \mathbf{C} . Let f be a locally square integrable real valued function on \mathbf{C} satisfying

$$f(z+\sqrt{-1}) = f(z+1) = f(z), \qquad \int_D f(z)\,\mu(dz) = 0, \qquad \int_D f^2(z)\,\mu(dz) < \infty.$$
 (1)

We denote the Fourier series of f by $\sum_{n\in \mathbf{I}^{\times}} \widehat{f}(n) \exp(2\pi\sqrt{-1}\Re(\overline{n}z))$. For a positive integer d, we put $f_d(z) = \sum_{n\in \mathbf{I}: |n| < d} \widehat{f}(n) \exp(2\pi\sqrt{-1}\Re(\overline{n}z))$ and $R(f,d) = ||f - f_d||_2$. We assume the condition

$$R(f,d) = O((\log d)^{-1-\varepsilon})$$
 for some $\varepsilon > 0$. (2)

It is known that a function f of bounded variation in the sense of Hardy-Krause satisfies the condition $|\hat{f}(n)| = O((|\Re n| \vee 1)^{-1}(|\Im n| \vee 1)^{-1})$ (Cf. Zaremba [16]), which implies $R(f,d) = O(d^{-1})$ and (2). **Theorem 1** Assume that a real valued function f on \mathbf{C} satisfies (1) and (2), and that $\theta \in \mathbf{C}$ satisfies $|\theta| > 1$. Regarding $\sum f(\theta^k z)$ as a random variable on the probability space (D, \mathcal{B}_D, μ) , we have

$$\frac{1}{\sqrt{N}} \sum_{k=1}^{N} f(\theta^k z) \xrightarrow{\mathcal{D}} N(0, \sigma^2(\theta, f)). \tag{3}$$

Email addresses: fukuyama@math.kobe-u.ac.jp (Katusi FUKUYAMA), nrkuri@math.kobe-u.ac.jp (Noriyuki KURI).

Preprint submitted to the Académie des sciences

February 22, 2017

Here the limiting variance $\sigma^2(\theta, f)$ is given by

$$\sigma^{2}(\theta, f) = \int_{D} f^{2}(z) \,\mu(dz), \quad or \quad \sigma^{2}(\theta, f) = \int_{D} f^{2}(z) \,\mu(dz) + 2 \sum_{k=1}^{\infty} \int_{D} f(p^{k}z) f(q^{k}z) \,\mu(dz), \quad (4)$$

according as $\theta^r \notin \mathbf{K}$ (r = 1, 2, ...) holds or not. In the second case p and $q \in \mathbf{I}$ are relatively irreducible and satisfy $\theta^r = p/q$, where r is the minimal positive integer satisfying $\theta^r \in \mathbf{K}$. In this case $\sigma^2(\theta, f) = 0$ holds if and only if there exists a function g satisfying (1) and

$$f(z) = g(pz) - g(qz). (5)$$

For real Riesz-Raikov sums $\sum f(\theta^k x)$ with $\theta > 1$ and $x \in [0, 1)$, the results were proved by Kac [8], Petit [14], and [4]. Complex case with $\theta \in \mathbf{I}$ was studied by Leonov [10] and Conze-Le Borge-Roger [3].

We can also derive metric discrepancy results for complex geometric progressions $\{\theta^k z\}$ with $|\theta| > 1$. Relating results for real θ are proved in [5]. Denote $\langle z \rangle = \Re z - \lfloor \Re z \rfloor + (\Im z - \lfloor \Im z \rfloor) \sqrt{-1} \in D$. For $0 \le a < a' < 1$ and $0 \le b < b' < 1$, denote $\mathbf{1}_{a,a',b,b'}(z) = \mathbf{1}_{[a,a')+\sqrt{-1}\,[b,b')}(\langle z \rangle) - (a'-a)(b'-b)$ and

$$D_N\{z_k\} = \sup_{a,a',b,b':0 \le a < a' < 1,0 \le b < b' < 1} \frac{1}{N} \left| \sum_{k=1}^N \widetilde{\mathbf{1}}_{a,a',b,b'}(z_k) \right|.$$

Theorem 2 For any $\theta \in \mathbb{C}$ with $|\theta| > 1$, we have the law of the iterated logarithm

$$\overline{\lim}_{N \to \infty} \frac{N D_N \{\theta^k z\}}{\sqrt{2N \log \log N}} = \Sigma_{\theta} = \sup_{a, a', b, b': 0 \le a < a' < 1, 0 \le b < b' < 1} \sigma(\theta, \widetilde{\mathbf{1}}_{a, a', b, b'}) \quad \mu\text{-a.e. } z.$$
(6)

Especially when $\theta^r \notin \mathbf{K}$ for all $r \in \mathbf{N}$, we have $\Sigma_{\theta} = \frac{1}{2}$.

