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Abstract. In this note, it is proved that the distribution of values of
N2 (0P g) L fe(6P5M ) converges to normal distribution. Here
pr(n) are polynomials.

1. Introduction
The study of this paper has been motivated by the polynomial ergodic theorem,
which states

1 Y , 2 [k
N T fy ) ST fd,
n=1 i=1

where T is weakly mixing transformation, p,’s polynomials and f, € L*™. In case
P, are linear, the mean convergence was proved by Furstenberg, Katznelson and
Ornstein [9], and for general polynomials by Bergelson [2].

Considering the transform 6 — 6z on unit interval [0,1], the result of
Furstenberg and Weiss [8] gives

n

lim lz:f(@’“ac)g(GkQac) — /1 f(z)dx /1g(x) der ae. .z, 0=23...

for bounded functions f and g with period 1. By comparing this with the
following results on Riesz-Raikov sums, we can expect that the following central
limit theorem holds:

foctua| g renone o) - e o

for all @ < b, when fol flx)dx = folg(:n) dr = 0. (] -| denotes the Lebesgue
measure.)

We here give a brief survey on the probabilistic studies on Riesz-Raikov sums
to explain the context above.

t This research was partially supported by Grant-in-Aid for Scientific Research (No. 09640268),
Ministry of Education, Science and Culture.
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Let f be a real-valued locally integrable function on R with period 1. Raikov
[15] proved that

lim — Zf (6% ) /1 f(x)dz, ae z, (0=2,3,...),
0

n—oo n,

and Riesz [17] pomted out that this result is an example of the ergodic theorem.
Having investiged more precise limiting behaviour of Riesz-Raikov sums, Kac
[12] proved the following central limit theorem: If f is Holder continuous and

[y f(z)dz =0, then

{xE[O,l]‘\/ﬁ;fwkx)e[a,b]}’%\/;ﬁiv befzz/zvdx, (1.1)

foralla <band § =2, 3,... ,WhereU:folfQ( Ydr 423 7 1f0 f(x)f(0%z) dx.
Ibragimov [11] extended the above results to locally square integrable function f
with the L2-Dini condition below:

1 1/2
/ w2(y) dy < oo where wy(d) = sup (/ |f(z+h) — f(a)) d:c) .
0

Y |h|<68

Although Takahashi [20] gave some results under the relative measure, we must
wait until Berkes [3] and [4] to have the central limit theorem (1.1) for non integral
6 > 1. He proved (1.1) for all # > 1 as a corollary of his general result, while
the limiting variance v was not explicitely determined. Kaufman [13] proved
v = fol f?(z) dx for almost all # > 1 with respect to Lebesgue measure, and also
for all algebraic 8 > 1 with

0" ¢ Q forall reN. (1.2)

Petit [14] treated the case when the algebraic number # > 1 does not
satisfy (1.2). When r is the minimum positive integer with 6" € Q, while
0" = p/v is an irreducible fraction of integers, he proved v fo [ (z)dx +
2302, fol f(p*z) f(vx)dx. Fukuyama [7] proved that v = fo fA(z) dx for all
6 > 1 with (1.2), and the limiting variance was completely determined.

In the above studies, Holder’s condition, Dini’s condition, or some variation of
these are assumed.

We are now in a position to state our theorem. Note that § > 1 is not necessarily
an integer.

Theorem 1. Let us assume that polynomials p. (1 < k < K) satisfy pr(c0) = 0o
and (px — pr)(00) = oo (k > k'), and functions fi, ..., fx on R with period 1
satisfy

/lfk(a:)da::O and /1|fk(a:)]2K_2d:c<oo (k=1,....K), (1.3)
0 0

/O|fk(:v)—sfk’n(:v)|2d:r:0(1/logn) (n—o0, k=1,...,K), (1.4)

and
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S ([t )~ s @ ) < 00 (15)

n=0

where sy, denotes the n-th subsum of Fourier series of f. Let P be a probability
measure on R which is absolutely continuous with respect to the Lebesgue measure.
Then we have the central limit theorem

b
P{x eR ‘ Z H fr(oremy [a,b]} — \/217 eI dy, (1.6)
™ Ja

nlkl

as N — oo for all a < b, K > 2 and 6 > 1. The limiting variance v in (1.6) is
determined as follows:
(1) If max, degp;, > 2, then

v= U/O £2(x) da. (1.7)

(2) When all py are linear, i.e., pp(x) = apx + by, and if the condition
0" ¢ Q forall neN (1.8)

is satisfied for at lease one of k=1, ..., K, then v is given by (1.7).
(3) In case (1.8) is not true for allk =1, ..., K, let us take the smallest n > 1
satisfying ™ € Q for all k, and write 0™ = q./r), by using qx, rx € N. Then

U—H/ fi(x d$+2ZH/ fr(qrx) fr(rix) de. (1.9)

n=1k=1

Conditions (1.4) and (1.5) follows from the next condition

S ([ 1) - s ae) <0 (110)

which is equivalent to L2-Dini condition. The equivalence is proved by (3.3) of
pp. 241 of Zygmund [21] and by (2.6) of pp. 160 of Bari [1].

