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AN ASYMPTOTIC PROPERTY OF GAP SERIES III

K. FUKUYAMA (Kobe)

1. Introduction
Let f be an R-valued function on R satisfying

f(x + 1) = f(x),
∫ 1

0

f(x) dx = 0, ‖f‖2 =
∫ 1

0

|f(x)|2 dx < ∞,

with Fourier series f(x) ∼
∑∞

ν=1(aν cos 2πνx + bν sin 2πνx). Denote ‖f‖A =∑∞
ν=1

√
a2

ν + b2
ν . We investigate the distribution of values of

Ξf (x) = lim
N→∞

1√
N log log N

N∑
k=1

f(nkx)

where {nk} is a strictly increasing sequence of positive integers. For a brief
survey on studies on Ξf , we refer the reader to our previous paper [1].

Takahashi [4] gave the concrete bound Ξf ≤ ‖f‖A a.e. assuming f ∈ Lipα
(α > 1/2) and Takahashi’s gap condition:

nk+1/nk ≥ 1 + ck−β (c > 0, β < 1/2).

In [1] we proved the following.

Theorem A.
(1) Takahashi’s gap condition and ‖f‖A < ∞ imply Ξf ≤ ‖f‖A a.e.
(2) Let us say that f has parallel Fourier coefficients if there exist a, b ∈ R

with a2 + b2 = 1 such that aν = a
√

a2
ν + b2

ν and bν = b
√

a2
ν + b2

ν for all
ν ∈ N. If ‖f‖A < ∞ and the Fourier coefficients of f are parallel, then
for every ε > 0 there exist ρ > 0 and {nk} such that nk+1/nk > 1+ρ and
Ξf ≥ ‖f‖A − ε a.e.

In this paper we consider the problem if there exists a sequence {nk}
for which Ξf = ‖f‖A holds, or in other words, if the bound ‖f‖A can be
achieved as the law of the iterated logarithm. Our main theorem below gives
the affirmative answer to this question.

Theorem. For any sequence {ρk} of positive numbers converging to 0, there
exists a sequence {nk} such that nk+1/nk ≥ 1 + ρk and Ξf = ‖f‖A a.e. for
arbitrary function f with parallel Fourier coefficients and ‖f‖A < ∞.

Keywords: Gap series, law of the iterated logarithm. Subject class:
60F15, 42A55
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2. Construction of the sequence
We prove our theorem by assuming that {ρk} monotonously decreases to 0
and satisfies 1 ≥ ρk ≥ k−1/3. Once we have proved under these assumptions,
we can derive the general case in the following way.

Put ρ′k = max{k−1/3, min{1, supi≥k ρi}}. Then {ρ′k} monotonously de-
creases to 0 and satisfies 1 ≥ ρ′k ≥ k−1/3. By ρk → 0, there exists a K such
that ρk ≤ 1 for all k ≥ K, and hence ρ′k ≥ ρk for k ≥ K. Firstly construct a
sequence {n′

k} satisfying n′
k+1/n′

k ≥ 1+ρ′k and Ξf = ‖f‖A a.e. Secondly, take
n1, . . . , nK with nk+1/nk ≥ 1 + ρk (k = 1, . . . , K − 1), take M ∈ N large
enough to satisfy Mn′

K+1/nK ≥ 1+ρK , and put nk = Mn′
k for k ≥ K+1. For

k ≥ K + 1, we have nk+1/nk = n′
k+1/n′

k ≥ 1 + ρ′k ≥ 1 + ρk and hence the gap
condition is satisfied for all k. By change of variable, we see that Ξf = ‖f‖A

holds for {Mn′
k}, and hence for {nk} because Ξf does not depend on finitely

many terms. Therefore we verified the general case.
Let p0 = 2, p1 = 3, p2 = 5, . . . be the sequence consisting of whole prime

numbers. Put

P (l,m, n) = {pi0
0 pi1

1 . . . pim
m | (l − 1)2 ≤ i0 < l2, 0 ≤ i1, . . . , im < n}

Π(λ, Λ, j) =
Λ⋃

l=λ

P (l, j, 2j) and γ(j) = inf
{ n

m

∣∣∣ n > m,n,m ∈ Π(0,∞, j)
}

.

We see that 2 = γ(0) ≥ γ(1) ≥ γ(2) ≥ · · ·.