1. Preliminary

Put $\mathbf{I}^{\times} = \mathbf{I} \setminus \{0\}$ and $\mathbf{I}^{+} = \{p \in \mathbf{I} \mid \Im p > 0\} \cup \{p \in \mathbf{I} \mid \Im p = 0, \Re p > 0\}$. Let μ_0 be the probability measure on \mathbf{C} given by $\mu_0(dz) = \frac{1}{\pi^2} \left(\frac{\sin \Re z}{\Re z}\right)^2 \left(\frac{\sin \Im z}{\Im z}\right)^2 \mu(dz)$. There exists a $C_0 > 0$ such that

$$\mathbf{1}_D \,\mu(dz) \le (C_0/2)\mu_0(dz) \qquad (z \in \mathbf{C}) \tag{7}$$

Note that $\int_{\mathbf{C}} \exp(2\pi\sqrt{-1}\Re(\overline{w}z)) \mu_0(dz) = (1-\pi|\Re w|)^+ (1-\pi|\Im w|)^+$, and it equals to zero if $|w| \ge 1/2$. Hence we have

$$\left| \int_{\mathbf{C}} \left(\sum_{k=1}^N f(\theta^k z) \right)^2 \mu_0(dz) \right| \leq \sum_{k=1}^N \sum_{m \in \mathbf{I}^{\times}} \left| \widehat{f}(n) \widehat{f}(m) \right| \mathbf{1}(|\overline{n}\theta^k + \overline{m}\theta^l| < 1/2).$$

For $\zeta \in \mathbf{C}$, denote by $\varphi(\zeta)$ the $n \in \mathbf{I}$ such that $|\zeta + \overline{n}| < 1/2$ if it exists, and put $\varphi(\zeta) = \infty$ if such n does not exist. Put $\widehat{f}(\infty) = 0$. Suppose that $l \leq k$ and $|\overline{n}\theta^k + \overline{m}\theta^l| < 1/2$ for some n and $m \in \mathbf{I}^{\times}$. Then $|\overline{n}\theta^{k-l} + \overline{m}| < 1/2$, and hence $m = \varphi(\overline{n}\theta^{k-l})$. Hence (7) implies $\left|\int_{\mathbf{D}} \left(\sum_{k=1}^{N} f(\theta^k z)\right)^2 \mu(dz)\right| \leq C_0 \sum_{k=1}^{N} \sum_{l=1}^{k} \sum_{n \in \mathbf{I}^{\times}} \left|\widehat{f}(n)\widehat{f}(\varphi(\overline{n}\theta^{k-l}))\right|$. If $n \in \mathbf{I}_0^k = \{n \in \mathbf{I}^{\times} \mid |\theta|^k \leq |n| < |\theta|^{k+1}\}$ then $|\theta|^{k+k-l} \leq |\overline{n}\theta^{k-l}|$ and $|\theta|^{k+k-l-1} \leq |\varphi(\overline{n}\theta^{k-l})|$. By $\sum_{n \in \mathbf{I}_0^{\times}} \sum_{n \in \mathbf{I}_0^{\times}} \sum_{n$

$$\sum_{n \in \mathbf{I}^{\times}} \left| \widehat{f}(n) \widehat{f}(\varphi(\overline{n}\theta^{k-l})) \right| \leq \sum_{h} \left(\sum_{n \in \mathbf{I}_{0}^{h}} \left| \widehat{f}(n) \right|^{2} \right)^{1/2} \left(\sum_{n \in \mathbf{I}_{0}^{h}} \left| \widehat{f}(\varphi(\overline{n}\theta^{k-l})) \right|^{2} \right)^{1/2} \leq \sum_{h} R(f, |\theta|^{h}) R(f, |\theta|^{h+k-l-1})$$

