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A LAW OF THE ITERATED LOGARITHM FOR
DISCREPANCIES: NON-CONSTANT LIMSUP

KATUSI FUKUYAMA (KOBE)

ABSTRACT

We prove the existence of a sequence {n,x} whose discrepancies obey
a bounded law of the iterated logarithm with a non-constant limsup.

1. INTRODUCTION

Let us define the discrepancies Dy and D} of a sequence {zj} of
real numbers by

Dy{xx} = sup
0<a’<a<1

N

1 T *

i Z 1a/7a(<xk>)‘; Dy{xx} = sup
k=1

0<a<1

where 1, 4(z) = 14 ,0)(z)—(a—a’), 144y denotes the indicator function
of [a/,a) and () denotes the fractional part z — [z ] of z.

For {n;} with exponential growth ny1/n; > ¢ > 1, Philipp [13, 14]
proved the following bounded law of the iterated logarithm

— ND
lim N i <C<oo, ae. (1)

1
4+/2 = v V2N loglog N —

The result was extended to the case of sub-exponential growth by
Berkes, Philipp, and Tichy [15, 3] assuming some extra conditions.
The limsup in (1) is explicitly calculated only in a few cases: the case
when ny1/n, — oo [6, 4, 8]; the case when ny, = 6% for > 1 [12, 7];
the case when {n;} is a Hardy-Littlewood-Pdlya sequence [9]. As is
pointed out by Aistleitner and Berkes [1, 2], it is not known if the
limsup in (1) is a constant almost everywhere.

In this paper we show the existence of a sequence {n;} of linear
growth which obeys a bounded law of the iterated logarithm

— ND
0<C; < lim nint} <Oy <00, ae., (2)

N—oo /2N loglog N —

Keywords: discrepancy, law of the iterated logarithm.

Subject class: Primary 11K38, 42A55, 60F15.

The author was supported in part by the Grant-in-Aid for Scientific Research
(B) 17340029 from JSPS.

1

AR
N ; 10,a(<5€k>)

bl



and the limsup in (2) is not a constant a.e.
For a given strictly increasing sequence {nj} of positive integers,
denote by {n}} the arrangement in increasing order of N\ {ny}.

Theorem 1. There exists a strictly increasing sequence {ny} of positive
integers satisfying npy1 —ngp <5 and ny ; —ny <5 such that

— ND —  ND;
im nine} = lim winr} =o(z) ae
N—oo y/2N loglog N N—oo /2N loglog N
—  NDpy{n; —  NDy{n}
lim N Ang) = lim winge) =o(z) ae =,
N—oo /2N loglog N N—oo /2N loglog N
where

o*(x) = (4oLo/0) (@) + L jaz/a) (2) +4(1 = 2) 100 (2)) /9+1/24. (3)

We use a method of random series which originated with Salem-
Zygmund [16] and Bobkov-Goétze [5].

2. PROOF

Let J = {—1,1}*\{(1,1,1), (=1, -1, —1)} and {&,}°°, be a J-valued
iid. such that &, is uniformly distributed over J. We define the
sequence {X,} of random variables by (X3,_2, X3,-1, X3,) = &, (n €
N). Clearly {X3,-2}2,, {X35,-1}122,, and {X3,}52, are fair {—1,1}-
valued i.i.d. B B

Denote 11y o) ((kx)) and 1jy o) ((kz)) simply by 1iy o) (kz) and 1y o) (k).
Put i, = 10y (kx), Yi = igp—2Xsp—2 + i3p—1Xsp—1 + 936 X3, 7(2,a) =

fol Alv[ova)(yﬁ[o,a) (y — x) dy, and ¢(z) = v/2xloglog x.

Lemma 2. For x ¢ Q, we have

N
1
S_NZEYk2 — o?(z,a—d), (4)
k=1

where 0*(x,a) = r(0,a)—4r(x,a)/9—2r(2x,a) /9. The function o*(z, a)
is continuous in (x,a) and satisfies

o*(z,a) = o*(1 — x,a). (5)

PT'OOf.' By EXn = 07 EX,% = 1, and EXgn_QXgn_l = EX3n_2X3n =
EX3, 1X3, = —1/3, we have

2 2 2
2 ) ) .2 . . . . . .
EY), =15, + 15, +i5, — §@3k7233k71 - 513k7123k - §23k7223k-
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Since the sequence {3l<:x} is uniformly distributed mod 1, we have

—lek 203k = _Zl[a a3k —2) > (a’.a) (3kT)

1
- / ]-[a’,a) <y - 2x>1[a/,a) <y> dy = / ]—[O,afa’)<y - 21‘>1[0,a7a/) <y> dy
0 0

In the same way, we have
LN

NE i3k—jisk—j—1 — T(z,a —a') and E i3, — (0,0 —d)
k=1

for 7 =0, 1, 2. Therefore we have (4).
Continuity of 02(x,a) is clear. By changing variable, we have

1 1
| Towrty + a0 ) dv = | Tow o) Lo o~ =) du
0 0

or r(—xz,a) = r(z,a). Hence 0?(x,a) is a even function of x with period

one, and thereby we have (5). O
Lemma 3. For x ¢ Q, we have
20N _ 2 _ 2
o(x) = Dax o (x,a)/2 = 0%22(/20 (x,a)/2. (6)

o?(x,a) = 0 implies a = 0.