Proposition. There exists a non-decreasing divergent sequence {J̃(l)} of
non-negative integers such that the arrangement {νk} in increasing order of⋃∞

l=1 P (l, J̃(l), 2J̃(l)) satisfies νk+1/νk ≥ 1 + ρk.

Proof: Firstly, put l0 = 0 and take k1 such that γ(1) ≥ 1 + ρk1 . Let us
arrange Π(l0,∞, 0) in increasing order and denote the first k1 numbers by ν1,
. . . , νk1 . Let us take l1 large enough such that ν1, . . . , νk1 ∈ Π(l0, l1 − 1, 0). If
n ∈ Π(l0, l1 − 1, 0) and m ∈ Π(l1,∞, 1) \ Π(l0,∞, 0), then n < m holds. Thus
ν1, . . . , νk1 are the least k1 numbers in Π(l0, l1 − 1, 0) ∪ Π(l1,∞, 1).

Secondly, take k2 as γ(2) ≥ 1+ρk2 and arrange Π(l0, l1−1, 0)∪Π(l1,∞, 1)
in increasing order. The first k1 numbers are ν1, . . . , νk1 . Denote the next
k2 − k1 numbers by νk1+1, . . . , νk2 . Let us take l2 large enough such that ν1,
. . . , νk2 ∈ Π(l0, l1 − 1, 0) ∪ Π(l1, l2 − 1, 1). Then ν1, . . . , νk2 are the least k2

numbers in Π(l0, l1 − 1, 0) ∪ Π(l1, l2 − 1, 1) ∪ Π(l2,∞, 2).
In this way, we take l0 < l1 < l2 < · · · and k1 < k2 < · · · such that the

arrangement {νk} in increasing order of
⋃∞

i=0 Π(li, li+1 − 1, i) satisfies νk ∈
Π(0,∞, i) for k ≤ ki+1.

Let us verify the gap condition on this sequence. For any k, let us take
i such that ki ≤ k < ki+1. Then we have νk, νk+1 ∈ Π(0,∞, i) and hence
νk+1/νk ≥ γ(i) ≥ 1 + ρki ≥ 1 + ρk.
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For li ≤ l < li+1, put J̃(l) = i. Then
⋃∞

i=0 Π(li, li+1 − 1, i) =⋃∞
i=0 Π(li, li+1 − 1, i) and hence {νk} is a desired sequence.

Let us take a sequence {J(l)} of non-negative integers such that

J(l) ≤ J(l+1), J(l) ≤ 1
2

log2 l, J(l) ≤ J̃(l), J(l)J(l) ≤ l1/2, J(l) → ∞,

where we interpret 00 as 1. Let us put D(L) =
∑L

l=1(2l − 1)J(l)J(l). Thanks
to LJ(L)J(L) ≤ L3/2 and D(L) ≥ J(1)J(1)L2, we have (2L − 1)J(L)J(L) =
o(D(L)) and D(L − 1) ∼ D(L).

Now we are in a position to construct our sequence {nk} which sat-
isfies Ξf = ‖f‖A. Let {nk} be an arrangement in increasing order of⋃∞

l=1 P (l, J(l), J(l)). Since it is a subsequence of {νk}, it satisfies nk+1/nk ≥
1 + ρk.

Let us take a positive integer I arbitrarily, and let {mk} be an arrangement
in increasing order of the set theoretical union {nk}∪{2nk}∪. . .∪{Ink}. Given
K, let K̂ denote the integer k such that nK = mk.

Lemma.
(0) {mk} satisfies mk+1/mk ≥ 1 + ck−1/3 for some c > 0.
(1) #{k | nK ≤ mk < nK+1} = O(K1/3).
(2) LK = #{k ≤ K | Ink ≥ nK} = O(K1/3).
(3) K ≤ K̂ ≤ IK

Proof: (0) We prove that {mk} is a subsequence of {νk} except for finitely
many terms, which implies mk+1/mk ≥ 1 + ρk+c ≥ 1 + c′k−1/3 for some
c ∈ N and c′ > 0. Since J(l) is non-decreasing, by definition, we see that
2{nk} ⊂ {nk}. Thus it is sufficient to prove onk ∈ {νk} for all odd numbers o
less than I, except for finitely many k. If l is large enough, then o is a factor of
p

J(l)
1 . . . p

J(l)
J(l) and hence oP (l, J(l), J(l)) ⊂ P (l, J(l), 2J(l)) ⊂ P (l, J̃(l), 2J̃(l)).