, since $n \mapsto \varphi(\overline{n}\theta^{k-l})$ is injective on $\mathbf{I}_0^h \cap \{n \in \mathbf{I}^\times \mid \varphi(\overline{n}\theta^{k-l}) \neq \infty\}$. Hence we have

$$\left| \int_{\mathbf{D}} \left(\sum_{k=1}^{N} f(\theta^{k} z) \right)^{2} \mu(dz) \right| \leq C_{0} \sum_{k=1}^{N} \sum_{l=1}^{k} \sum_{h=0}^{\infty} R(f, |\theta|^{h}) R(f, |\theta|^{h+k-l-1}) \leq C_{0} N \left(\sum_{h=0}^{\infty} R(f, |\theta|^{h-1}) \right)^{2}.$$
(8)

By $(|\Re z| \vee 1)(|\Im z| \vee 1) \geq |z|/\sqrt{2}$, for any $w \in \mathbf{C}$ we have $\left| \int_{D+w} \exp(2\pi\sqrt{-1}\,\Re(\overline{n}\lambda z))\,\mu(dz) \right| \leq 4/\left(\Re(n\overline{\lambda})\vee 1\right)\left(\Im(n\overline{\lambda})\vee 1\right) \leq 4\sqrt{2}/|n\lambda|$. Hence we have the following two lemmas for a trigonometric polynomial $h(z) = \sum_{n \in \mathbf{I}^{\times}: |n| \leq d} c_n \exp(2\pi\sqrt{-1}\,\Re(\overline{n}z))$.

Lemma 1.1 For $|\lambda| \geq 1$ and $w \in \mathbb{C}$, $\left| \int_{D+w} h(\lambda z) \, \mu(dz) \right| \leq (4\sqrt{2}/|\lambda|) \sum_{n \in \mathbb{I}^{\times}: |n| \leq d} |c_n|/|n| = O(1/|\lambda|)$. **Lemma 1.2** Suppose that a sequence $\{\lambda_k\}$ of complex numbers satisfies the modulus Hadamard'gap condition $|\lambda_{k+1}/\lambda_k| \geq Q > 1$. Then there exists a constant C_Q depending only on Q such that

$$\int_{D} \left(\max_{l=1}^{N} \sum_{k=M+1}^{M+l} h(\lambda_{k}z) \right)^{4} \mu(dz) \le C_{Q} \left(\sum_{n \in I^{\times}: |n| < d} |c_{n}| \right)^{4} N^{2}$$

Proof: By applying the triangle inequality for L^4 -norm, we see that it is sufficient to prove for $h(z) = \cos(2\pi\Re(\bar{j}z) + \gamma_j)$. By dividing into subsequences, we see that it is sufficient to prove under the condition $Q \geq 3$. In this case, $\{\cos(2\pi\Re(\bar{j}\lambda_k z) + \gamma_j)\}_k$ forms a multiplicative system under the measure μ_0 , and the above inequality with respect to measure μ_0 is already proved as a combination of the main lemma of Komlós-Révész [9] and the Erdős-Stečkin result [13]. Thanks to (7), we can conclude the proof. \Box Lemma 1.3 There exists a positive constant $C_{\theta,d}$ such that $|\overline{n}\theta^k + \overline{m}\theta^l| \geq C_{\theta,d}|\theta^{k\wedge l}|$ for any $k, l \in \mathbb{N}$, $n, m \in \mathbb{I}^{\times}$ with $|n|, |m| \leq d$ and $\overline{n}\theta^k + \overline{m}\theta^l \neq 0$.

Proof: Assume $k \geq l$. Because of $\lim_{j \to \infty} |\overline{n}\theta^j + \overline{m}| = \infty$, $D_{m,n} = \inf\{|\overline{n}\theta^j + \overline{m}| \mid j \geq 0, |\overline{n}\theta^j + \overline{m}| \neq 0\}$ is positive. Hence $|\overline{n}\theta^k + \overline{m}\theta^l| \geq D_{m,n}|\theta^l|$ provided that the left hand side is not zero. \square

We denote $\int_{\mathbf{C}} g(z) \, \mu_R(dz) = \lim_{T \to \infty} \frac{1}{4T^2} \int_{[-T,T]+\sqrt{-1}[-T,T]} g(z) \, \mu(dz)$ if the limit exists. Now we verify (9) and (10) below. Since they are clear when $\theta^r \notin \mathbf{K}$ $(r=1,\,2,\,\dots)$ we consider the other case. Note that $\left| \int_D f(p^k z) f(q^k z) \, \mu(dz) \right| = \left| \sum_{l \in \mathbf{I}^\times} \widehat{f}(l(\overline{q})^k) \widehat{f}(-l(\overline{p})^k) \right| \leq R(f,|q|^k) R(f,|p|^k)$, which is summable in k. Hence,

$$\sigma^2(\theta, f_d) \to \sigma^2(\theta, f) \quad (d \to \infty).$$
 (9)

