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THE CENTRAL LIMIT THEOREM FOR LACUNARY SERIES

Katusi Fukuyama and Shigeru Takahashi

???, ?, 1997

Abstract. In this paper, the central limit theorem for lacunary trigonometric series
is proved. Two gap conditions by Erdős and Takahashi are extended and unified.

The criterion for the Fourier character of lacunary series is also given.

1. Introduction

It is well known that lacunary trigonometric series
∑

ai cos(2πniω +φi) behaves
like random series when {ni} increases very fast. For example, if {ni} has Hadamard
gaps, i.e. ni+1/ni > q > 1, the series converges or diverges almost everywhere
according as

∑
a2

i converges or diverges. (Kolmogorov [3] and Zygmund [10].) It
is also known that the series is not a Fourier series of integrable function when∑

a2
i = ∞. (Zygmund [10].)

As to the central limit theorem for the series with Hadamard gaps, Salem-
Zygmund [4] proved: If An =

(
1
2

∑n
i=1 a2

i

)1/2 → ∞ and an = o(An) are satisfied,
then

(1.1)
1

An

n∑
i=1

ai cos(2πniω + φi)
D−→ N0,1

holds on probability space
(
Ω, dω/|Ω|

)
, when Ω ⊂ [ 0, 1 ] has positive measure.

Here | · | denotes Lebesgue measure, N0,1 the standard normal distribution, and
D−→ convergence in law.

Erdős [1] relaxed the gap condition to

(1.2) ni+1/ni > 1 + ci

/√
i where ci → ∞,

and proved (1.1) for an ≡ 1. Takahashi [6] proved that an ≡ 1 can be relaxed to

(1.3) An → ∞ and an = O
(
An

/√
n

)
.

Takahashi [7] also proved (1.1) assuming

(1.4) ni+1/ni > 1 + c/iα, An → ∞ and an = o(An/nα),
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where c > 0 and 0 ≤ α ≤ 1/2. It should be noted that there is no implication
between (1.2) and (1.3), and (1.4). Indeed, if we put α = 1/2, the gap condition
of (1.4) is weaker than (1.2), but if we put an ≡ 1, we must put α < 1/2 in (1.4),
which is stronger than (1.2).

From (1.1), by the way, we can deduce that the series is not a Fourier series.
Therefore, the series is not a Fourier series under (1.4). Takahashi [8] proved that
this claim remains valid even if we relax an = o(An/nα) to an = O(An/nα). Under
this condition, (1.1) does not hold generally. A counterexample was constructed by
Takahashi [9]. Previously, Erdős [1] had noted the existence of such an example for
α = 1/2.

Although these results have been considered to be best possible, we still have
the following examples excluded from the above scheme: Under the conditions

ni+1/ni > 1 + c
/√

i log i, An → ∞ and an = o
(
An

/√
n log n

)
,

the central limit theorem (1.1) holds. Even if we relax the last condition to an =
O

(
An

/√
n log n

)
, the series is not a Fourier series, but there are counterexamples

for (1.1).
In this note we introduce a more general gap condition and prove theorems

including all the above results and examples.

Theorem 1. Let us suppose the following conditions:

λ(i) > λ for some λ > 0;(1.5)

λ(i + 1) − λ(i) = o(1);(1.6)

ni+1/ni > 1 + c/λ(i) for some c > 0;(1.7)

an = o
(
An/λ(n)

)
and An → ∞.(1.8)

Then (1.1) holds on any Ω ⊂ [ 0, 1 ] with positive measure.

In Theorem 1, the next condition is implicitly assumed:

(1.9)
∞∑

i=1

1
λ2(i)

= ∞.

Or, more precisely, the existence of {ai} satisfying (1.8) is equivalent to (1.9).
Indeed, if (1.9) is false, the contradiction A2

n = O
(

1
2

∑n
i=1 A2

i /λ2(i)
)

= o(A2
n)

follows. In case (1.9) is valid, we can construct {ai} satisfying (1.8), by putting
An = exp

(
1
2

∑n
i=1 ei

)
and a2

n = (A2
n − A2

n−1)/2, where {ei} satisfies 0 < ei =
o
(
1/λ2(i)

)
and

∑∞
i=1 ei = ∞.