Thus onk belongs to {νk} except for finitely many k.
(1) Let i = 1, . . . , I, and let k′ and k′′ be the minimum and maximum of

k for which nK ≤ ink < nK+1 holds. Thanks to nK+1/nK ≤ 2 and k′′ ≤ K,
we have

2 ≥ nK+1

nK
≥ ink′′

ink′
≥

k′′−1∏
k=k′

(1 + ck−1/3) ≥ (k′′ − k′)cK−1/3.

(2) Denote k′ the minimum of k ≤ K satisfying Ink ≥ nK . Then we have

I ≥ nK

nk′
≥

K−1∏
k=k′

(1 + ck−1/3) ≥ (K − k′)cK−1/3.
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(3) Since n1, . . . , nK ≤ nK , there exist at least K many mk such that
mk ≤ nK . Thus K ≤ K̂. If 1 ≤ i ≤ I and inj ≤ nK , then j ≤ K. Thus there
exist at most IK many k such that mk ≤ nK , and thereby K̂ ≤ IK.

3. Limiting variance
In this section we assume that f has parallel Fourier coefficients and prove∫ 1

0
(
∑K

k=1 f(nkx)) ∼ K‖f‖2
A/2. We prepare notation. Denote Z∗n = Zn ×

{0} × {0} × · · ·, Z∗∞ = Z∗1 ∪ Z∗2 ∪ . . ., and φ(j) = max{j, 0}. For j =
(j0, j1, . . . ) ∈ Z∗∞, put pj = pj0

0 pj1
1 . . . , φ(j) = (φ(j0), φ(j1), . . .), and

Φ(l, j) =
φ(2l − |j0|)

2l

∞∏
i=1

φ(J(l) − |ji|)
J(l)

.

For j ∈ Z∗∞ we have Φ(l, j) ↑ 1 (l → ∞). In case gcd(n, n′) = 1, since f has
parallel Fourier coefficients, we have∫ 1

0

f(nx)f(n′x) dx =
1
2

∑
i,i′∈N: in=i′n′

(aiai′ + bibi′)

=
1
2

∑
m∈N

(anman′m + bnmbn′m) =
1
2

∑
m∈N

√
(a2

nm + b2
nm)(a2

n′m + b2
n′m) ≥ 0.

Since the last summation has non-negative terms, we can change the order of
summation when we sum up this integrals for n and n′. Therefore∑
j∈Z∗∞

∫ 1

0

f(pφ(j)x)f(pφ(−j)x) dx =
∑

n,n′∈N: gcd(n,n′)=1

∫ 1

0

f(nx)f(n′x) dx.

=
1
2

∑
n,n′∈N

√
(a2

n + b2
n)(a2

n′ + b2
n′) =

‖f‖2
A

2
.

Let us put

ξl(x) =
l2−1∑

i0=(l−1)2

J(l)−1∑
i1,...,iJ(l)=0

f(pi0
0 . . . p

iJ(l)

J(l) x) and

V (L) =
∫ 1

0

( L∑
l=1

ξl(x)
)2

dx =
L∑

l=1

∫ 1

0

ξ2
l (x) dx + 2

∑
1≤l′<l≤L

∫ 1

0

ξl′(x)ξl(x) dx.

By changing variable by pmin{i,i′}x = y in each integrals, we have

I−1∑
i,i′=0

∫ 1

0

f(qpix)f(q′pi′x) dx =
∑
j∈Z

φ(I − |j|)
∫ 1

0

f(qpφ(j)x)f(q′pφ(−j)x) dx.
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Repeated application of the above equality yields∫ 1

0
ξ2
l (x) dx

(2l − 1)J(l)J(l)
=

1
(2l − 1)J(l)J(l)

∫ 1

0

(2l−2∑
i0=0

J(l)−1∑
i1,...,iJ(l)=0

f(pi0
0 . . . p

iJ(l)

J(l) x)
)2

dx

=
∑

j0,...,jJ(l)∈Z

φ(2l − 1 − |j0|)φ(J(l) − |j1|) . . . φ(J(l) − |jJ(l)|)
(2l − 1)J(l)J(l)