For a trigonometric polynomial h satisfying (1) and $\lambda \in \mathbf{C}^{\times}$, we have $\int_{\mathbf{C}} h(\Theta \lambda z) h(\lambda z) \, \mu_R(dz) = 0$ if $\Theta \notin \mathbf{K}$, and $\int_{\mathbf{C}} h((P/Q)\lambda z) h(\lambda z) \, \mu_R(dz) = \int_D h(Pz) h(Qz) \, \mu(dz)$ if $P, \, Q \in \mathbf{I}^{\times}$. Hence we have

$$\int_{\mathbf{C}} \left(\sum_{k=M+1}^{M+N} h(\theta^k z) \right)^2 \mu_R(dz) = N \int_{D} h(z)^2 \, \mu(dz) + 2 \sum_{l=1}^{\infty} (N - lr)^+ \int_{D} h(p^l z) h(q^l z) \, \mu(dz).$$

By noting that $\int_D h(p^l z) h(q^l z) \, \mu(dz) = 0$ for large l and that $0 \le N - (N - lr)^+ \le lr$, we have

$$\int_{\mathbf{C}} \left(\sum_{k=M+1}^{M+N} h(\theta^k z) \right)^2 \mu_R(dz) = N\sigma^2(\theta, h) + O(1). \tag{10}$$

2. Coboundary

When $\theta^r = p/q \in \mathbf{I}$, we may assume q = 1. Put $\Pi(p,q) = \{w \in \mathbf{I} \mid \overline{p} \nmid w, \overline{q} \nmid w\}$ when $q \neq 1$, $\Pi(p,1) = \{w \in \mathbf{I} \mid \overline{p} \nmid w\}$, and $\Pi(p,q)^+ = \Pi(p,q) \cap \mathbf{I}^+$. We have $\sigma^2(\theta,f) = \sum_{n \in \mathbf{I}^\times} |\widehat{f}(n)|^2 + 2\sum_{k=1}^\infty \sum_{n \in \mathbf{I}^\times} \sum_{m \in \mathbf{I}^\times} \widehat{f}(n)\widehat{f}(m)\mathbf{1}(\overline{n}p^k + \overline{m}q^k = 0)$, and by the derivation of (9) we see that this series is

absolutely convergent. If we write $n = \overline{p}^s \overline{q}^t w$ and $m = \overline{p}^u \overline{q}^v w'$ by using $s, t, u, v = 0, 1, 2, \ldots$, and w,

$$\sigma^2(\theta,f) = 2\sum_{w\in\Pi(p,q)^+} \sum_{l=0}^{\infty} \left| \sum_{s=0}^{l} \widehat{f}(\overline{p}^s \overline{q}^{l-s} w) \right|^2 \quad (q \neq 1), \quad \sigma^2(\theta,f) = 2\sum_{w\in\Pi(p,1)^+} \left| \sum_{s=0}^{\infty} \widehat{f}(\overline{p}^s w) \right|^2 \quad (q = 1)$$

If $\sigma^2(\theta, f) = 0$ and $q \neq 1$, then $\sum_{s=0}^l \widehat{f}(\overline{p}^s \overline{q}^{l-s} w) = 0$ for $l = 0, 1, 2, \dots$ and $w \in \Pi(p, q)^+$, and hence for $w \in \Pi(p, q)$. Put $\widehat{g}(\overline{p}^s \overline{q}^{l-s} w) = -\sum_{j=0}^s \widehat{f}(\overline{p}^j \overline{q}^{l+1-j} w) = \sum_{j=0}^\infty \widehat{f}(\overline{p}^{s+1+j} \overline{q}^{l-s-j} w)$, where we use convention f(n) = 0 for $n \notin \mathbf{I}$. Thanks to Schwarz inequality, we have