2. Preliminaries
Set [|flloe = esssup_y. oy | f(@)] and [|f]l, = (J; [ £(@)]? d)"/”. Let [x] denote
the integer part of z. In this note we abuse notation and denote sy [,] simply by
55, when a is not an integer.

To prove the central limit theorem, we use the next lemma, whose idea is
essentially due to P. Hartman [10].

Let us put

sin Az ? hajo(x 16
hﬂx):(é‘) and  h(z) = /(ii\f;ﬂ)'
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It is easily verified that h is a positive integrable analytic function on R which
satisfies the following conditions (Cf. L. Breiman [5] pp.218):

h(u)=0 (Ju|>1), and |h(u)|<1 (ueR).

For u € R, let us define a measure p, on R by p,(dz) = eV~1“*h(zx) dz. Clearly
1o is a probability measure. We frequently use the inequality

/0; f(@) p(dx)| < /OO ()] po(da),

— 00

and the relation

/ VTN () =0 i N> U = Jul + 1.

Lemma 1. Suppose that a sequence {Xy} of real functions on R satisfies
/ eVTIN@)  (da) — e/ h(u) (teR, N — ), (2.1)

for all u € R, then the central limit theorem
1
V2T

holds where P s any probability measure on R which is absolutely continuous
with respect to the Lebesgue measure.

b
P{zeR| Xn(z) € [a,b]} — /e_’”z/%dx (a<b, N — oo),

Proof. Let us first suppose that P(dx) = g(z)dz and g € C*° has compact
support. Since g/h is rapidly decreasing, both g/h and (g/h)” are integrable.
Therefore we can apply the inversion formula for g/h, Fubini’s theorem and
Lebesgue’s convergence theorem in turn to prove the following convergence which
is equivalent to (2.1):

> —1tXn(x _ > —1tXn(x (ac)
/7ooer ()P(d$)_[mer ()mh(x)dx
= o | tamreyay [ e e T ) de
—t?v/2 oo R
| wrmhea
= e—t2v/2((g/h) * h(— . ))(O) — 6_t2v/2.

For the last equality, we have used integrability and continuity of (g/h) * h(— -)
and its Fourier transform.

Next, we treat the general case. For all ¢ > 0, we can take g. € C* with
compact support such that

@20, [ g@dr=1, ad [ o) - g@)lde <=

(&
N
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By using g., we have

/ e\/jltXN(z)g(x) dr — eftzv/Z

< ’/ eﬁtXN(m)g(x) dx _/ erltXN(m)gg(x) dx

+ ‘/OO erltXN(r)gg(x) dor — e—tzv/Q

The second term tends to zero as N — oo, and the first term is dominated by
Jlg — g-| < e. Since € > 0 is arbitrary, we have the conclusion. [

The following Lemma is a variation of the result by P. Révész [16] and its
argument is essentially due to Salem-Zygmund [18].

Lemma 2. Let u € R and {&,, v }1<m<my, N>1 be an array of functions on R. If

BN = Sllp ||£7”;NHOO — 0 (N — OO), (22)

1<m<Mn

/ &y N &, nd, =0 (NeN, reN, mog<my <---<m,.2.3)

My
Vn = Z &y — v in measure iy (N — 00), (2.4)
m=myg
and
By = sup ||Vy||e < 00, (2.5)
N>1

My
are satisfied for some my, then (2.1) holds for Xy = Y & n-
m=1

N
m=myo

‘/oo eﬁtXNd/qu B /°° e\/TtyNduu‘ < /OO |6\/jlt(XN*YN) _ 1| d,uo — 0.

Proof. If we put Yy = Emn, by | Xy — Yy| <moBy — 0, we have

Thus it is sufficient for us to prove (2.1) for Yy. Let us recall the following
asymptotic formula. (Cf. Salem-Zygmund [18])

T = (14 VTR where [R(@)] < Jaf’
By applying this, we have
eV TIYN — exp(—t*Vy/2 + Ry)

where
My My
Ty = [[ A+ vV-T1t&n) and Ry= > R(t&.n).

