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AN ASYMPTOTIC PROPERTY OF GAP SERIES I11

K. FUKUYAMA (Kobe)

1. Introduction

Let f be an R-valued function on R satisfying

1 1
fa+ )= 1@, [ f@de =0, 1P = [ 1f@)Pds <o,
0 0
with Fourier series f(z) ~ > 7 (a, cos2mvz + b, sin 2vx). Denote ||f||la =
S>> Va2 + b2, We investigate the distribution of values of

N

—_ 1
= = i
() Jim NToglos v ]; f(ngz)

where {n;} is a strictly increasing sequence of positive integers. For a brief
survey on studies on Zy, we refer the reader to our previous paper [1].

Takahashi [4] gave the concrete bound =¢ < || f|| 4 a.e. assuming f € Lip«
(a > 1/2) and Takahashi’s gap condition:

nkﬂ/nkZl—i—ck_ﬁ <C>0, 6<1/2)

In [1] we proved the following.

Theorem A.

(1) Takahashi’s gap condition and || f||a < oo imply Z < |[f]|a a-e.

(2) Let us say that f has parallel Fourier coefficients if there exist a, b € R
with a® + b®> = 1 such that a, = a\/a2 + b2 and b, = by/aZ + b2 for all
v e N. If ||[f|la < oo and the Fourier coefficients of f are parallel, then
for every € > 0 there exist p > 0 and {ny} such that ny1/ni > 1+ p and
=1 > | flla—< ac.

In this paper we consider the problem if there exists a sequence {ny}
for which Zy = || f||a holds, or in other words, if the bound |/f||a can be
achieved as the law of the iterated logarithm. Our main theorem below gives
the affirmative answer to this question.

Theorem. For any sequence {py} of positive numbers converging to 0, there
exists a sequence {ny} such that ngy1/ng > 1+ p and Z5 = || f||a a.e. for
arbitrary function f with parallel Fourier coefficients and || f||a < oo.

Keywords: Gap series, law of the iterated logarithm. Subject class:
60F15, 42A55



2. Construction of the sequence

We prove our theorem by assuming that {p;} monotonously decreases to 0
and satisfies 1 > pp > k~'/3. Once we have proved under these assumptions,
we can derive the general case in the following way.

Put p), = max{k~/3 min{1,sup;~; p;}}. Then {p\} monotonously de-
creases to 0 and satisfies 1 > p; > k—1/3, By pr — 0, there exists a K such
that pr <1 for all £ > K, and hence p) > p; for £ > K. Firstly construct a
sequence {n} } satisfying nj_ , /nj, > 1+pj and Ey = || f|| 4 a.e. Secondly, take
Ny, .., ng wWith ng1/npg > 1+p (=1, ..., K—1), take M € N large
enough to satisfy Mn'_ | /nx > 14 pk, and put ny = Mnj, for k > K+1. For
k> K+ 1, we have ngi1/ng = nj,_,/n);, > 1+ p, > 1+ p; and hence the gap
condition is satisfied for all k. By change of variable, we see that = = || f||a
holds for {Mn} }, and hence for {nj} because Z; does not depend on finitely
many terms. Therefore we verified the general case.

Let po = 2, p1 = 3, po = 5, ... be the sequence consisting of whole prime
numbers. Put

P(l,m,n) :{péopzf pm (=12 <idg < 12,0 <dy,y...,0m < n}

A
H()‘7A7j) = U P<la]72]) and /Y(j) :Hlf{% ‘ n>m,n,mec H(O,OO,])}
=X

We see that 2 =~(0) > ~v(1) > ~y(2) > ---

~

Proposition. There exists a non-decreasing divergent sequence {J(l)} of
non-negative integers such that the arrangement {vy} in increasing order of

~

U2, P(, J(1),2J(1)) satisfies vgi1/ve > 1+ pr.

Proof: Firstly, put lp = 0 and take k; such that (1) > 1 + pg,. Let us
arrange I1(ly, 00, 0) in increasing order and denote the first k; numbers by vy,

..., Vg, . Let us take [ large enough such that vy, ..., vg, € I(lp,l1 —1,0). If
n € [I(lp,l; —1,0) and m € II(l1, 00, 1) \ II(lg, 00,0), then n < m holds. Thus
Vi, ..., Vg, are the least ky numbers in I1(ly, 1y — 1,0) UTI(ly, 00, 1).

