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A LAW OF THE ITERATED LOGARITHM FOR
DISCREPANCIES: NON-CONSTANT LIMSUP

KATUSI FUKUYAMA (KOBE)

Abstract

We prove the existence of a sequence {nkx} whose discrepancies obey
a bounded law of the iterated logarithm with a non-constant limsup.

1. Introduction

Let us define the discrepancies DN and D∗
N of a sequence {xk} of

real numbers by

DN{xk} = sup
0≤a′<a<1

∣∣∣∣ 1

N

N∑
k=1

1̃a′,a(〈xk〉)
∣∣∣∣; D∗

N{xk} = sup
0≤a<1

∣∣∣∣ 1

N

N∑
k=1

1̃0,a(〈xk〉)
∣∣∣∣,

where 1̃a′,a(x) = 1[a′,a)(x)−(a−a′), 1[a′,a) denotes the indicator function
of [ a′, a) and 〈x〉 denotes the fractional part x − [ x ] of x.

For {nk} with exponential growth nk+1/nk > q > 1, Philipp [13, 14]
proved the following bounded law of the iterated logarithm

1

4
√

2
< lim

N→∞

NDN{nkx}√
2N log log N

≤ C < ∞, a.e. (1)

The result was extended to the case of sub-exponential growth by
Berkes, Philipp, and Tichy [15, 3] assuming some extra conditions.
The limsup in (1) is explicitly calculated only in a few cases: the case
when nk+1/nk → ∞ [6, 4, 8]; the case when nk = θk for θ > 1 [12, 7];
the case when {nk} is a Hardy-Littlewood-Pólya sequence [9]. As is
pointed out by Aistleitner and Berkes [1, 2], it is not known if the
limsup in (1) is a constant almost everywhere.

In this paper we show the existence of a sequence {nk} of linear
growth which obeys a bounded law of the iterated logarithm

0 < C1 ≤ lim
N→∞

NDN{nkx}√
2N log log N

≤ C2 < ∞, a.e., (2)
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and the limsup in (2) is not a constant a.e.
For a given strictly increasing sequence {nk} of positive integers,

denote by {n◦
k} the arrangement in increasing order of N \ {nk}.

Theorem 1. There exists a strictly increasing sequence {nk} of positive
integers satisfying nk+1 − nk ≤ 5 and n◦

k+1 − n◦
k ≤ 5 such that

lim
N→∞

NDN{nkx}√
2N log log N

= lim
N→∞

ND∗
N{nkx}√

2N log log N
= σ(x) a.e. x,

lim
N→∞

NDN{n◦
kx}√

2N log log N
= lim

N→∞

ND∗
N{n◦

kx}√
2N log log N

= σ(x) a.e. x,

where

σ2(x) = (4x1[0,1/4)(x)+1[1/4,3/4)(x)+4(1−x)1[3/4,1)(x))/9+1/24. (3)

We use a method of random series which originated with Salem-
Zygmund [16] and Bobkov-Götze [5].

2. Proof

Let J = {−1, 1}3\{(1, 1, 1), (−1,−1,−1)} and {ξn}∞n=1 be a J-valued
i.i.d. such that ξn is uniformly distributed over J . We define the
sequence {Xn} of random variables by (X3n−2, X3n−1, X3n) = ξn (n ∈
N). Clearly {X3n−2}∞n=1, {X3n−1}∞n=1, and {X3n}∞n=1 are fair {−1, 1}-
valued i.i.d.

Denote 1[a′,a)(〈kx〉) and 1̃[a′,a)(〈kx〉) simply by 1[a′,a)〈kx〉 and 1̃[a′,a)〈kx〉.
Put ik = 1̃[a′,a)〈kx〉, Yk = i3k−2X3k−2 + i3k−1X3k−1 + i3kX3k, r(x, a) =∫ 1

0
1̃[0,a)〈y〉1̃[0,a)〈y − x〉 dy, and ϕ(x) =

√
2x log log x.