$$\left(\sum_{w \in \Pi(p,q)} \sum_{l=0}^{\infty} \sum_{s=0}^{\infty} \left| \sum_{j=0}^{\infty} \widehat{f}(\overline{p}^{s+1+j} \overline{q}^{l-s-j} w) \right|^2 \right)^{1/2} \leq \sum_{j=0}^{\infty} \left(\sum_{w \in \Pi(p,q)} \sum_{l=0}^{\infty} \sum_{s=0}^{\infty} \left| \widehat{f}(\overline{p}^{s+1+j} \overline{q}^{l-s-j} w) \right|^2 \right)^{1/2},$$

which implies $\left(\sum_{w\in\Pi(p,q)}\sum_{l=0}^{\infty}\sum_{s=0}^{\infty}\left|\widehat{g}(\overline{p}^s\overline{q}^{l-s}w)\right|^2\right)^{1/2}\leq\sum_{j=0}^{\infty}R(f,|p|^j)<\infty$. Hence $\{\widehat{g}(n)\}_{n\in\mathbf{I}}\in\ell^2$ and $g(z)=\sum_{n\in\mathbf{I}^{\times}}\widehat{g}(n)\exp\left(2\pi\sqrt{-1}\Re(\overline{n}z)\right)\in L^2$. We can verify (5) by comparing the Fourier coefficients. If $\sigma^2(\theta, f) = 0$ and q = 1, then $\sum_{s=0}^{\infty} \widehat{f}(\overline{p}^s w) = 0$ for $w \in \Pi(p, 1)$. By putting $\widehat{g}(\overline{p}^s w) = -\sum_{j=0}^s \widehat{f}(\overline{p}^j w) = 0$ $\textstyle \sum_{j=0}^{\infty} \widehat{f}(\overline{p}^{s+1+j}w), \text{ we see } \{\widehat{g}(n)\} \in \ell^2 \text{ and } g(z) = \sum_{n \in \mathbf{I}} \widehat{g}(n) \exp \left(2\pi \sqrt{-1} \,\Re(\overline{n}z)\right) \in L^2.$

3. Almost sure invariance principle

We follow the method of Aistleitner [1], which originated with Berkes [2] and Philipp [15].

Proposition 3 Let h be a trigonometric polynomial satisfying (1). By enlarging the probability space, we can define a standard gaussian i.i.d. $\{Z_i\}$ such that $\sum_{k=1}^N h(\theta^k z) = \sum_{k \leq N\sigma^2(\theta,h)} Z_k + O(N^{124/250})$ a.s. *Proof:* If $\sigma^2(\theta,h)=0$, then h can be expressed as (5) and the sum is a telescoping sum. Thus we have $\sum_{k=1}^{N} h(\theta^k z) = O(1)$ and the above conclusion is clear. We assume $\sigma^2(\theta, h) > 0$.

Divide **N** into consecutive blocks Δ'_1 , Δ_1 , Δ'_2 , Δ_2 , ... with $^{\#}\Delta'_i = \lfloor 1 + 9 \log_{|\theta|} i \rfloor$ and $^{\#}\Delta_i = i$. Put $i^{-} = \min \Delta_i$ and $i^{+} = \max \Delta_i$. We see $9 \log_{|\theta|} i \le \#\Delta_i' = i^{-} - (i-1)^{+} - 1$ and $|\theta^{i^{-}}/\theta^{(i-1)^{+}}| > i^{9}$.

Denote $\rho(i) = \lceil \log_2 i^4 | \theta^{i^+} | \rceil$. Let \mathcal{F}_i be a σ -field on D generated by intervals $J_{i,j,j'} = \{z \in D \mid j2^{-\rho(i)} \leq \Re z < (j+1)2^{-\rho(i)}, \ j'2^{-\rho(i)} \leq \Im z < (j'+1)2^{-\rho(i)} \} \ (j,j'=0,\ldots,2^{\rho(i)}-1)$. Note $i^4 | \theta^{i^+} | \leq 2^{\rho(i)} \leq 2i^4 | \theta^{i^+} |$ and put $T_i(z) = \sum_{k \in \Delta_i} h(\theta^k z), \ Y_i = E(T_i \mid \mathcal{F}_i) - E(T_i \mid \mathcal{F}_{i-1})$. Clearly $\{Y_i, \mathcal{F}_i\}$ forms a martingale difference sequence, i.e., $E(Y_i \mid \mathcal{F}_{i-1}) = 0$. We show

$$||Y_i - T_i||_{\infty} = O(i^{-3}), \quad ||Y_i^2 - T_i^2||_{\infty} = O(i^{-2}), \quad ||Y_i^4 - T_i^4||_{\infty} = O(1), \quad EY_i^4 = O(i^2),$$
 (11)

where the implied constants are depending only on h.