Secondly, take ko as v(2) > 1+ pg, and arrange I1(ly, 11 —1,0)UII(l1, 00, 1)
in increasing order. The first £ numbers are vy, ..., vg,. Denote the next
ko — k1 numbers by vg, 41, ..., Vk,. Let us take [y large enough such that v,

ooy Uk, € H(lp, 01y —1,0) UTI(ly,lo — 1,1). Then vy, ..., v, are the least ks

numbers in II(ly,l; — 1,0) UTI(l1,lo — 1,1) UTI(l2, 00, 2).

In this way, we take o < 1 < Iy < ---and k1 < ko < --- such that the
arrangement {vy} in increasing order of (J;=,II(l;, ;11 — 1,i) satisfies vy, €
H(O, OO,Z) for k < ki—i—l-

Let us verify the gap condition on this sequence. For any k, let us take
i such that k; < k < k;11. Then we have vy, vy € 11(0,00,47) and hence

Vkt1/Vk = (1) 2 1+ pr, > 1+ pi.



For I; < I < liy1, put J(I) = 4. Then UX T(ls 1 — 1,4) =
U;’io I1(l;, ;41 — 1,4) and hence {v4} is a desired sequence. =

Let us take a sequence {J(I)} of non-negative integers such that

~

1
J) < JA+1), J0) < Jlogpl, J() < J(D), SOV <12 (1) — oo,

where we interpret 0 as 1. Let us put D(L) = Zf:1(2l —1)J(1)’® . Thanks
to LJ(L)’") < L3/2 and D(L) > J(1)’W L2 we have (2L — 1)J(L)’F) =
o(D(L)) and D(L — 1) ~ D(L).

Now we are in a position to construct our sequence {n;} which sat-
isfies 2y = ||f|la. Let {ni} be an arrangement in increasing order of
Uz, P(l,J(1),J(1)). Since it is a subsequence of {1}, it satisfies njy1/n, >
1+ Pk -

Let us take a positive integer I arbitrarily, and let {my} be an arrangement
in increasing order of the set theoretical union {ng }U{2n;}U.. . U{In}. Given

K, let K denote the integer k such that nx = my.

Lemma.

(0) {my} satisfies my41/my > 14 ck=/3 for some ¢ > 0.
(1) #{k | nxg < mp <ngi1} = O(KY3).

(2) L =#{k < K | Iny > ng} = O(K'/3).

(3) K <K <IK

Proof: (0) We prove that {m} is a subsequence of {vy} except for finitely
many terms, which implies mgy1/mgp > 14+ ppae > 1+ k=13 for some
¢ € N and ¢ > 0. Since J(I) is non-decreasing, by definition, we see that
2{ni} C {nx}. Thus it is sufficient to prove ony € {v}} for all odd numbers o
less than I, except for finitely many k. If [ is large enough, then o is a factor of
pi" .. py\) and hence oP(1, J(1), J(1)) C P(1,J(1),2J(1)) C P(1, (1), 2J(D)).
Thus ony, belongs to {vi} except for finitely many k.

(1) Let ¢ =1, ..., I, and let ¥’ and k" be the minimum and maximum of
k for which nx < ing < ngyi holds. Thanks to ngy1/nx < 2 and k" < K,
we have

k' —1

9 > NK+1 > Z.nk;// > H (1 +C]{?_1/3) > (k// . k/>CK_1/3.
ng (13 Pty

(2) Denote k' the minimum of k < K satisfying Iny > nx. Then we have

K-1
> > TT(+ k™3 > (K — K)eK /2,
L "y



(3) Since nq, ..., ng < ng, there exist at least K many mj such that
mi < ng. Thus K < K. If 1 <¢ < 1T and in; < ng, then j < K. Thus there
exist at most /K many k such that m; < ng, and thereby K < I K.