Although Theorem 1 contains assumptions that generalize (1.4), we can derive
the next corollary which assumes the generalization of (1.2) and (1.3). The condi-
tion (1.9) is again implicitly assumed for {Λ(i)}.

Corollary. Let us suppose the following conditions:

Λ(i) > 0 and Λ(i) → ∞;
Λ(i + 1) − Λ(i) = O(1);
ni+1/ni > 1 + ci/Λ(i) where ci → ∞;
an = O

(
An/Λ(n)

)
and An → ∞.
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Then (1.1) holds on any Ω ⊂ [ 0, 1 ] with positive measure.

Actually, we will prove that the assumption of Theorem 1 is equivalent to that
of Corollary. Thus, our result extends and unifies previous results.

Since an = o(An) is necessary for (1.1) (Salem-Zygmund [4]), if we assume (1.8),
the condition (1.5) is indispensable for Theorem 1.

The next theorem asserts that (1.8) cannot be weakened.

Theorem 2. Suppose that {λ(i)} satisfies λ(i) > 0, (1.6) and (1.9). Then there
exist sequences {ni} and {ai} satisfying (1.7),

(1.10) an = O
(
An/λ(n)

)
and An → ∞,

such that the central limit theorem (1.1) does not hold on Ω = [ 0, 1 ].

Finally, we state a result on the Fourier character of the series. Since (1.11) is
always true under Hadamard’s gap condition, it includes that of Zygmund [10].

Theorem 3. Let us assume (1.5), (1.6), (1.7), (1.9),

(1.11) an = O
(
An`(An)/λ(n)

)
and An → ∞,

where `(x) =
√

log x log log x . . . log(γ) x and γ ∈ N. Then the series diverges
almost surely and is neither a Fourier series nor a Fourier-Stieltjes series.

Before closing the introduction, we note that the same results for lacunary Walsh
series can be proved in the same way.

2. The Central Limit Theorem

Let us put n0 = 1 and λ(0) = 2λ, and introduce the following notation:

p(0) = 0, p(k) = max{ i | ni ≤ 2k } (k ≥ 1), l(k) = p(k + 1) − p(k),
P (k) = N ∩

(
p(k), p(k + 1)

]
, µ(k) = max

i∈P (k)
λ(i), ν(k) = min

i∈P (k)
λ(i).

Since {ni} diverges to infinity, {p(k)} does also. If p(k) + 1 < p(k + 1), we have

2 >
np(k+1)

np(k)+1
>

p(k+1)−1∏
i=p(k)+1

(
1 +

c

λ(i)

)
> 1 +

p(k+1)−1∑
i=p(k)+1

c

λ(i)
> 1 + c

l(k) − 1
µ(k)

.

From this and µ(k) > λ, it follows that

(2.1) l(k) = O
(
µ(k)

)
.

By (1.6), we have λ(i) = o(i) and µ(k) = o
(
p(k +1)

)
. Applying this to (2.1) we get

(2.2) p(k + 1) ∼ p(k).

Applying (1.6) and (2.1), we have

0 ≤ µ(k) − ν(k)
µ(k)

≤
p(k+1)−1∑

i=p(k)

∣∣λ(i + 1) − λ(i)
∣∣

µ(k)
= o

(
l(k)
µ(k)

)
= o(1).

This implies µ(k) ∼ ν(k), and hence µ(k) ∼ λ
(
p(k+1)

)
and µ(k+1) ∼ λ

(
p(k+1)+1

)
follow. Since λ(i + 1) ∼ λ(i) is clear from (1.5) and (1.6), we have

(2.3) µ(k + 1) ∼ µ(k).

The next lemma plays an important role in the proof.
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Lemma 1. For any given integers j, k, h, and q satisfying

j < k and p(j) + 1 < h ≤ p(j + 1) < p(k) + 1 < q ≤ p(k + 1),

the number of solutions (nr, ni) of the equation

nq − nr = nh − ni where p(j) < i < h and p(k) < r < q,

is at most 2j−k+1µ(k)/c.

Proof. If (nr, ni) is a solution, we have

nr = nq − (nh − ni) > nq − 2j > nq(1 − 2j−k) ≥ nq(1 + 2j−k+1)−1.