Let $k \in \Delta_i$ and $z \in J = J_{i,j,j'}$. We have $|h(\theta^k z) - E(h(\theta^k \cdot) \mid \mathcal{F}_i)| = \left|\frac{1}{\mu(J)} \int_J (h(\theta^k z) - h(\theta^k \zeta)) \mu(d\zeta)\right| \le 1$ $\max_{\zeta \in J} |h(\theta^k z) - h(\theta^k \zeta)| = O(|\theta^k| 2^{-\rho(i)}) = O(|\theta^k| / |\theta^{i^+}| i^4) = O(i^{-4}). \text{ It implies } T_i - E(T_i \mid \mathcal{F}_i) = O(i^{-3}).$ On $J = J_{i-1,j,j'}$ we have $E(h(\theta^k \cdot) \mid \mathcal{F}_{i-1}) = \frac{1}{\mu(J)} \int_J h(\theta^k z) \, \mu(dz).$ Changing variable by $2^{\rho(i-1)}z = \zeta$ and by applying Lemma 1.1, we have $E(h(\theta^k \cdot) \mid \mathcal{F}_{i-1}) = \int_{D+w} h(\theta^k 2^{-\rho(i-1)}\zeta) \, \mu(d\zeta) = O(2^{\rho(i-1)}/|\theta^k|) = 0$ $O(2(i-1)^4|\theta^{(i-1)^+}/\theta^{i^-}|) = O(i^{-5})$. Hence $E(T_i \mid \mathcal{F}_{i-1}) = O(i^{-4})$. By combining these we have the first estimate of (11). By $||T_i||_{\infty} = O(i)$, we have $||Y_i||_{\infty} = O(i)$. By $||T_i||_{\infty} = O(i)$, we have $||Y_i||_{\infty} = O(i)$. have the second. The third is proved similarly. The third and Lemma 1.2 implies the fourth. Put $v_i = \int_{\mathbf{C}} T_i^2(z) \, \mu_R(dz)$, $l_M = \sum_{i=1}^M \#\Delta_i$, $\beta_M = \sum_{i=1}^M v_i$, and $V_M = \sum_{i=1}^M E(Y_i^2 \mid \mathcal{F}_{i-1})$. We show

$$\beta_M = \sigma^2(\theta, h)l_M + O(l_M^{1/2}), \qquad \beta_M \sim \sigma^2(\theta, h)l_M, \qquad ||V_M - \beta_M||_{\infty} = O(1).$$
 (12)

The first and the second is clear from (10), and we show the third. Express $T_i^2 - v_i$ as a linear combination of $\exp(2\pi\sqrt{-1}\,\Re((\overline{n}\theta^k + \overline{m}\theta^l)z))$ where $|n|, |m| \leq d$ and $k, l \in \Delta_i$. Since $\overline{n}\theta^k + \overline{m}\theta^l \neq 0$ in this expression, we see by Lemma 1.3 that $|\overline{n}\theta^k + \overline{m}\theta^l| \geq C_{\theta,d}|\theta^{i^-}|$. Changing variable by $2^{\rho(i-1)}z = \zeta$, and by applying Lemma 1.1, we have $E(T_i^2 - v_i \mid \mathcal{F}_{i-1}) = \int_{D+w} (T_i^2(2^{-\rho(i-1)}\zeta) - v_i)\mu(d\zeta) = O(i^22^{\rho(i-1)}/|\theta^{i^-}|) = O(1/i^3)$ and $\|\sum_{i=1}^M E(T_i^2 \mid \mathcal{F}_{i-1}) - \beta_M\|_{\infty} = O(1)$. By (11), we have $\|\sum_{i=1}^M E(T_i^2 \mid \mathcal{F}_{i-1}) - V_M\|_{\infty} = O(1)$. We use the following version of Strassen's Theorem.