3. Limiting variance

In this section we assume that f has parallel Fourier coefficients and prove
fol(Zle f(ngz)) ~ K| fl|4/2. We prepare notation. Denote Z*" = Z™" x
{0} x {0} x -+, Z*° = Z*L U Z*? U ..., and ¢(j) = max{j,0}. For j =
(j())jl) . ) € Z*oo’ pUt pJ péopil I ¢(j) = (¢(]0)7 ¢(]1>a .- ')7 and

O(1,j) = 2l ’Jo’ H¢ ’]z )'

For j € Z**° we have ®([,j) T 1 (I — o0). In case ged(n,n’) = 1, since f has
parallel Fourier coefficients, we have

! 1
/0 f(nz)f(n'z)de = 5 Z (ajay + bibyr)

1,2’ €N: in=1'n’/

:_Z anm@nm+bnm nm - Z\/ +6721m ’m+b%’m)20

meN mEN

Since the last summation has non-negative terms, we can change the order of
summation when we sum up this integrals for n and n’. Therefore

S / £ ) f(p? D) da = 3 /fm n'z)

jezr= nn' €N: ged(n,n’)=1
Y @ e ) - ”fQ”?“.
n,n' €N
Let us put
17—1 J(1)—1
@)=Y, > Fl - pi’f((ll)) z)  and
do=(1—1)2 1,01 7 (1) =0

=/Ol<§;§z($)>2d$=é/olff(iﬁ)dﬂc‘i‘? /fz' )61 (z) dx.

By changing variable by p™™{#i}z = y in each integrals, we have

1
Z / flap'=) f(g'p" ) dz =" ¢(I \j!)/o Flap* D) f(q'p® ) da.

1,4'=0 JEZ

1</ <I<L



Repeated application of the above equality yields

9 J()—1 2
fl & (z) dzx 1 Y io i
- 0~ (9] — N0) Z Z fog - i) ) do
@l —1)J() G- DI070 Jo \ &, &=
0=V 11,..., Lyi(l)—

. ¢(2L =1 —=1jo)o(J(1) = ljs]) - .- 0(J () = lju)
B (20 —1)J(1)’®

Jos-J 1) EL

1
0 ¢ 0 o(—J
% / f(pg(j ) pj%l(l)) )f(p(?( J ). . 'pJEl)]J(l))L@ d

— / f(p F(p®z) da

Jez*(J<l>+1>

T Z / f(p b ¢(_j)x>dm:“f||124 (I — o),

2

where the last limiting procedure is by monotone convergence theorem. Hence

L [ I h&@de (Kl
—L);/o £2(z) de = B0 > (2l0—i)J(l)J(l) 20 —1)J (1)’ — TA

By the non-negativity of the integrals, >, ;< fo & (x)&(x) dx is less
than

12—1 -1 J(L)—1

> 2 X 2.

1<V <USLig=(1-1)% io=(I'=1)2 1,1 ooty (1) 1, =0

1
Fl e F pj’((l/)) x) dx
0

12—1 121
= > > ) S GIL) — i) SIE) ~ lis)
1<V <I<Lig=(1-1)2 i\ =('—1)2 j1,...js(L)€EZL

/ fp Zo i ¢(31) p?EJLJ)(Lﬂ )f(p(f(_jl) p?EL)]J(L))x) de

Let us fix jo and estimate the number of (g, i) such that ig—if = jo, (I—1)* <
io <12, (' =1)2<ig<l? and1 <! <l<L. Forlandl withl!' <l—2, we
have jo = igp —i(, > 2] — 2, which is impossible for large [. Thus such (ig, 7j) is
at most finite. For [ and [’ with I’ = [ — 1, the solutions (g, i) are included in

{((1=1),(1=1)*=jo), ((1=1)*41, (I=1)*—jo+1),..., ((I=1)*+jo—1, (I-1)*)},

5



and hence at most jo many. Thus the total number of (i, ij) is joL+C = O(L).
Thus we can write

Z /fl' () do < Z ‘I’JL/f Py D) da,

1<l <I<L jez+J(L)

where ¥(j,L) = O(LJ(L)’")) = o(D(L)). By the dominated convergence

theorem, we have

V(L) 12
D( Z /fl/ )& (x)dr — 0 and hence D(L)_> 2A'

1</ <I<L

Put H(l) P(L.J(1),J(1) U...U P(J(1).J(1). Note that #II(L) =
D(L) and V(L fo n €TI(L) f(nk:z;))2 dx. If we divide min P(I + 3, J(I +
3), J(I+3)) by maXP(l, J(1), J(I)), thanks to p, < 22" and J(I) < 1log,1/2,
we have

(l+2)2
> 9dl+5—(2 4427 (J (1)~ 1) > 9dl+5-27(+2 (1) > 1.