Lemma 2. For x /∈ Q, we have

1

3N

N∑
k=1

EY 2
k → σ2(x, a − a′), (4)

where σ2(x, a) = r(0, a)−4r(x, a)/9−2r(2x, a)/9. The function σ2(x, a)
is continuous in (x, a) and satisfies

σ2(x, a) = σ2(1 − x, a). (5)

Proof: By EXn = 0, EX2
n = 1, and EX3n−2X3n−1 = EX3n−2X3n =

EX3n−1X3n = −1/3, we have

EY 2
k = i23k−2 + i23k−1 + i23k −

2

3
i3k−2i3k−1 −

2

3
i3k−1i3k −

2

3
i3k−2i3k.
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Since the sequence {3kx} is uniformly distributed mod 1, we have

1

N

N∑
k=1

i3k−2i3k =
1

N

N∑
k=1

1̃[a′,a)〈(3k − 2)x〉1̃[a′,a)〈3kx〉

→
∫ 1

0

1̃[a′,a)〈y − 2x〉1̃[a′,a)〈y〉 dy =

∫ 1

0

1̃[0,a−a′)〈y − 2x〉1̃[0,a−a′)〈y〉 dy.

In the same way, we have

1

N

N∑
k=1

i3k−ji3k−j−1 → r(x, a − a′) and
1

N

N∑
k=1

i23k−j → r(0, a − a′)

for j = 0, 1, 2. Therefore we have (4).
Continuity of σ2(x, a) is clear. By changing variable, we have∫ 1

0

1̃[0,a)〈y + x〉1̃[0,a)〈y〉 dy =

∫ 1

0

1̃[0,a)〈y〉1̃[0,a)〈y − x〉 dy,

or r(−x, a) = r(x, a). Hence σ2(x, a) is a even function of x with period
one, and thereby we have (5). ¤
Lemma 3. For x /∈ Q, we have

σ2(x) = max
0≤a<1

σ2(x, a)/2 = max
0≤a≤1/2

σ2(x, a)/2. (6)

σ2(x, a) = 0 implies a = 0.

Proof: Put m(x) = x ∧ (1 − x) and M(x) = x ∨ (1 − x). m(x) ≤
1/2 ≤ M(x) is clear. For a, x ∈ [ 0, 1), we have

r(x, a) =


−a2 0 ≤ a ≤ m(x)

a − a2 − m(x) m(x) ≤ a ≤ M(x)

−(1 − a)2 M(x) ≤ a < 1.

(7)

We prove this in the case x ≤ 1/2 or m(x) = x. The other case can be

proved by using (5). Note that r(x, a)+a2 =
∫ 1

0
1[0,a)〈y−x〉1[0,a)〈y〉 dy

equals to the measure of Ax = [ 0, a) ∩ ([ 0, a) + x mod 1). We can
easily see that Ax = ∅ if 0 ≤ a ≤ x, Ax = [ x, a) if x ≤ a ≤ 1 − x,
and Ax = [ 0, a + x − 1) ∪ [ x, a) if 1 − x ≤ a < 1. (7) is verified by
calculating the measure of Ax. Especially, we have r(0, a) = a − a2.

By (5), it is sufficient to prove (6) for x ∈ [ 0, 1/2 ]. The second
equality of (6) follows from r(x, a) = r(x, 1−a) which is clear from (7).

By using (7), we calculate 9σ2(x, a) for a, x ∈ [ 0, 1/2 ].
If 0 ≤ x ≤ 1/4, by noting 0 ≤ m(x) = x ≤ m(2x) = 2x ≤ 1/2,

we have 9σ2(x, a) = 9a − 3a2 on [ 0, x), 9σ2(x, a) = 5a − 3a2 + 4x on
[ x, 2x), and 9σ2(x, a) = 3a − 3a2 + 8x on [ 2x, 1/2).
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If 1/4 ≤ x ≤ 1/3, by noting 0 ≤ m(x) = x ≤ m(2x) = 1− 2x ≤ 1/2,
we have 9σ2(x, a) = 9a − 3a2 on [ 0, x), 9σ2(x, a) = 5a − 3a2 + 4x on
[ x, 1 − 2x), and 9σ2(x, a) = 3a − 3a2 + 2 on [ 1 − 2x, 1/2).

If 1/3 ≤ x ≤ 1/2, by noting 0 ≤ m(2x) = 1− 2x ≤ m(x) = x ≤ 1/2,
we have 9σ2(x, a) = 9a−3a2 on [ 0, 1−2x), 9σ2(x, a) = 7a−3a2−4x+2
on [ 1 − 2x, x), and 9σ2(x, a) = 3a − 3a2 + 2 on [ x, 1/2).