Theorem 4 (Monrad-Philipp [12]) Suppose that a square integrable martingale difference sequence $\{Y_i, \mathcal{F}_i\}$ satisfies $V_M = \sum_{i=1}^M E(Y_i^2 \mid \mathcal{F}_{i-1}) \to \infty$ a.s. and $\sum_{i=1}^\infty E(Y_i^2 \mathbf{1}_{\{Y_i^2 \ge \psi(V_i)\}}/\psi(V_i)) < \infty$ for some non-decreasing function ψ with $\psi(x) \to \infty$ $(x \to \infty)$ such that $\psi(x)(\log x)^{\alpha}/x$ is non-increasing for some $\alpha > 50$. If there exists a uniformly distributed random variable U which is independent of $\{Y_n\}$, there exists a standard normal i.i.d. $\{Z_i\}$ such that $\sum_{i>1} Y_i \mathbf{1}_{\{V_i \le t\}} = \sum_{i\le t} Z_i + o(t^{1/2}(\psi(t)/t)^{1/50})$, a.s.

exists a standard normal i.i.d. $\{Z_i\}$ such that $\sum_{i\geq 1} Y_i \mathbf{1}_{\{V_i\leq t\}} = \sum_{i\leq t} Z_i + o(t^{1/2}(\psi(t)/t)^{1/50})$, a.s. Put $\psi(x) = x^{4/5}$. By $V_i \geq Ci^2$, we see $E(Y_i^2 \mathbf{1}_{\{Y_i^2 \geq \psi(V_i)\}}/\psi(V_i)) \leq EY_i^4/\psi(Ci^2)^2 = O(i^{-6/5})$ is summable in i. Let us take a constant C_0 satisfying $\|V_M - \beta_M\|_{\infty} < C_0$. By $\beta_{M+1} - \beta_M = v_M \to \infty$, we see $V_M < \beta_M + C_0 < \beta_{M+1} - C_0 < V_{M+1}$. By putting $t = \beta_M + C_0$, Theorem 4 implies $\sum_{i=1}^M Y_i = \sum_{i\leq \beta_M+C_0} Z_i + o(\beta_M^{124/250})$, a.s. By (11), the left hand side can be replaced by $\sum_{i=1}^M T_i$.

Put $\Delta_M'' = \Delta_1' \cup \cdots \cup \Delta_M'$. By Lemma 1.2, we have $E(l_M^{-2/5} \max_{k \in \Delta_M} \sum_{k \in \Delta_M: k \leq l} h(\theta^k \cdot))^4 = O(M^{-6/5})$ and $E(l_M^{-2/5} \max_{k \in \Delta_M'} \sum_{k \in \Delta_M': k \leq l} h(\theta^k \cdot))^4 = O((\log M)^2 M^{-6/5})$. Since these are summable in M, by Beppo-Levi lemma, we have $\max_{l \in \Delta_M} \sum_{k \in \Delta_M: k \leq l} h(\theta^k z) = o(l_M^{2/5})$ and $\max_{l \in \Delta_M'} \sum_{k \in \Delta_M': k \leq l} h(\theta^k z) = o(l_M^{2/5})$. Therefore we have $\sum_{k=1}^N h(\theta^k z) = \sum_{i \leq \beta_M + C_0} Z_i + o(N^{124/250})$, a.s. for $N \in \Delta_M' \cup \Delta_M$. By $\beta_M + C_0 = \sigma^2(\theta, h)l_M + O(l_M^{1/2})$, $\#(\Delta_M' \cup \Delta_M) \leq 2M$, $M^+ = l_M + O(M \log M)$, we see $|\beta_M + C_0 - \sigma^2(\theta, h)N| \leq KM \log M$ for some K > 0. Hence

$$P\bigg(\max_{N\in\Delta_M'\cup\Delta_M}\bigg|\sum_{i\leq\beta_M+C_0}Z_i-\sum_{i\leq\sigma^2(\theta,h)N}Z_i\bigg|\geq\sqrt{4KM}\log M\bigg)\leq 2P(|N_{0,1}|\geq\sqrt{4\log M})\leq 4M^{-2}.$$

Since it is summable in M, we see $\max_{N \in \Delta'_M \cup \Delta_M} \left| \sum_{i \leq \beta_M + C_0} Z_i - \sum_{i \leq \sigma^2(\theta, h)N} Z_i \right| \leq \sqrt{4KM} \log M = o(l_M^{2/5})$ for large M, a.s. By these, we have the conclusion. \square