Let us denote the least (or greatest) index of nr’s by m1 (or m2). Dividing nq ≥
nm2+1 by nq(1 + 2j−k+1)−1 ≤ nm1 , we have

1 + 2j−k+1 ≥ nm2+1

nm1

≥
m2∏

m=m1

(
1 +

c

λ(m)

)
≥ 1 +

c(m2 − m1 + 1)
µ(k)

. ¤

The next lemma can be proved in the same way.

Lemma 2. For any given integers j, k, h, and q satisfying

j + 1 < k and p(j + 1) < h ≤ p(j + 2) < p(k + 1) < q ≤ p(k + 2),

the number of solutions (nr, ni) of the equation

nq − nr = nh − ni where p(j) < i ≤ p(j + 1) and p(k) < r ≤ p(k + 1),

is at most 2j−k+2µ(k)/c.

In the proof of Theorem 1, we assume φi = 0 to simplify notation. The general
case can be proved in the same way. We apply the following result ([5]).

Theorem A. Let {di} be a sequence of real numbers and put

fn(ω) =
n∑

i=1

di cos 2πiω, ∆k = f2k+1 − f2k , Dn =
(

1
2

n∑
i=1

d2
i

)1/2

,

and Bk = D2k+1 . Suppose that the following conditions are satisfied:∫ 1

0

∣∣∣∣ 1
B2

n

n∑
k=1

(
∆2

k(ω) + 2∆k(ω)∆k+1(ω)
)
− 1

∣∣∣∣ dω → 0,(2.4)

Bn → ∞ and sup
ω∈[0,1]

∣∣∆n(ω)
∣∣ = o(Bn).(2.5)

Then for any Ω ⊂ [ 0, 1 ] with positive measure, the law of fn/Dn on
(
Ω, dω/|Ω|

)
converges weakly to the standard normal distribution.
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We apply this by putting ∆k(ω) =
∑

i∈P (k) ai cos 2πniω and Bk = Ap(k+1).
Let us put Ck = ‖∆k‖ where ‖ · ‖ denotes L2[ 0, 1 ]-norm. Obviously we have
C2

k = B2
k − B2

k−1. By (1.8) and (2.1), we have

(2.6) sup
ω∈[0,1]

∣∣∆k(ω)
∣∣ ≤ ∑

i∈P (k)

|ai| ≤ l(k) max
i∈P (k)

|ai| = o

(
µ(k)

Bk

ν(k)

)
= o(Bk).

This implies Ck = o(Bk) and B2
k+1

/
B2

k =
(
1−C2

k+1

/
B2

k+1

)−1 = 1+o(1). The next
estimate follows from the Schwarz inequality:

(2.7)
∑

q∈P (k)

|aq| ≤ l1/2(k)Ck = O
(
µ1/2(k)Ck

)
.

To prove (2.4), we divide ∆2
k into three parts; putting

Uk =
1
2

∑
q∈P (k)

aq

∑
r∈P (k)

ar cos 2π(nq + nr)ω and

Vk =
∑

p(k)<r<q≤p(k+1)

aqar cos 2π(nq − nr)ω,

we have ∆2
k − C2

k = Uk + Vk. From (2.6), it follows that

‖Uk‖ ≤ 1
2

∑
q∈P (k)

|aq|Ck = o(BkCk) and ‖Vk‖ = o(BkCk).

Since {Uk} is an orthogonal sequence, we have∥∥∥∥ n∑
k=1

Uk

∥∥∥∥2

=
n∑

k=1

∥∥Uk

∥∥2 = o

(
B2

k

n∑
k=1

C2
k

)
= o(B4

k).

Noting this and
∥∥∑

(Uk + Vk)
∥∥2 ≤ 2

∥∥∑
Uk

∥∥2 + 2
∥∥∑

Vk

∥∥2, we have∥∥∥∥ n∑
k=1

(
∆2

k − C2
k

)∥∥∥∥2

= o(B4
k) + 4

∑
1≤j<k≤n

∫ 1

0

Vk(ω)Vj(ω) dω.