Ry and Ty have the following bounds:

My
Ry < Z temn|” < [tPByVa < [tPByBy — 0 and |Ty| < et VN /2,

m=mo
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y (2.3) we have [>Ty pu,(dx) = h(u) and hence we get

= ‘/_O:o Ty (exp(—tQVN/Q + Ry) — exp(—t2v/2)) de,

< [ lexp(Ry) ~ Udpo + [ [exp(t(Viy —v)/2) = 1] duo — 0,

since the integrand is bounded and tends to 0 in measure po. [

3. The case maxdeg f, > 2
In this section we assume maxdeg f, > 2 or deg fx > 2. If we denote
Br(f) = @) it is clear that there exists ¢ > 1 and N, such that

B JBW >q (n> Ny, k=1,...,K), (3.1)
n+1/ﬂ (K) s 50 (n — ), (3.2)
BEHV /B 00 (n— o0, k=1,...,K —1). (3.3)

Assuming only these three conditions, we can prove the central limit theorem for
trigonometric polynomials.

Proposition 1. Let fi, ..., fx be trigonometric polynomials without constant
term. If sequences of positive numbers {BV}, ..., {8} satisfy (3.1), (3.2)
and (3.3), then for allu € R, (2.1) holds for

Zka and v:H/O fi(z)dx

nlkl

that is the central limit theorem holds.

Proof. Let I € N and assume that degrees of fi, ..., fx are less than
I. Let us take w arbitrary and put U = |u| + 1. Let us set My = N
and &, n(x) = ABWV) ... fr(85x)/V/N and prove that {&, y} satisfy the
conditions of Lemma 2. If we put B = maxy, || fx|lso, we have ||&, n]loe < BX/VN
and || Vx|l < B¥, and hence (2.2) and (2.5) are clear. &, y can be expanded to

Enn( Z f1 i1) fK(zK) exp (277\/—1 (1,800 + -+ + iK@(lK))x)
k‘i’i‘ffx
By (3.2) and (3.3), there exists Ny such that, for any n > Ny and k =1,..., K,
/650 =101, B >6U (3.4)
and

180 + -+ 0B € (B /2,318%) if ir],..., lik| <21, i #0.  (3.5)
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Let us now assume Ny < n; < --- < n, and verify multiple orthogonality (2.3).
If we expand &, n...&,, n into trigonometric polynomial, frequencies can be
written as A, +---+ A, where )\, is a frequency of &,, y. Thanks to (3.4) and
(3.5) we have

|)‘nr+"’+)‘r1| > |)‘nr - |>‘n7 1| - ’/\n’
> 30/2 = 31(BLY, + -+ + B0)

> %) /2 = 31809 (14+1/101 +1/(101)* +--+)

> 30/2 = BI/10D)F{1/(1 = 1/10)} > 5,9 /6 > U.
By this estimate, we see [*_exp(2mv/—1 (A, ++ -+ A, )2) pu(dz) = 0, and hence
we have (2.3).

Lastly, let us verify (2.4). Let us take an r satisfying ¢" > 121. To prove (2.4),
it is sufficient to prove

N

Z (& ;n —v/N)— 0 in measure pp,

n:No
for each j =0, ..., 7 — 1. Let us put o} = fo f#(z)dz. Since v =0} ...0%, we
have

v 1 K k-1 ( ) K
k
rZLrJrj,N(‘T) - N = N Z H nr+j (ﬂnr+] O-i) H 013-
k=1 k=1 k=r+1

Thus it is sufficient to prove the following convergence in measure pg:

- Z ka B ) (F(BU x) — o) — 0.

nNokl

Let ¢, denote the summand. Note that the trigonometric polynomial expansion
of f2 (ﬁm +]x) — 02 has no constant term. Thus frequencies of the trigonometric
expansion of ¢, can be written as the right hand side of (3.5), and hence belong
to (ﬂ,(;Lj/Q,SIﬁ(“) ). Thanks to 8% /2 > 6U/2 > 1, we have

nr—+j nr—+j
| Gudio=o0. (3.6)

By (5 n+1)rﬂ/2)/(3lﬂfﬂrj) > q" /61 > 2, we have

B ras/2 = 318 > (B, /2)(1 = 1/2) > 6U/4 > 1

and hence frequencies of (,, and (,/ differ by at least 1 if n # n/. Thereby we
conclude that [*_ ¢, (2)¢w (2) po(dz) = 0, and we have

I3

[ 5 6) e 35 [l o

n=~Ny
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which implies the convergence in measure. []

Since prpi1 — pr is a polynomial diverging to infinity, there exists aq > 0 and
Ny € N such that pyy1(n) — pr(n) > 2agn for all n > Ny. Since pg is not linear,
there also exist ag > 0 and Ny € N such that px(n+ 1) — px(n) > 2agn for all
n > Ny. Thus we have

(k+1)/6(k) > p2aon (n>Ny, k=1,...,K —1),
BEL/BID > 020m (0 > Ny).

Proposition 2. Let functions f1, ..., fx with period 1 satisfy (1.3) and (1.4), and
sequences of positive numbers {BV}, ..., {BUO} satisfy (3.1), (3.7) and (3.8).
Then the conclusion of Proposition 1 holds.

Remark 1. In this proposition, the condition (1.5) is not assumed. Thus the part
(1) of Theorem 1 holds without (1.5).