×
∫ 1

0

f(pφ(j0)
0 . . . p

φ(jJ(l))

J(l) x)f(pφ(−j0)
0 . . . p

φ(−jJ(l))

J(l) x) dx

=
∑

j∈Z∗(J(l)+1)

Φ(l, j)
∫ 1

0

f(pφ(j)x)f(pφ(−j)x) dx

↑
∑

j∈Z∗∞

∫ 1

0

f(pφ(j)x)f(pφ(−j)x) dx =
‖f‖2

A

2
(l → ∞),

where the last limiting procedure is by monotone convergence theorem. Hence

1
D(L)

L∑
l=1

∫ 1

0

ξ2
l (x) dx =

1
D(L)

L∑
l=1

∫ 1

0
ξ2
l (x) dx

(2l − 1)J(l)J(l)
(2l − 1)J(l)J(l) → ‖f‖2

A

2
.

By the non-negativity of the integrals,
∑

1≤l′<l≤L

∫ 1

0
ξl′(x)ξl(x) dx is less

than

∑
1≤l′<l≤L

l2−1∑
i0=(l−1)2

l′2−1∑
i0=(l′−1)2

J(L)−1∑
i1,i′1,...,iJ(L),i

′
J(L)=0∫ 1

0

f(pi0
0 . . . p

iJ(L)

J(l) x)f(pi′0
0 . . . p

i′J(L)

J(l′) x) dx

=
∑

1≤l′<l≤L

l2−1∑
i0=(l−1)2

l′2−1∑
i′0=(l′−1)2

∑
j1,...,jJ(L)∈Z

φ(J(L) − |j1|) · · ·φ(J(L) − |jJ(L)|)

×
∫ 1

0

f(pi0−i′0
0 p

φ(j1)
1 . . . p

φ(jJ(L))

J(L) x)f(pφ(−j1)
1 . . . p

φ(−jJ(L))

J(L) x) dx

Let us fix j0 and estimate the number of (i0, i′0) such that i0−i′0 = j0, (l−1)2 ≤
i0 < l2, (l′ − 1)2 ≤ i0 < l′

2, and 1 ≤ l′ < l ≤ L. For l and l′ with l′ ≤ l− 2, we
have j0 = i0 − i′0 ≥ 2l − 2, which is impossible for large l. Thus such (i0, i′0) is
at most finite. For l and l′ with l′ = l− 1, the solutions (i0, i′0) are included in
{((l−1)2, (l−1)2−j0), ((l−1)2+1, (l−1)2−j0+1), . . . , ((l−1)2+j0−1, (l−1)2)},
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and hence at most j0 many. Thus the total number of (i0, i′0) is j0L+C = O(L).
Thus we can write

∑
1≤l′<l≤L

∫ 1

0

ξl′(x)ξl(x) dx ≤
∑

j∈Z∗J(L)

Ψ(j, L)
∫ 1

0

f(pφ(j)x)f(pφ(−j)x) dx,

where Ψ(j, L) = O(LJ(L)J(L)) = o(D(L)). By the dominated convergence
theorem, we have

1
D(L)

∑
1≤l′<l≤L

∫ 1

0

ξl′(x)ξl(x) dx → 0 and hence
V (L)
D(L)

→ ‖f‖2
A

2
.

Put Π(l) = P (1, J(1), J(1)) ∪ . . . ∪ P (l, J(l), J(l)). Note that #Π(L) =
D(L) and V (L) =

∫ 1

0
(
∑

nk∈Π(L) f(nkx))2 dx. If we divide minP (l + 3, J(l +

3), J(l+3)) by maxP (l, J(l), J(l)), thanks to pn < 22n+1
and J(l) ≤ 1

2 log2 l/2,
we have

p
(l+2)2

0

pl2−1
0 p

J(l)−1
1 . . . p

J(l)−1
J(l)

≥ 24l+5−(21+···+2J(l)+1)(J(l)−1) ≥ 24l+5−2J(l)+2J(l) > 1.