In a similar way, we can prove∥∥∥∥ n∑
k=1

∆k∆k+1

∥∥∥∥2

= o(B4
k) + 4

∑
1≤j<k≤n

∫ 1

0

Wk(ω)Wj(ω) dω,

where Wk =
∑

q∈P (k+1) aq

∑
r∈P (k) ar cos 2π(nq − nr)ω. By Lemma 1, (1.8) and

(2.7), we have∣∣∣∣∫ 1

0

Vk(ω)Vj(ω) dω

∣∣∣∣ ≤ ∑
q∈P (k)

|aq|
∑

h∈P (j)

|ah| max
r∈P (k)

|ar| max
i∈P (j)

|ai|
2j−k+1µ(k)

c

= o
(
BkBjµ

1/2(k)µ−1/2(j)2j−kCkCj

)
.
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Because of (2.3), for large enough M , we have µ(k)/µ(j) ≤ M2k−j . Hence we have

∑
1≤j<k≤n

∫ 1

0

Vk(ω)Vj(ω) dω = o(B2
n)

n∑
k=2

Ck

k−1∑
j=1

√
2

j−k
Cj

= o(B2
n)

n∑
k=2

Ck

(k−1∑
j=1

√
2

j−k
C2

j

)1/2(k−1∑
j=1

√
2

j−k
)1/2

= o(B2
n)

( n∑
k=2

C2
k

)1/2( n∑
k=2

k−1∑
j=1

√
2

j−k
C2

j

)1/2

= o(B3
n)

(n−1∑
j=1

C2
j

n∑
k=j+1

√
2

j−k
)1/2

= o(B4
n).

Similarly we have
∑

1≤j<k≤n

∫ 1

0
Wk(ω)Wj(ω) dω = o(B4

n). These estimates yield

∥∥∥∥ n∑
k=1

(
∆2

k − C2
k

)∥∥∥∥ = o(B2
n) and

∥∥∥∥ n∑
k=1

∆k∆k+1

∥∥∥∥ = o(B2
n),

which imply (2.4). ¤
Next we prove the Corollary. Let us put ρ(i) = 1

/(
ni+1/ni − 1

)
. Let ∆x(i)

denote x(i + 1) − x(i).
We now assume 0 < Λ(i) → ∞, ∆Λ(i) = O(1), ρ(i) = o

(
Λ(i)

)
and ρ(i) ≤ Λ(i),

and hereafter construct λ(i) which satisfies 2λ ∨ ρ(i) ≤ λ(i), λ(i) = o
(
Λ(i)

)
and

∆λ(i) = o(1). The conditions of Theorem 1 are clearly derived from these. Put
λ = 1

2 infi Λ(i). Let us first construct sequences 1 = i0 < i1 < i2 < · · · and {Λ0(i)},
{Λ1(i)}, {Λ2(i)}, . . . such that

ρ(i) = o
(
Λn(i)

)
and Λn(i) → ∞ (i → ∞, n ≥ 0)(2.8)

2λ ∨ ρ(i) ≤ Λn(i) ≤ Λn−1(i) and ∆Λn(i) =
1
2
∆Λn−1(i) (n ≥ 1, i ≥ in)(2.9)

Λn−1(i) ≤
2
3
Λn−2(i) (n ≥ 2, i ≥ in).(2.10)

These sequences are constructed inductively in n. First we put i0 = 1 and Λ0(i) =
Λ(i). It is clear that (2.8) is satisfied for n = 0. After in−1 and {Λn−1(i)} have
been constructed, we define in and {Λn(i)} as follows: We can take j > in−1 such
that

(2.11) ρ(i) ≤ Λn−1(i)/2 and Λn−2(in−1) ≤ Λn−2(i)/3 (i ≥ j).

(The second condition must be omitted in case n = 1.) Let us take in ≥ j such
that Λn−1(in) = mini≥j Λn−1(i) holds, and define Λn(i) by

Λn(i) =
{

Λn−1(i) i < in,(
Λn−1(i) + Λn−1(in)

)/
2 i ≥ in.
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By definition, (2.11) holds if we put j = in, and Λn−1(i) ≥ Λn(in) holds for all
i ≥ in. Therefore Λn(i) ≤ Λn−1(i) holds for i ≥ in, and the rest of (2.9) is clear from
definition and the first inequality of (2.11). (2.10) follows from the last inequality
of (2.11). By definition, (2.8) is clear, and the sequences are well constructed.