Proof. Because of g0 = o(3%,+1) it can be proved in the same way that
there exists Ny such that, for all n > Ny,

i B 4 - 40, BB € (BH)/2,30%m 8RN if [iy], ... ik] < 2097, iy # 0. (3.9)

Firstly, we have the following estimate:

s[> NOHsfk (40 = 2 3 TLasea (00 )

n=~Ny
fe’e] 1 - (k’ ’
g/_m{\/NZ(HSM“O klills (B )} fo(dz)
K N onol (k) o (k) 2
S \/]\J?—Z/ ngvogsfk,QaO"(ﬂn ) kzllrlsfk’](ﬂ” 2 fo(dx)
k=17

X (84,.000m — 55,.1) (B x)

By (3.9), moduli of frequencies of summand in the above integrand belong to
(B /2,304 3)) . Because (%) /2)/(30%"35)) > §2n /6 — oo, the distance
between these intervals is greater than 1, and therefore these summands are
orthogonal. Thus

k—1 K
VE &L o [ [T5% 0000 (BP2) T] s%,.(8P2)
Ef <=2 2 / ki ke po(dz).  (3.10)

X (8§, 600m — Sj;-,.,I)Q(ﬁy(f)l")

If functions g; (k =1, ..., K) are trigonometric polynomials whose degrees are
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less than 0", then by applying a similar argument as the derivation of (3.6) to
the decomposition

[ ML) o) H||gk||2

X k=1
oo k—1 K

—Z [ a0 ~ g otaa) TT Lol
k=1 k=r+1

we have [ TTr—, 92(B%x) uo(dx) = TT5—, ||gx||2 for large n. By applying this to
(3.10), we have

K k—1

E2 < \/>Z HHka gaon Hz H ”ka 1|| (18,000 = st I||2
k=1 k=1 k=rk+1
< \ﬁZIIfK —sporlls TTIA -

k#kKk

Therefore, for any € > 0, there exists Iy such that I > I, implies E; < ¢/2.

Before proceeding further, let us prepare some inequalities. For a function F
with period 1 and [[Flla, < 00, [|Sull2p < C||F|| and ||F — s,]|2, < C||F|| holds.
(Cf. A. Zygmund [21].) We here prove [*_|F(0z)|* uo(dx) = |F||3: for 6 > 1
and p € N. For trigonometric polynomial, 1t is proved by the direct calculation
as below:

/_ o; |F(02) po(dz) = Y F(lh)... F(lop)h(2(ly + - +1,,)0)

l1,.-5l2p

= > F(l) .. Flyp)di4t1,0

= |1F (2)ll3p,

because h(2rl0) # 0 and | € Z is equivalent to [ = 0. Since s,(fz) converges to
F(fx) in measure dx, hence in measure py. By Fatou lemma,

/ |F(9x)\2p,u0(da:)§liminf/ 15, (62)[?% 1o (dz) = lim |s”( )2 da = | |22

—
o n— o0

Hence we have that s, (6z) converges to F(6x) in L?’(R, MO)—sense. Thereby we
can conclude that

AP G2) i) = i [ Jsu(62) P o) = Tim s, 35 = I
By using these, we have
1
f ka? \/N Z HSO"O” fk
n=Np k

n=Ng k=1

)| po(dz)
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NOK e | TT (F) k)
$o$ [T T s

1
< —
>~ \/Nn_ - . k=1 k=rk+1
“orst X (fr — sop.1.) (B 2)
NI Il
< —7= [ frllace—1) [l fie = Soeon 1. [|2 [[soe0m g, l2(x-1)
\/Nn:No =1k=1 k=rk+1
K
< Z 1T el -y \/» Z | f = sge0m s Ml = 0
k=1 k#k n=DNyp
because of the fact that 2(1( 5 (K —1)+ 1 =1, Holder’s inequality and (1.4).

Thanks to the estimate of F; and E, above, we have

lim sup / Xy (@) — XL (@) polda) < e

N—o00

for large I, where X{"'(z) = %ﬁzf:l [T, 5.5, (B%z). By putting v =

TTizy lIsr.p, [13, we have
jv—o] <e

for large I. Noting Proposition 1, the fact that |e® — 1| < |z| (z < 0) and that
leV=T* — 1| < |z| (x € R), if we take I large enough, we have

/ eﬁtXN d/«Lu _ e—t%/QTl(u)
/ e‘/jltXN #u(dx) _/ eﬁtxfj) d,uu’

/ eV TtX i, — _t2v(1)/2ﬁ(u)

lim sup

N—o0

< limsup

N—o0

. 24D _¢2
—|—11msup t=v /2—6 tv/2|

N—oo

<l [ X = X o + 10— ol/2 < (1t + /202,

+ lim suple

N —o0

which implies the conclusion. []