For given K, let us take lK such that nK ∈ P (lK , J(lK), J(lK)). Then

max P (lK − 1, J(lK) − 1, J(lK) − 1) < nK ≤ maxP (lK , J(lK), J(lK))
< minP (lK + 3, J(lK + 3), J(lK + 3))

and hence
Π(lK − 1) ⊂ {n1, . . . , nK} ⊂ Π(lK + 2)

holds. Clearly we have D(lK−1) ≤ K ≤ D(lK +2) and D(lK−1) ∼ D(lK +2),
and thereby, D(lK − 1) ∼ K ∼ D(lK + 2). By the positivity of the integrals∫ 1

0
f(nx)f(mx) dx, we have V (lK − 1) ≤

∫ 1

0
(
∑K

k=1 f(nkx))2 dx ≤ V (lK + 2).
Dividing this inequality by K and letting K → ∞, we have

1
K

∫ 1

0

( K∑
k=1

f(nkx)
)2

dx → ‖f‖2
A

2
.
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4. LIL: trigonometric polynomial case
In this section we prove ΞfI

= ‖fI‖A for trigonometric polynomial fI(x) =∑I
ν=1(aν cos 2πνx + bν sin 2πνx) with parallel Fourier coefficients. If ‖fI‖A =

0, then fI = 0, and hence ΞfI
= 0, which completes our proof. Therefore we

assume ‖fI‖A > 0.
Let us consider the formal Fourier expansion

∞∑
k=1

fI(nkx) =
∞∑

ν=1

(ck cos 2πmkx + dk sin 2πmkx)

and denote its N -th subsum by SN . Put v2
n =

∫ 1

0
S2

N . Note that this {mk} is
a sequence given in section 2.

Let M be the maximum of modulus of all finite sums of the Fourier
coefficients of fI . It is clear that |ck|, |dk| ≤ M .

S
K̂

coincides with the subsum of the Fourier expansion of
∑K

k=1 fI(nkx)
up to frequency less than nK . Hence

∑K
k=1 fI(nkx) − S

K̂
contains at most

ILK terms with coefficients less than M . Thus we have∥∥∥∥ K∑
k=1

fI(nkx) − S
K̂

∥∥∥∥
∞

= O(K1/3), v
K̂

∼
√

K/2 ‖fI‖A and

lim
K→∞

S
K̂√

2v2

K̂
log log v2

K̂

= lim
K→∞

∑K
k=1 fI(nkx)√

K‖fI‖2
A log log K

If K̂ ≤ j < K̂ + 1, then v
K̂

≤ j < v
K̂+1

. By v
K̂

∼
√

K/2 ‖fI‖A ∼ v
K̂+1

,

we have vj ∼
√

K/2 ‖fI‖A for K̂ ≤ j < K̂ + 1. Thanks to (4) of Lemma,
we have vj ∼

√
K/2 ‖fI‖A ³ K̂ ³ j, where an ³ bn means an = O(bn) and

bn = O(an) at once. Thus we have cj , dj = O(1) = o(vj/j1/3), and hence we
can apply the Takahashi’s law of the iterated logarithm below ([3]):

Theorem B. Suppose that {mk} satisfies Takahashi’s gap condition with
β < 1/2, and define SN and vN as above. If cj , dj = o(vj/jβ), and v2

n → ∞,
then

lim
N→∞

Sj√
2v2

j log log v2
j

= 1, a.e.

By (1) of Lemma, we have max
K̂≤j<K̂+1

‖Sj−S
K̂
‖∞ = O(K1/3) = o(v

K̂
),

and hence

lim
j→∞

Sj√
2v2

j log log v2
j

= lim
K→∞

S
K̂√

2v2

K̂
log log v2

K̂

.

Combining these, we have ΞfI
= ‖fI‖A.

7



5. LIL: functions with absolutely convergent Fourier series.

We proved ΞfI
= ‖fI‖A in the previous section. By (1) of Theorem A, we

have |Ξf−fI
| ≤ ‖f − fI‖A. By lim a− lim(−b) ≤ lim(a+ b) ≤ lim a+ lim b and

lim
N→∞

∑N
k=1 f(nkx)√
N log log N

= lim
N→∞

(∑N
k=1 fI(nkx)√
N log log N

+
∑N

k=1(f − fI)(nkx)√
N log log N

)
,

we have ‖fI‖A −‖f − fI‖A ≤ Ξf ≤ ‖fI‖A + ‖f − fI‖A a.e. By letting I → ∞
we have ‖f − fI‖A → 0 and ‖fI‖A → ‖f‖A, and thereby Ξf = ‖f‖A a.e.
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