If we put λ(i) = Λn(i) for in ≤ i < in+1, it satisfies 2λ ∨ ρ(i) ≤ λ(i), ∆λ(i) =
∆Λn(i) =

(
1
2

)n∆Λ(i) = o(1) and λ(i) = Λn(i) ≤ Λn−1(i) ≤
(

2
3

)n−1Λ(i) =
o
(
Λ(i)

)
. ¤

Finally, we derive Theorem 1 from Corollary. By this we see that Theorem 1
and Corollary are equivalent. We now assume (1.5), (1.6), (1.7) or ρ(i) = O

(
λ(i)

)
,

and (1.8), and derive the conditions of Corollary. Conditions (1.5) and (1.8) imply
ai/Ai → 0. We can therefore take an increasing sequence λ̃(i) of positive numbers
such that λ̃(i)ai/Ai → 0 and ∆λ̃(i) = o(1). If we put λ0(i) = λ(i) + λ̃(i), we
have 0 < λ0(i) → ∞, ∆λ0(i) = o(1), ρ(i) = O

(
λ0(i)

)
and λ0(i)ai/Ai → 0. Next

we construct 1 = i0 < i1 < i2 < · · · and {λ1(i)}, {λ2(i)}, . . . such that λn(i) ≥
λn−1(i),

0 < λn(i) → ∞, ∆λn(i) = o(1), and λn(i)ai/Ai → 0 (i → ∞, n ≥ 0)

|∆λn(i)| ≤ 1, ∆λn(i) = 2∆λn−1(i),
∣∣∣∣λn(i)ai

Ai

∣∣∣∣ ≤ 1, (i ≥ in, n ≥ 1)

λn−1(i) ≥
3
2
λn−2(i) (i ≥ in, n ≥ 2).

It can be achieved first by taking in+1 to satisfy λn(in+1) = mini≥in+1 λn(i),∣∣∣∣λn(i)ai

Ai

∣∣∣∣ ≤ 1
2
, |∆λn(i)| ≤ 1

2
and λn−1(i) ≥ 2λn−1(in), (i ≥ in+1),

and then putting λn+1(i) = 2λn(i) − λn(in+1) if i ≥ in+1 and λn+1(i) = λn(i)
otherwise. If we put Λ(i) = λn(i) for ni ≤ i < ni+1, we can verify the conditions
on Λ(i) in a similar way as before. ¤

3. Construction of Counterexamples

We may assume λ(i) → ∞, since the condition an = o(An) is necessary for (1.1).
There is no loss of generality if we assume c = 1 and λ(i) ≥ 1. Let us denote by
‖ · ‖∞ the sup-norm on [ 0, 1 ]. Redefine {p(k)} by

p(0) = 0 and p(k) = max
{

j

∣∣∣∣ j∑
i=1

1
λ(i)

≤ k.

}
(k ≥ 1),

and define l(k), P (k), µ(k) and ν(k) as before by using new {p(k)}.
If p(k) + 1 < p(k + 1), we have

l(k)
ν(k)

+
1

ν(k + 1)
+

1
ν(k − 1)

≥
p(k+1)+1∑

i=p(k)

1
λ(i)

≥ 1 ≥
p(k+1)∑

i=p(k)+1

1
λ(i)

≥ l(k)
µ(k)

,

which implies lim inf l(k)/ν(k) ≥ 1 and l(k) ≤ µ(k). By using l(k) ≤ µ(k), in the
same way as before, we can prove (2.2), µ(j) ∼ ν(j), and (2.3) in turn. Consequently
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we have µ(j) ∼ ν(j) ∼ l(j) → ∞, and therefore we can take j0 ≥ 1 such that
µ(j)/2 ≤ l(j) ≤ 2ν(j) for j ≥ j0. We note that

∞∑
j=j0

1
l(j)

=
∞∑

j=j0

l(j)
l2(j)

≥
∞∑

j=j0

∑
i∈P (j)

1
4λ2(i)

= ∞.