4. The case when py are linear
Let {1 };en be an arrangement of the set Uszl{ikﬁpk(”) | n € N} in increasing
order, and {\;};cz be an arrangement of the set

{01070 4o 0P e NJI< Jig] < T (k=1,...,K)}u{0}

intheorder -+ < Ao <A1 <A =0< A < Ay < ---. It is easily known that
—X; = A_; holds, and that {,u )} has Hadamard gaps; i.e., there exists ¢ > 1
such that
(k) 7, (k) _
M/ >q>1 (leN, k=1,...,K.) (4.1)
Because a; < ay < --- < ag, we can take ag > 0 satisfying ag < (ar41 — ay)/2
(k=1,..., K-1). Clearly, Pr+1(n) — pr(n) > 2agn for large n.
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Lemma 3. Let I and K be a positive integers.
(1) For any € > 0, there exists Ny such that for k =1, ..., K, n > Ny, and
0 < |ig| < %™ we have

1,071 g, gPR()

o €(l—e1+e). (4.2)
(2) There exist Cy, Cy > 0 and Ny such that for n, n' > Ny, |i;] < %",
35| < g (j=1, ..., k—1), |ig], |it| <I, and |ix67*| > |i}.67*")| we have
o) 4 gee)) L (5 @) 4L gt o)
(14 R 7 ) () + -+ ) € (Ch,Cy). (4.3)
i5,0P(7)

(3) ForanyU >0andk =0, 1, ..., K there exists Ny such that if n > n' > N,
0 < [ir] 0%, 0 < |ir] <% (1 <k<k),0<|ig], |it]| <T (k<k<K) and

(1267 4 - 4 P (M) 4 (Z'/lgm(n’) 4+oa i'KGPK(”'))\ <U (4.4)
we have
0,07 4 g =0 for k >k, and , (4.5)
(1507 4 g, 0P (M) (i;vgpk(n’) 4t i;&p“("/))] < gret)
for k < k.

3

Proof.  (4.2) is clear from §engpre(m) < gre+1(n) [g2a0n — o(grr+i(V)) - Let us
prove (4.3). Take ¢ > 0 small enough such that (1 —¢) — (1 + €)/q is positive.
By using (4.2), we have

|(Z'1(9p1(n) Lot Z'kgpk(n)) + (Z'/lgm(n') e Z';Cgpk(n'))‘
0P () g Pe(n) ior ) o4 i;ﬁpk(nl)
i,0PE () i5,0Ps ()
> (1= e)lin|6™™ — (1+¢)li; |67
> {(1—e) — (1+&)/ghlinlom .
The upper estimate
(3267 4+ .. 44, 0P & (i/lgm(n') 4ot i;@pk("/)ﬂ < 2(1 4 &)|ip, |07+
can be proved in a similar way.

Lastly, let us prove (4.5) and (4.6). Assume that (4.5) is not true and take the
largest of k such that i,67+) 4 i/ g7+(*) £ 0 for large n and n’. Then, by using
(4.3), we see that (4.4) cannot hold for large n and n’. Thus we have (4.5). By
this, we see that (4.4) is valid if we replace K by k. Noting this and (4.2) we
have

(3,07 4 - 4,07 4 (i;&”k(”/) I i;gph-,(n’)”

< (4167 4 44, 0PM) ¢ (i’lé?pl(”') 4Lt Z';gpn(n’))’
+ |(Z'1‘9101(") 4+t ik,19p’“*1(")) + (Z'/lgm(n/) et Z';c_lepkfl(n/)”
<U+ 29aon+pk71(n) < 39a0n+17k—1(n)’

> Z'kgpk(n) _ i;ﬁp’“(",)

(4.7)
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for large n. By putting k = &, we have i,67<(") 4 i’ gP=("") = o(97=(")) and hence
|i,,|0P=() /2 < ]l |0P=(") and thereby 7= /2 < gr=(n)Faon’ op p < astiop’ 4o

Thus we have agn + pr_1(n) < (ap + ar—1)*="%n’ + o/. Because

a, + a a, +a a a
(ap + ar_1) 0 < (ar — ap) 0 _ ak<1 _ 0) <1+ 0)

Gy, Qy, ag Qy,
SCLk<1—CLO) <1+a0> < ag,
Qg Qg
we have guontre-1(n) — o(gurn’+e’y  Combining this with (4.7), we have the

conclusion. [J
Let us put J(w) = [foxw o+ NN,

= 9 1/2 0
8 =( T IFOF) ad D)= Y Aulh).
l7l€J (w) w=0

It is easily seen that there exists a constant C' depending only on %% such that,

D(f) < ci( [l @) = spm@Par) (7 e1)

Lemma 4. If f1, ..., fk satisfy the condition of Theorem 1, then we have

X \p=Nj k=1 k=kr+1 (48)