Proof: Put m(z) = 2 A (1 —z) and M(z) =2V (1 —x). m(x) <
1/2 < M(z) is clear. For a, z € [0,1), we have

—a? 0<a<mz)
r(z,a) =< a—a*—m(x) m(r) <a< M) (7)
—(1 —a)? M(z) <a<1.

We prove this in the case © < 1/2 or m(z) = z. The other case can be
proved by using (5). Note that 7(x,a) +a* = fol 1i0,0)(y — ) 110,0)(y) dy
equals to the measure of A, = [0,a) N ([0,a) + 2 mod 1). We can
easily see that A, = 0if 0 <a <=z, A, = [z,a0) ifx <a <1-—uz,
and A, = [0,a+2 — 1)U [z,a)if 1 —2 < a < 1. (7) is verified by
calculating the measure of A,. Especially, we have r(0,a) = a — a®.

By (5), it is sufficient to prove (6) for x € [0,1/2]. The second
equality of (6) follows from r(x,a) = r(x,1—a) which is clear from (7).

By using (7), we calculate 902(x,a) for a, z € [0,1/2].

If 0 <z < 1/4, by noting 0 < m(z) = 2 < m(2z) = 2z < 1/2,
we have 90%(z,a) = 9a — 3a® on [0, z), 90%(z,a) = ba — 3a® + 4x on
[z,22), and 90%(z,a) = 3a — 3a® + 8z on [2x,1/2).

3



If1/4 <2 <1/3, by noting 0 < m(z) =2 <m(2z) =1—-2x < 1/2,
we have 902(x,a) = 9a — 3a® on [0,2), 90%(z,a) = 5a — 3a® + 4z on
(2,1 —2z), and 90?(x,a) = 3a — 3a* + 2 on [1 — 2x,1/2).

If 1/3 <2 <1/2, by noting 0 < m(2z) =1—-2z <m(x) =x < 1/2,
we have 902 (x,a) = 9a—3a® on [0,1—2z), 90%(z,a) = Ta—3a® —4x+2
on [1—2z,), and 90%(x,a) = 3a — 3a*> + 2 on [z,1/2).

By differentiating by a, we have (9a —3a?)’ = 9—6a > 0, (5a — 3a*+
4z) =5—6a >0, (Ta—3a®> —4x+2) =7—6a > 0, (3a — 3a*+4zx) =
(3a —3a*+2) =3 —6a >0 for a € [0,1/2). Hence 90%(z, a) strictly
increases in a € [0,1/2] and takes its maximum at a = 1/2. Hence (6)
is proved. Clearly o?(x,a) = 0 only for a = 0. O

Lemma 4. Forl € N, i <2 and x ¢ Q, we have

— 1
lim —— sup <6-27Y? as.

N—oo 90( ) a<2!

N o~
Z 1[27%727%-&-&) <k31'>Xk
k=1

Proof: Take an integer N and A > 0 arbitrarily and denote

n N
SN = n’l<a]{>[( Supl Z 1[27li,2*li+a) <3kx>X3k, bN = Z 1[2*li,2*l(i+1)) <3km>
"=Nae<2mty T k=1
Define ki, ..., ku by {3k1,3ks, ... 3kn} = {3k < N | (3kz) €

(270,278 + 1))} and (3k1x) < (Bkpz) < -+ < (3kpz). By putting
Jnn = {j < m | 3k; < n} and S,,, = ZjeJm,n Xsp,, we have
gN = MaX,<y MaXy,<p Om . Defining random variables ng and myg
by ny = min{n; max,,<pr Sm.n > A} and my = min{m; S, ,, > A}, we
have a disjoint decomposition {Sy > A} = U, <n Upnear Cnm where
Chm = {no = n,my = m}. Since C,,, belongs to the sigma field gen-
erated by Xsi, (3k; < n), it is independent of S, y — Synn Which is a
function of X3, (3k; > n). Hence by noting P(Sp, x —Smn > 0) > 1/2,
we have

P(Crm) < 2P(Cryn N {Smn > A}) P(Sin — S = 0)
< 2P(Crm N{Smn > A}) <2P(Chn N {7512];@ SN > A}).