Let us put

ai =
{

1 if i ≤ p(j0),
Ap(j)/l(j) if i ∈ P (j), j ≥ j0,

and bj = ap(j+1),

and define ∆k as before. We easily have Ap(j0) > 0, ai = O
(
Ai/λ(i)

)
and

(3.1) A2
p(k+1) = A2

p(j0)

k∏
j=j0

(
1 +

1
2l(j)

)
≥

A2
p(j0)

2

k∑
j=j0

1
l(j)

→ ∞.

Let us take an increasing sequence {q(j)} of integers such that

q(j0) = p(j0) + 1 and 2q(j+1)−q(j) ≥ max{ 2l(j + 1), πAp(j)l
2(j)j2 },

and introduce {ni} by

np(j)+l =
{

2p(j)+l if j < j0, 1 ≤ l ≤ l(j),

2q(j)l if j ≥ j0, 1 ≤ l ≤ l(j).

If j ≥ j0 and 1 ≤ l ≤ l(j), (1.7) is verified by noting l(j) ≤ 2ν(j) ≤ 2λ
(
p(j) + l

)
;

np(j)+l+1

np(j)+l
≥ 1 +

1
l(j)

≥ 1 +
1

λ(p(j) + l)
and

np(j)+1

np(j)
=

2q(j)−q(j−1)

l(j)
≥ 2.

By using the Dirichlet kernel, we see that there exits an absolute constant c0 > 0
such that for all integers m and l, P

(∣∣∑l
j=1 cos 2πmjω

∣∣ > l/e
)
≥ c0/l. Applying

this, we have P
(
|∆j | ≥ bj l(j)/e

)
≥ c0/l(j). Note that bj l(j)/e = Ap(j)/e for j ≥ j0.

If we put Jm = { j = j0, . . . ,m | eAp(j) ≥ Ap(m+1) }, we have

m∑
j=1

P

(
|∆j | ≥

Ap(m+1)

e2

)
≥

∑
j∈Jm

P

(
|∆j | ≥

Ap(j)

e

)
≥

∑
j∈Jm

c0

l(j)
.

Since we have Ap(m+1)/Ap(j) ≤ exp
(

1
2

∑m
k=j+1 1/l(k)

)
, by putting J ′

m =
{

j =
j0, . . . ,m

∣∣ ∑m
k=j+1 1/l(k) ≤ 2

}
, we have J ′

m ⊂ Jm and hence

(3.2)
m∑

j=1

P

(
|∆j | ≥

Ap(m+1)

e2

)
≥

∑
j∈J ′

m

c0

l(j)
→ 2c0.

Let ω =
∑∞

r=1 2−rdr(ω) be the dyadic expansion of ω, and put

X̃j(ω) =
∑

i∈P (j)

ai cos 2πni

( q(j+1)∑
r=q(j)+1

2−rdr(ω)
)

and Xj = X̃j − EX̃j .
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Clearly, {Xj} is an independent sequence. Because of E∆j = 0 and the estimate

‖∆j − X̃j‖∞ ≤ bj

∑
i∈P (j)

2πni2−q(j+1) ≤ πbj l
2(j)2q(j)−q(j+1) ≤ 1/j2,

we have
∥∥∆j − Xj

∥∥
∞ ≤ 2/j2. If we put σ2

j = EX2
j and s2

m =
∑m

j=1 σ2
j , we get

|sm − Ap(m+1)| ≤
m∑

j=1

‖∆j − Xj‖∞ ≤ 4 and |σj − E1/2∆2
j | ≤

2
j2

.

Combining these with (3.1) and E∆2
j = A2

p(j)/2l(j), we have

(3.3) sm → ∞ and σm = O
(
1/m2

)
+ E1/2∆2

m = o(Ap(m)) = o(sm).

If the central limit theorem (1.1) holds, then it holds for {Xi}. The Lindeberg
theorem claims that (Cf. Chapter XV of Feller [2]) under (3.3), the central limit
theorem s−1

m

∑m
i=1 Xk

D−→ N0,1 implies the Lindeberg condition s−2
m

∑m
i=1 E

(
X2

i :
|Xi| > εsm

)
→ 0 for all ε > 0. From this we have

lim
m→∞

m∑
i=1

P
(
|Xi| > εsm

)
= 0 for all ε > 0.