K-1
<2N [[ IfIBD(fx)  (k=0,1,...,K, N > N,)
k=1
where Ny is given by (3) of Lemma 3 with U = 1. We also have

K 1 co K 1
v = H/o sfck}j(az)daz—i—ZZH/O srr(qrx)sg (rpe)de — v, (I — o0).
k=1

n=1 k=1

Proof.  Let us consider the case Ny < n’ < n and (4.4) is valid. Then, for
k >k, we have ), = @i (i) = [—ix0*"")]* by (4.5), where [2]* = [z + 1/2].
We also have i, = (i) = [—i.0%"")]* by (4.6) with k = k. For k < k, by
(4.6), we have

Z;c = @k(ikaikJrl, .. .,iﬁ)
ik+10pk+1(n) 4+t iﬁgpn(n) )]*

. o a (n—n/) __H—Pp (n/)
= | —ixf™ o ( o 0P ) gl e

By 6%(=") > 1 mappings i, — @i(ix) (k > &) and i, — ©g(ig, igp1s -0 0)
(k < k) are injective for any given iy y, ..., i, n and n’.
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By using (4.5) and (4.6), we have

/OO ( i ﬁ 8 f pe0n (") ﬁ sfk,f(éak”x)fﬂo(dx)

T Mp=Ng k=1 k=r+1

> DAGE)A@)] - Flin) Fic (i)

n’n=Ng *

<23 3 I S IR fieo) TT S IR0 Ful@uinn i)l

n'=No n=n’ k=k i1 #0 k=1 i, 7#0
where ) denotes summation for (iy,4),...,ix,i%) with 0 < |ii] < %" 0 <
lit] < 6% (1 <k<k),and 0 < |ig|, |it| <T (k <k < K). If k < &,

Z|.ﬁ(ik)ﬁ(¢k(ikv"'7iﬁ))‘
i, #0 R 1/2 N 1/2
< | Fei)l” Frlorlins i) < IAll3,
(Zr) (5 5 )

1,70

since ¢y, is injective. szgz|ﬁc(zk)ﬁc(¢k(zk))‘ < |Ifxll3 is also clear for k = x + 1,
.., K —1. In case k = K, we have

Z ’fK i fK (pr(iK)) Z Z ‘ _Z'Kgax(nfn’)]*)
w=0ixeJ(w

(20
<Z( > | fx( ZK)2>1 ( 3 ’fK([—’L'KgaK(n*n’)]*) 2>1/2

ik €J(w) ik €J(w)

< Z Aw(fK)Aernfn’(fK)'

w=0
Thus we have

/f° ( i ﬁ S fy.,0m0n (09" ) ﬁ sf,c,l(G“k”x))ZMO(d;,;)

nNokl k=rk+1

2H I1fill3 Z Z ZA (fi) Awn—n ()

n’=Ngp n=n’ w=0

<2N H ”fk”zz ZA fK w+m(fK)

m=1 w=0

N TLIAE S Aulfi) S Aum (i) < 2N [ IAEDU)".

which shows (4.8). Next let us verify the convergence of v!). We may assume
that qx and rg are relatively prime. By estimating in the same way as above,
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we have |HkK—1 Jo 8%,.1(w) dx| < TI, |1 £l3 and

< H 1Fll3 D | fre(inedio) e (—ineri)|

ka qk )ka (Tk dl‘

i #0
K—
H £z D 1 Gire) Fie ([ =i )]
=1 ik #0

H

< H 17115 D Au(fr) A (fic)-
k=1 w=0

In the same Way as above we have
oo K-1

HHthHZHM!bZA (Fi) A (fr) < 0.

n=1 k=1

Since each summand of v!) converges to that of v, and is dominated as above by
the summand of summable series, by Lebesgue’s convergence theorem for series,
we have the conclusion. [

Let us here prove the central limit theorem in the case when fi, ..., fx are
trigonometric polynomials without constant term.

Let us define Xy and c¢; n by

Z cinexp(2mv—1\;x) Z H fr(6P g
j=—00 n 1k=1
Obviously {¢; n}—co<joo, N>1 satisfies c_; x = ¢;x and ¢; 5 = 0 (|j| > Ju) for
some Jy.
Firstly, let us prove

/_ O; X (2)? pn(de) — v, (4.9)

| s pntin) = im o [ sty de

The left hand side of above formula is a symbolic expression and does not mean
an integral with respect to the measure pr. From now on, we frequently use the
following relations:

| #60) untde) = [~ @) puntdn) it 0,

— 00

where

/ f(x) pr(dx) :/ f(x)dx if f has period «; and / eV yp(da) = by,
—o0 0 —o0

Let us denote Fy ,(z) = fi(x)fx(0*"2) and dy, = [ Fy.(z) pr(dz). Let us
prove that there exists Ny and vy such that

o K
/ I Feo (07 2) pug(da) Hdku (n > Np) (4.10)