4. The central limit theorem and the metric discrepancy results

By Proposition 3, we see that the law of $\frac{1}{\sqrt{N}} \sum_{k=1}^{N} f_d(\theta^k z)$ converges weakly to $N(0, \sigma^2(\theta, f_d))$. By (9) and (8), we can take d such that $|\sigma^2(\theta, f_d) - \sigma^2(\theta, f)| < \varepsilon$ and $\int_D \left(\frac{1}{\sqrt{N}} \sum_{k=1}^{N} (f - f_d)(\theta^k z)\right)^2 \mu(dz) < \varepsilon$ for $N \ge 1$. By combining these, we can prove (3). By Proposition 3, we have

$$\overline{\lim}_{N \to \infty} \frac{1}{\sqrt{2N \log \log N}} \sum_{k=1}^{N} h(\theta^k z) = \sigma(\theta, h) \quad \mu\text{-a.e. } z.$$
(13)

for any trigonometric polynomial h satisfying (1). To prove (6), we use the following result. The one dimensional version is proved in [5,6,7]. The following version can be proved in the same way as [11]. **Proposition 4.1** Let $\{\lambda_k\}$ be a sequence of complex numbers satisfying the gap condition $|\lambda_{k+1}/\lambda_k| > Q > 1$. Then for any dense countable set $S \subset [0,1)$, we have

$$\overline{\lim}_{N \to \infty} \frac{ND_N\{\lambda_k z\}}{\sqrt{2N \log \log N}} = \sup_{a,a',b,b' \in S: 0 \le a < a' \le 1, 0 \le b < b' \le 1} \lim_{d \to \infty} \overline{\lim}_{N \to \infty} \frac{1}{\sqrt{2N \log \log N}} \left| \sum_{k=1}^{N} \widetilde{\mathbf{1}}_{a,a',b,b',d}(\lambda_k z) \right| \ a.e. \ z.$$

Acknowledgements

The first author is supported by KAKENHI 24340017 and 24340020.

References

- [1] C. Aistleitner, On the law of the iterated logarithm for the discrepancy of lacunary sequences, Trans. Amer. Math. Soc., **362** (2010) 5967-5982.
- [2] I. Berkes, On the asymptotic behaviour of $\sum f(n_k x)$. I, II, Z. Wahr. verv. Geb. 34 (1976) 319–345, 347–365
- [3] J.-P. Conze, S. Le Borgne, M. Roger, Central limit theorem for stationary products of toral automorphisms, Discret Contin. Dyn. Syst., 32 (2012) 1597-1626.
- [4] K. Fukuyama, The central limit theorem for Riesz-Raikov sums, Prob. Theory Rel. Fields, 100 (1994) 57–75
- [5] K. Fukuyama, The law of the iterated logarithm for discrepancies of $\{\theta^n x\}$, Acta Math. Hungar., 118 (2008) 155-170.
- [6] K. Fukuyama, A central limit theorem and a metric discrepancy result for sequence with bounded gaps, Dependence in Probability, Analysis and Number Theory, Kendrick press, Heber City, UT, (2010), 233–246.
- [7] K. Fukuyama, and Y. Mitsuhata, Bounded law of the iterated logarithm for discrepancies of permutations of lacunary sequences, Summer School on the Theory of Uniform Distribution, RIMS Kôkyûroku Bessatsu, **B29** (2012) 45–88.
- [8] M. Kac, On the distribution of values of sums of type $\sum f(2^k t)$, Ann. Math., 47 (1946) 33–49
- [9] J. Komlós and P. Révész, Remark to a paper of Gaposhkin, Acta Sci. Math. Szeged 33 (1972) 237-241
- [10] V. P. Leonov, Some applications of higher semi-invariants to the theory of stationary random processes, Izdat Nauka, Moscow, 1964, 67pp.
- [11] T. Löbbe, Limit theorems for multivariate lacunary systems, preprint, arXiv:1408.2202v1 (2014)
- [12] D. Monrad and W. Philipp, Nearby variables with nearby conditional laws and a strong approximation theorem for Hilbert space valued martingales, Probab. Theory rel. Fields, 88 (1991) 381–404
- [13] F. Móricz, On the convergence properties of weakly multiplicative systems, Acta Sci. Math. Szeged, 38 (1976) 127-144
- [14] B. Petit, Le théorème limite central pour des sommes de Riesz-Raikov, Prob. Theory Relat. Fields, 93 (1992) 407-438
- [15] W. Philipp, A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables, Ann. Probab. 5 (1977) 319-350
- [16] S. Zaremba, Some applications of multidimensional integration by parts, Ann. Pol. Math., 21 (1968) 85-96