By summing for n < N and m < M, we have
P(Sy > \) <2P(Sy > A\, max Spu .y > A) = 2P(max Spuy > A)
m/'<M m/'<M

N
< 4P(SM7N > )\) =4P (Z 1[2—li72—l(i+1))<3k$>X3k > )\),
k=1
4



where the last inequality is by reflection principle. For fair +1 valued
iid. {Z,}, we have Eexp(t(Z1 + --- + Z,)) < e™/2 (Lemma 4.2.1
of [16]), which implies P(|Zy + -+ + Z,| > p) < 2exp(—p?/2n). By
applying this we have P(|§N| > \) < 8exp(—A?/2by).

Thanks to by/N — 27! we have by < 2N27! for large N, and
hence P(|§N| > )\) < 8exp(—/\2/4N2*l). By putting N = 27 and
A =4/5-22-1oglog 2/ we have

ZP(|§2J'| > /5 - 22t loglog 2J') < 28(]' 10g2)—5/4 < oo,

J J

By Borel-Cantelli Lemma, we see |§2j| < \/5 -212=tloglog 27 a.s. for
large 7, and hence

N
D Aptip-tiva) (3k2) Xar| < V10-271 as.

k=1

lim sup
N—o0 QD(N> a<2!

It remains valid if we replace 3k by 3k — 1 or 3k — 2, and combining
these, we have

<vV30-27! as.

— 1
lim sup

N
19191500 (kx) X,
Tt o 3o

k=1

By decomposing Z]kvz1 X, into the sum of Zkg(N+2)/3 X3, Zkg(N+1)/3 Xsp_1,
and ), <N/3 X3k, and by applying the law of the iterated logarithm for
each, we have

N N
— a — 27!
lim sup —— Xi| < lim Xl < 2-1/3.
N=0 4co-1 p(N) ,; N=co o(N) ,;
By adding these we have the conclusion. U

Lemma 5. For z ¢ Q and s = £1, we have

= lim sup a.s.

lim sup
e(N) N=00 a/ca<1 i e(N)

N—oo g<1

N T N ~
g ool X _ SNt X s
k=1

Proof: We prove for s = 1. The other case is proved in the same way.
Denote Zfl\,[i =V 1oy (k) X3/ o(N). Since {V;} is an independent
sequence satisfying EY;, = 0, |Yi| < 3, Vy = EY2 + - + EYZ ~
3No?*(x,a —ad') — oo (a' < a), by the law of the iterated logarithm
[11], we have limy .o (Y7 + -+ Yn)/v2VyloglogVy = 1 as. For
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N,z

a = a', we have Y, = 0. Hence limy_ 2,7 = o(z,a — d’) a.s., and

thereby
lim max 22 gty = lim maXEO2 ;= maxo(z,2” ) as.
N—)OOJ <]<21 N—oo ]<2l <2l

By taking limsup in

N, N,
maXX]O2 L <sup20a < sup X7 < max 2, I,Q ’ +2max sup |22 lio-lival’
j<2t a<l1 v<act 0T jr<j<a! i<2!
we have

maxa(x 27'5) < lim supE < hm sup E SmaXJ(x,Q_lj)—i—lQ-Q_l/Q a.s.
j<2t N—oo g<1 N—oo grcq<t g<2t

By letting [ — oo, we have the conclusion. O
By applying the result NDy{kz} = O((log N)(loglog N)'*¢) a.e. x
by Khintchine [10] together with Lemma 5 to

N

. ~ 1 s X, 1+sX
¢11I<1£ 2 1[0@)(/&%)2 + supz 10.0) kx}T < ilill)z 1)0,q) ka:)Tk

N
~ 1 ~ sX
< sup E 1[0,a)<lm>§ + sup g 1[07(1)<kx>71c (s = =£1),
a<< —1 a< -1

we have

— 1 ~ 1 X,
lim sup Z 1[07a)<kx>+8—k() =o(x)/V2 ae. (z,w).
It remains valid if we replace 1 + sXi(w) by —1 — sXy(w). Hence

Z 1.0 ]W>HS—X’“()

5 =o(2)/V2 ae. (z,w).

— 1
lim sup
N=oo p(N) a<1

The law of large numbers By = S0 (1 4+ sXi(w))/2 ~ N/2 a.s. im-
plies

1
lim sup

1—|—8Xk( )
1jp0)(kx) ——F—F
N—oo QO(BN) a<l Z [0a) >

S 0@ @

for almost every (z,w). By taking w which satisfies the formula (8) for

a.e. x, and by denoting {n;} = {j | Xx(w) = 1}, (8) with s = 1 yields

the law of the iterated logarithm for D} {ny}. The law for Dy{n;} can

be proved in the same way. (8) with s = —1 yields the laws for {n}}.
6
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