TR k=1
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=0 (v > vy, n > Np). (4.11)

If 6¢x* > I, then the trigonometric polynomial expansion of F , has no constant
term and thereby dg, = 0. Thus (4.11) follows from (4.10). Since the left hand
side of (4.10) can be decomposed into

o K oo k—1
/ HFk,Vd/'LR_Z/ HF]C,U(FK,,V_ K,V d,uR H dky"’Hdky,
T k=1 k=1 k=k+1

the proof of (4.10) reduced to the proofs of

oo k—1
/ [T Foo (67 ) (P (07™2) — d,.,)) pis(da) =0, (n> Np).  (4.12)
X k=1
Since Fy,, —dj,,, have no constant term, we can take 0 < I, , < I,’C such that the
frequencies of Fy,, — dy,,, belong to (I, I}, ). Then frequencies of F},, (7™ z) —
dy.., belong to (I, 07" I, 6P«(M). Since we have I}, ;. ,ﬂp’f“(”)/I’ gre(m) — o0
as n — 090, Iy, 9”’““(”)/[’ 67=(") > 3 for large n. Thus, for large n, moduli of
the frequenmes of the integrand of (4.12) is greater than

Iﬁ,ygpn(n) _ 12717V0P~71(n) — . — Ii’ugm(n) > In7u9pn(n)<1 _ 1/3 _ 1/32 . )
> 1,07 /2 > 0.

Hence the integrand of
By noting (4.10) and

2) has no constant term and thereby (4.12) follows.
1), we have

(4.1
(4.1
( ﬁfk<em<">x>)2m<dx>

— Z Z / H fk(gpk(n)x)fk(gpk(nw)x) pn(dz).

=0 nNo X k=1

—No N N 1
:Z _ 0+ Hdkl,

Thanks to (4 1 ) the sum in v is essentlally up to vy, and hence as N — oo
) K
Z 2— 51/0) H dk,u-
k=1

Let us evaluate dy,,. dpo = ||fx]|2 is clear. If v > 1 and (1.8) hold, frequency
i+1i'0%" of Fy, ,(x) = fr(z)fr(0**"z) can not be zero and thereby dj., = 0. Thus
we have (1.7) when (1.8) holds for some k. Suppose that (1.8) does not holds
for all k. Note that the set N(k) = {n | 6" € Q} is {mny | m € N } where
ngy = min N(k). Thus N(0) = N(1)Nn...N N(K) is {mn | m € N} where
n = ged(ng, . ..,nk) = min N(0). If v is not a multiple of n, then v ¢ N (k) for
some k, and thereby [], d,, = 0. If v = mn, then we have %" = (qx /7)™, and
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thereby
dw = [ @) fillar/r)s) pnlde) = [ A7) fulal'e) pund)
= /01 fe(riz) fi(qy'z) d.

Therefore (1.9) is proved, and consequently (4.9) is verified.

Let us here verify (2.1) by using Lemma 2. By applying (3) of Lemma 3 with
k = 0, we see that there exists Jy such that |A\; — ;| < U with j, j* > Jp implies
j = j'. We also see that if j > Jy, values of ;07" ... i,0P<(") gatisfying
Aj =167 4 i 0P are uniquely determined. Note that iy, ..., ix, and
n are not necessarily unique. Actually, 8 x 2° = 4 x 2! = 2 x 22 = 1 x 23 gives
an example for the case 6 = 2 and K = 1. But if we give the values iy, ..., ig,
then n is uniquely determined. Since the choice of values of iy, ..., ix are at
most (21)% in number, there are at most (21)% many (iy,...,ix,n) which satisfy
N = P07 Z'KHPK("), if 5 > J.

Let H; be the collection of j such that ‘leading term’ ix0Px<™ of X\, =

1071 4o 0P (M) equals to ,ul(K), ie.,

|J| > Jo,)\j = 2'19”1(”) 4+ 4 Z‘KQPK(n)’

, (leN),
ne N7|i1|7"'7’iK| S I,Z‘KQ;DK(R) :Ml(K) } ( )

Hy =17\ OHl.
=1

As in the proof of Lemma 3, we take ¢ > 0 satisfying (1 —¢) — (1+¢)/q > 0, and
take © > 0 such that (1 —¢) — (1+¢)(1/¢+1/(© —1)) > 0. Let us put my = 0,
Tom = max{l > 7,y | i) < O™} (m >0),

G, = U H, and ¢,ny= Z Cj,NeXp(QTF\/—il)\jl‘).
l=mty_1+1 j€Gm
By definition and (4.2), if j € G,, then one can find [ such that |)\;| €
(1 =)™, (1 +)p™) and 6™ < 4 < O™, From now on, we verify
the conditions (2.2), (2.3), (2.4) and (2.5).
As we have verified, we have # H, < (2I)*. Because

0 =0"/0"" > ul) /ull) | > g

Tm—1 —

we have 7, — m,,_1 < log,© and thereby G, < (2I)Klogq ©. Applying
|fu(@)] < [[frll2 to

~

1 -~ .
oo = 5 Fi) .. Fix).