By differentiating by a, we have (9a−3a2)′ = 9−6a > 0, (5a−3a2 +
4x)′ = 5− 6a > 0, (7a− 3a2 − 4x+2)′ = 7− 6a > 0, (3a− 3a2 +4x)′ =
(3a − 3a2 + 2)′ = 3 − 6a > 0 for a ∈ [ 0, 1/2). Hence 9σ2(x, a) strictly
increases in a ∈ [ 0, 1/2 ] and takes its maximum at a = 1/2. Hence (6)
is proved. Clearly σ2(x, a) = 0 only for a = 0. ¤
Lemma 4. For l ∈ N, i < 2l, and x /∈ Q, we have

lim
N→∞

1

ϕ(N)
sup

a<2−l

∣∣∣∣ N∑
k=1

1̃[2−li,2−li+a)〈kx〉Xk

∣∣∣∣ ≤ 6 · 2−l/2 a.s.

Proof: Take an integer N and λ > 0 arbitrarily and denote

S̃N = max
n≤N

sup
a<2−l

n∑
k=1

1[ 2−li,2−li+a)〈3kx〉X3k, bN =
N∑

k=1

1[ 2−li,2−l(i+1))〈3kx〉.

Define k1, . . . , kM by {3k1, 3k2, . . . , 3kM} = {3k ≤ N | 〈3kx〉 ∈
[ 2−li, 2−l(i + 1))} and 〈3k1x〉 < 〈3k2x〉 < · · · < 〈3kMx〉. By putting
Jm,n = {j ≤ m | 3kj ≤ n} and Sm,n =

∑
j∈Jm,n

X3kj
, we have

S̃N = maxn≤N maxm≤M Sm,n. Defining random variables n0 and m0

by n0 = min{n; maxm≤M Sm,n > λ} and m0 = min{m; Sm,n0 > λ}, we

have a disjoint decomposition {S̃N > λ} =
⋃

n≤N

⋃
m≤M Cn,m where

Cn,m = {n0 = n,m0 = m}. Since Cn,m belongs to the sigma field gen-
erated by X3kj

(3kj ≤ n), it is independent of Sm,N − Sm,n which is a
function of X3kj

(3kj > n). Hence by noting P (Sm,N−Sm,n ≥ 0) ≥ 1/2,
we have

P (Cn,m) ≤ 2P
(
Cn,m ∩ {Sm,n > λ}

)
P

(
Sm,N − Sm,n ≥ 0

)
≤ 2P

(
Cn,m ∩ {Sm,N > λ}

)
≤ 2P

(
Cn,m ∩

{
max
m′≤M

Sm′,N > λ
})

.

By summing for n ≤ N and m ≤ M , we have

P
(
S̃N > λ

)
≤ 2P

(
S̃N > λ, max

m′≤M
Sm′,N > λ

)
= 2P

(
max
m′≤M

Sm′,N > λ
)

≤ 4P
(
SM,N > λ

)
= 4P

( N∑
k=1

1[ 2−li,2−l(i+1))〈3kx〉X3k > λ

)
,
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where the last inequality is by reflection principle. For fair ±1 valued
i.i.d. {Zn}, we have E exp(t(Z1 + · · · + Zn)) ≤ ent2/2 (Lemma 4.2.1
of [16]), which implies P (|Z1 + · · · + Zn| ≥ µ) ≤ 2 exp(−µ2/2n). By

applying this we have P
(
|S̃N | > λ

)
≤ 8 exp(−λ2/2bN).

Thanks to bN/N → 2−l we have bN < 2N2−l for large N , and

hence P
(
|S̃N | > λ

)
≤ 8 exp

(
−λ2/4N2−l

)
. By putting N = 2j and

λ =
√

5 · 2j2−l log log 2j we have∑
j

P
(
|S̃2j | >

√
5 · 2j2−l log log 2j

)
≤

∑
j

8(j log 2)−5/4 < ∞.

By Borel-Cantelli Lemma, we see |S̃2j | ≤
√

5 · 2j2−l log log 2j a.s. for
large j, and hence

lim
N→∞

1

ϕ(N)
sup

a<2−l

∣∣∣∣ N∑
k=1

1[ 2−li,2−li+a)〈3kx〉X3k

∣∣∣∣ ≤ √
10 · 2−l a.s.

It remains valid if we replace 3k by 3k − 1 or 3k − 2, and combining
these, we have

lim
N→∞

1

ϕ(N)
sup

a<2−l

∣∣∣∣ N∑
k=1

1[ 2−li,2−li+a)〈kx〉Xk

∣∣∣∣ ≤ √
30 · 2−l a.s.