On the other hand, by (3.2) we have

0 < c0 ≤
m∑

i=1

P
(
|∆i| > Ap(m+1)/e2

)
≤

m∑
i=1

P
(
|Xi| > sm/e3

)
for large m. These contradict each other. ¤

4. Fourier Character of Lacunary Series

We prove Theorem 3 for γ = 2. The general case can be proved by iterating the
following argument γ times. Let us put Sn(ω) =

∑n
i=1 ai cos(2πniω +φi). We may

assume δ = supi |ai| < ∞, otherwise the conclusion is clear. Let us put

r(0) = 0 and r(m) = max{ i | Ai ≤ δm, } (m ≥ 1).

By δ2m2 ≥ A2
r(m) = A2

r(m)+1 − a2
r(m)/2 > δ2(m2 − 1/2), we have Ar(m) ∼ δm,

A2
r(m) − A2

r(m−1) ∼ 2δ2m and A−1
r(m) − A−1

r(m−1) = O(m−2).
First we assume that {Sn} converges on some set E with |E| > 0 and derive a con-

tradiction. Let us put bi = ai/Ai, Bm = 1
2

∑m
i=1 b2

i and Tm(ω) =
∑m

i=1 bi cos 2πniω.
Since each term of Tm is a product of the term of Sm and non-negative decreasing se-
quence 1/Ai, by using the Abel’s Theorem (Cf. (2.4) of Chapter I in Zygmund [11]),
{Tn} converges on E. Since we have

B2
r(m) =

m∑
k=1

r(k)∑
i=r(k−1)+1

a2
i

2A2
i

∼
m∑

k=1

A2
r(k) − A2

r(k−1)

A2
r(k)

∼
m∑

k=1

2
k
∼ log m2 ∼ log A2

r(m),
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we get B2
k ∼ log A2

k, and hence we can prove

(4.1) bi = o
(
Bi

√
log Bi

/
λ(i)

)
and Bi → ∞.

Let us repeat the above argument, i.e., take a sequence {r′(m)} as Br′(m) ∼ m and
define ci = bi/Bi, Ck = 1

2

∑k
i=1 c2

i and Zm(ω) =
∑m

i=1 ci cos 2πniω. In the same
way we can prove that C2

k ∼ log B2
k and hence

(4.2) ci = o
(
Ci

/
λ(i)

)
and Ci → ∞,

and that Z∞ converges on E and thereby Zm/Cm → 0 on E. By (4.2) we can
apply Theorem 1 and conclude that Zm/Cm converges to N0,1 on E, which is a
contradiction.

Next we assume that the series is a Fourier series or a Fourier-Stieltjes series.
Let us take ρ ∈ (1/2, 1). By the Riesz-Kolmogorov inequality (Cf. (6.8) or (6.27)
of Chapter VII in Zygmund [11]), we have E|Sm|ρ = O(1).

Let us redefine bi as bi = ai/Ar(m+1) if r(m) < i ≤ r(m + 1), and define Bk and
Tm as before by using these bi. In a similar way, we can prove B2

k ∼ log A2
k and

(4.1). For any m, let us take n such that r(n) < m ≤ r(n + 1). By applying the
Abel’s partial summation (the Abel transformation) to Tm = (Sm−Sr(n))/Ar(n+1)+∑n

k=1(Sr(k) − Sr(k−1))/Ar(k), we have

E
∣∣Tm

∣∣ρ = E

∣∣∣∣ 1
Ar(n+1)

Sm +
n∑

k=1

(
1

Ar(k)
− 1

Ar(k+1)

)
Sr(k)

∣∣∣∣ρ
≤ 1

Aρ
r(n+1)

E|Sm|ρ +
n∑

k=1

(
1

Ar(k)
− 1

Ar(k+1)

)ρ

E|Sr(k)|ρ.

Since
(

1
Ar(k)

− 1
Ar(k+1)

)ρ = O(k−2ρ) is summable in k, we have E|Tm|ρ = O(1).
Let us redefine ci as ci = bi/Br′(m+1) if r′(m) < i ≤ r′(m + 1), and define

Ck and Zm as before. Then we have (4.2) and E|Zm|ρ = O(1). Thus Zm/Cm

converges to N0,1 in law, and to 0 in Lρ-sense and hence in probability. This is a
contradiction. ¤
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