[CET iK,n)G[fl,I]KX(foo,oo):
i19p1(")+"'+iK9pK(")=)\j
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we have |c; n| < (215 fill2- - - || fxll2/V'N. By this estimate, we have

el = (3 lein?) (3 12)" (1.13)

J€Gm JEGm

<#Gn D" fillz - L fxll2/ VN
< (21)** log, Ollfullz .. |fxll2/ VN = C/VN,

which implies (2.2), i.e., By < C/v/N — 0. By (4.13) and (4.9), we have

o0 oo
2
WVillo € D N&mnllie <D0 #Gn D leinl?
m=1 m=1

JEGm
< (21)10g,© [ X3(x) padr) — (21) (log, O},

which implies (2.5).
Next, let us verify (2.3). Let us take r € N and m; < --- < m,. Let ¢;
be a frequency of &, n. Since we have [¢;| € ((1 — E)/J,Z(J_K), (1+ E),ul(jK)) and

om-! < ul(f{) < ©™ for some [;, we have the following estimate:

‘¢r++¢1‘ 2 ’QST’ - |¢r—1‘ - ‘(bl’
> (1= = 1+ ) + -+ )
> (1= = (L+e)w (1/g+1/0+1/6° + )
>0 H(1-¢e)— (1+e)(1/g+1/(© 1))} — <.
Thus there exists mg such that, if m, > my, the last term is greater than U. This
implies (2.3).

Lastly, we here verify (2.4). Let us denote by B,, . the set of (j,j") € G2, such
that 7,07 4 iw”*"(”') =0 for k < k < K and 7,07~ + i;&p”("/) # 0, where
N =007 0P and N = i4 0P ) 4 ih 0P () Since we have
G = Ufzo By and B, x N By, =0 (k # k'), we have

En,N = Cmo,N T CmaN + -+ Gk N,
where
Cm,n,N - Z Ci NCj' N exp(27rv -1 (A] + )\j/)l‘).
(4,3 )€EBms
Clearly we have

00
Cm,O,N = Z ’Cj,N|2 and Z Cm,O,N =
m=1

JEGm

> lesl = [ X3 (@) un(dz) = vy.

j=—o00

By the way, O™ ! < i 0Px™MO™ implies am — 3 < n < am + 3 for some «,
B>0.1If (5,7) € By, we have by (4.3) that

A+ Agrl € (1= )il 070V, (1 + €)[ix|07)
C (1 —g)prlom=A) (1 4 ) IgPremTh)y = A, ..
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Since (1 —¢g)@Pe(@m+m=F) /(1 4 g) [gre(em+8) > [(1 —¢) /(1 4¢)I}0%(@7=25) > 2 for
large r, the distance between Ay ,,, and Ay, is greater than 1 if |m —m/| > r.
We also see that distance between arbitrary two of Ay ,,, ..., Ak, is also greater
than 1. Thus we have

[ == [~ (Z Zcmw> o

m=1 k=1
2
<0 Y [ (Xtwn) dn = ¥ X[
0<j<r - 0<j<r m=1
1<k<K 1<k<K

=0X [ € v < Cllénnl Vil ~ OBy —0.
=1/~

Thus we have (2.4). Therefore we have the central limit theorem (2.1) if f; are
trigonometric polynomials without constant.
Let us define E; and F, as the previous section. By applying (4.8) for fi, ...,

Jac1s o —Spdy fas1s -+, fi, we have the following estimate of F}:
0o N 1 XN K 2
> T s 00) — > T (0700) o)
</ ‘ N n= Nok 1 \/NTL_NO k=1
] XN K N K 2
[ (75 2 o) = o 52 TLonn@2) nofas)
n— — n=Ng k=1

0 k=1

2
K

2 - gpk grr(n)
];[ 0 fk H 317fk( 1’) Mo(dx)

k:n-}-l
(Sgaon’fN - $I7fn)(9pm(n)x)

ey 3
ST; (N

K-—1
<2VK Z I 12N fe = srsl3D(fx) + TT 1A BD(Fx = s1p2)-
k=1

k=1 1<k<K
k#Kk

Thus if we take I large enough, we have F; < €. The estimate of Fy can be done
in the same way as section 3, we can conclude the proof also in the same way as
before.

5. On implication of reqularity conditions
If we assume (1.10), we have Zglefk—sfk,ggHQ =o(WN)(n—o0,k=1,...,K).
Because || fi. — sy, 02|, is decreasing in n, we have (1.4) as follows:

N

1
1fe = spc0plla < I fi = spoopll, = 0o(1/VN).

n=1
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