By decomposing
∑N

k=1 Xk into the sum of
∑

k≤(N+2)/3 X3k−2,
∑

k≤(N+1)/3 X3k−1,

and
∑

k≤N/3 X3k, and by applying the law of the iterated logarithm for
each, we have

lim
N→∞

sup
a<2−l

a

ϕ(N)

∣∣∣∣ N∑
k=1

Xk

∣∣∣∣ ≤ lim
N→∞

2−l

ϕ(N)

∣∣∣∣ N∑
k=1

Xk

∣∣∣∣ ≤ 2−l
√

3.

By adding these we have the conclusion. ¤

Lemma 5. For x 6∈ Q and s = ±1, we have

lim
N→∞

sup
a<1

N∑
k=1

s1̃[0,a)〈kx〉Xk

ϕ(N)
= lim

N→∞
sup

a′<a<1

N∑
k=1

s1̃[a′,a)〈kx〉Xk

ϕ(N)
=

√
2σ(x) a.s.

Proof: We prove for s = 1. The other case is proved in the same way.
Denote ΣN,x

a′,a =
∑N

k=1 1̃[a′,a)〈kx〉Xk/ϕ(N). Since {Yk} is an independent

sequence satisfying EYk = 0, |Yk| ≤ 3, VN = EY 2
1 + · · · + EY 2

N ∼
3Nσ2(x, a − a′) → ∞ (a′ < a), by the law of the iterated logarithm
[11], we have limN→∞ (Y1 + · · · + YN)/

√
2VN log log VN = 1 a.s. For
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a = a′, we have Yk = 0. Hence limN→∞ ΣN,x
a′,a = σ(x, a − a′) a.s., and

thereby

lim
N→∞

max
j′<j<2l

ΣN,x
2−lj′,2−lj

= lim
N→∞

max
j<2l

ΣN,x
0,2−lj

= max
j<2l

σ(x, 2−lj) a.s.

By taking limsup in

max
j<2l

ΣN,x
0,2−lj

≤ sup
a<1

ΣN,x
0,a ≤ sup

a′<a<1
ΣN,x

a′,a ≤ max
j′<j<2l

ΣN,x
2−lj′,2−lj

+2 max
i<2l

sup
a<2−l

∣∣ΣN,x
2−li,2−li+a

∣∣,
we have

max
j<2l

σ(x, 2−lj) ≤ lim
N→∞

sup
a<1

ΣN,x
0,a ≤ lim

N→∞
sup

a′<a<1
ΣN,x

a′,a ≤ max
j<2l

σ(x, 2−lj)+12·2−l/2 a.s.

By letting l → ∞, we have the conclusion. ¤
By applying the result NDN{kx} = O((log N)(log log N)1+ε) a.e. x

by Khintchine [10] together with Lemma 5 to

inf
a<1

N∑
k=1

1̃[0,a)〈kx〉1
2

+ sup
a<1

N∑
k=1

1̃[0,a)〈kx〉sXk

2
≤ sup

a<1

N∑
k=1

1̃[0,a)〈kx〉1 + sXk

2

≤ sup
a<1

N∑
k=1

1̃[0,a)〈kx〉1
2

+ sup
a<1

N∑
k=1

1̃[0,a)〈kx〉sXk

2
(s = ±1),

we have

lim
N→∞

1

ϕ(N)
sup
a<1

N∑
k=1

1̃[0,a)〈kx〉1 + sXk(ω)

2
= σ(x)/

√
2 a.e. (x, ω).

It remains valid if we replace 1 + sXk(ω) by −1 − sXk(ω). Hence

lim
N→∞

1

ϕ(N)
sup
a<1

∣∣∣∣ N∑
k=1

1̃[0,a)〈kx〉1 + sXk(ω)

2

∣∣∣∣ = σ(x)/
√

2 a.e. (x, ω).

The law of large numbers BN =
∑N

k=1(1 + sXk(ω))/2 ∼ N/2 a.s. im-
plies

lim
N→∞

1

ϕ(BN)
sup
a<1

∣∣∣∣ N∑
k=1

1̃[0,a)〈kx〉1 + sXk(ω)

2

∣∣∣∣ = σ(x) (8)

for almost every (x, ω). By taking ω which satisfies the formula (8) for
a.e. x, and by denoting {nk} = {j | Xk(ω) = 1}, (8) with s = 1 yields
the law of the iterated logarithm for D∗

N{nk}. The law for DN{nk} can
be proved in the same way. (8) with s = −1 yields the laws for {n◦

k}.
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