-1 J{)—-1 J()—1 —
PO 1p1() D)

For given K, let us take lx such that ng € P(lx,J(Ix),J(Ix)). Then

maXP(lK — 1,J(ZK) — 1,J(ZK) — 1) <ng < maXP(lK,J(lK),J(lK))
< minP(lK —|—3,J(lK +3),J(ZK —|—3))

and hence
ik —1) C{n,...,nkx} CIl(lx +2)

holds. Clearly we have D(lx —1) < K < D(lx+2) and D(lx —1) ~ D(lx +2),
and thereby, D(lx — 1) ~ K ~ D(lx + 2). By the positivity of the integrals
fol f(nz) f(mx) dx, we have V(I — 1) < fol(Zle fngz))?de < V(g + 2).
Dividing this inequality by K and letting K — oo, we have

1 ( > ? I£112
— f(n a;)) dx — 4
K/O ; F 2




4. LIL: trigonometric polynomial case
In this section we prove Zf, = ||fr||a for trigonometric polynomial f;(z) =

Z£:1(av cos 2mvx + b, sin 2vx) with parallel Fourier coefficients. If || fr]|a =
0, then f;r = 0, and hence =Zf, = 0, which completes our proof. Therefore we
assume || fr]|a > 0.

Let us consider the formal Fourier expansion

Z fr(ngx) Z(ck cos 2mmyx + dj sin 2mmyx)
r=1

and denote its N-th subsum by Sy. Put v2 = fol S2%,. Note that this {my} is
a sequence given in section 2.

Let M be the maximum of modulus of all finite sums of the Fourier
coefficients of f7. It is clear that |cg|, |dk| < M.

Sz coincides with the subsum of the Fourier expansion of Zle fr(ngx)

up to frequency less than ng. Hence Zle fr(ngz) — Sz contains at most
I L terms with coefficients less than M. Thus we have

= O(K'/?), v~/ K/2|fr]la and
e A

lim

m
Koo \/2UA10glogvA K=o /K| f1]% loglog K

IfK <j<K+1, thenv/\<]<vK+1 By vp ~ VE/2[[f1lla ~ vi=,
we have v; ~ /K/2| fr||a for K<j< K + 1. Thanks to (4) of Lemma,

we have v; ~ /K /2| fr||la = K = j, where a, = b, means a, = O(b,) and
b, = O(a,) at once. Thus we have c;, d; = O(1) = o(v;/j/?), and hence we
can apply the Takahashi’s law of the iterated logarithm below ([3]):

Theorem B. Suppose that {m;} satisfies Takahashi’s gap condition with
B < 1/2, and define Sy and vy as above. If ¢;, d; = o(vj/j?), and v2 — oo,
then

S,
lim J =1, a.e.
N=o0 \/21)2 log log v?
By (1) of Lemma, we have maxp_ . 1S; =5z lec = O(K'/3) = o(vz),

and hence e 5.

lim J = lim :

Joo \/202 log ]ogv K—o0 \/21)/\ log log UA
Combining these, we have Z¢, = || fr|| a.

7



5. LIL: functions with absolutely convergent Fourier series.

We proved Zf, = [[fi]|a in the previous section. By (1) of Theorem A, we
have |Zs_¢,| < ||f — frlla. By lima —lim(—b) <lim(a+0b) < lima +limb and

m >eey f(ni) _ Tm >y f1(nk) n Yoat (f = £1) (i)
N—oo v/Nloglog N N—oco\ y/Nloglog N v/ Nloglog N ’
we have || frlla = [|f = filla < Ef < ([f1lla + |[f = frlla a.e. By letting I — oo
we have || f — fr||la — 0 and || fr||a — ||f||a, and thereby Z; = || f]|4 a.e.
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