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On the central limit theorem and the law of the iterated logarithm

Katusi Fukuyama®* and Yo6hei Ueno

Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan

Abstract: This paper investigates conditions under which the law of the
iterated logarithm holds.
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Introduction.

It has been a long standing problem to study the relation between the central
limit theorem and the law of the iterated logarithm. As to this problem, Petrov
(1971) proved the following result. Let {X,} be a sequence of independent
random variables and put S, = X; +--- + X,,. Let B,, be a sequence of real

numbers satisfying B, — oo and B, 4+1/B, — 1. If
sup{P{Sn < B2z} — (I)(ZB)‘ = O((log Bn)_l_‘s) (1)

for some § > 0 where ®(z) = [*__ e=t*/2 dt/\/2x, then

limsup S, /\/2By, loglog B, =1 a.s. (2)

n—oo
Without assuming the condition B,,y1/B,, — 1, one still has the upper bound

part. Actually, Petrov (2003) dropped that condition and proved

lim sup Sn/\/QBn loglog B,, <1 a.s.

n—oo
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In the above results, 6 > 0 is necessary. Indeed, Egorov (1969) relaxed the

condition to 4 = 0 and constructed an example such that

lim sup Sn/\/QBn log log B,, = 0.

n—aoo

Prior to these results, Petrov (1966, 2002) proved the same conclusions by
assuming extra conditions FX, = 0 and B,, = EX? +--- + EX2. Assuming
further that {X,} is an independent centered gaussian sequence with B,, =
EX?+4---+EX?2 — oo, Kono (1974) proved the generalised law of the iterated

logarithm below: Let ny < ng < --- be a sequence of integers defined by
Bn1 >0 = Bn1—1 and Bnk > eBnk_l > Bnk—l- (3)
Then for any increasing function ¢ satisfying

¢(Bn,) = logk (4)

one has the generalised law of the iterated logarithm:

lim sup Sn/\/2Bng0(Bn) =1 a.s. (5)

n—oo

By (4), one can prove that ¢ satisfies the condition

o (log(n +1)) /¢ (logn) > e (6)

and the asymptotics limsup,_, . ¢(x)/loglogx < 1.

Conversely, for any ¢ satisfying (6) we can construct the sequence {B,}
by B, = ¢ t(logn), for which B,;1/B, > e holds. Hence by taking an
independent centered gaussian sequence with EXZ + ...+ EX2 = B,,, we can

apply the result of Kono to have (5). Therefore we see that any increasing



function ¢ with (6) can appear in the generalised law of the iterated logarithm
(5).

Here, we mention that the condition (6) is mild to include the typi-
cal example ¢(z) = aloglogz (0 < a < 1), p(z) = logloglogz, ¢(z) =
log log log log x, and so on.

The other important point is that the condition sup B;,+1/B,, < oo implies
o(x) ~ loglogx as © — oo, and we have the ordinary law of the iterated
logarithm in this case.

As the extension of above results, we prove the following theorem.

Theorem 1. Let {X, }be a sequence of independent random variables and
put S,, = X1+ -+ X,,. Let 0 = By < By < By < --- satisfy B,, — oo .

Define a sequence {ny} and increasing function ¢ by (3) and (4). If
sup|P{S, < B 2x) — ®(z)| = O(e=(1+0)¥(Bn)) (7)

for some § > 0, then the generalised law of the iterated logarithm (5) holds.

By limsup ¢(z)/loglogz < 1, the condition (7) appears to be weaker
than the condition (1). This asymptotic also explains why one always has the
upper bound estimate.

Since sup By, +1/B, < oo implies ¢(x) ~ loglogx, we have the following

extension of the Petrov’s law of the iterated logarithm.

Corollary. Let {X,}be a sequence of independent random variables and put
S, =X1+--+X,. Let 0 = By < By < By < ... satisfy B, — oo and
sup B,11/B,, < oo. If (1) is satisfied for some § > 0, then the law of the

iterated logarithm (2) holds.



We therefore succeeded in weakening the condition B,+1/B, — 1 of
Petrov’s result. As to the necessity of the condition on ¢ in Theorem 1, we

have the result below:

Theorem 2. Let ¢ be a non-negative increasing function satisfying (6) and
o(2?) = p(x) + O(1) as  — oo. Then there exist a sequence of independent
random variables { X,, }, an increasing sequence of real numbers0 = By < By <
By < ..., and a increasing sequence of integers {ny }, satisfying conditions (3),

(4), and (7) with 6 = 0 such that

lim sup Sn/\/ZBngo(Bn) =00, a.s.

n—oo

Proof of the law of the iterated logarithm

We use the following lemma due to Petrov (1971).
Lemma. Let Y7, Y5, ... be a sequence of independent random variables and
0= By < By < By <--- be a sequence of real numbers.

(1) fP{Yy+---+Y,>—-C}>1/2 (k <n) holds for some C > 0, then we

have

P{11’<I1]?é( (Y1—|—~~—|-Yk)2x}§2P{Y1—i—~-—|—Yn2:1:—C}

for every .

2) FP{Y1+---4Y, < xBi/Q} — ®(z) for any z, then
P{Y,+ --+Y,>-by/B,}>1/2 (k<n)
for large enough b and n.

Put M,, = max{Si,...,5,} and C,, = +/2B,¢(B,). Let p and ¢ be

positive integers. Take {my} as below:
my =n; and B, >eYPB,,, | > B, _1.

4



Then we have mgp+1 > ngy1 and my; < n, for any q. Put oy, = el/pC’mk_l
and O, = el/zpka_l. By applying Lemma and oy — b/ By, —1 > B for large
k, we have

ar =P{ M, _1 > ap} <2P{S,,_1 > Bk}

By this and (7), we have

ar = O(exp[(~1 = 8)p(B, 1)]) +1 = @ (/277 5(Bpn, 1) ).

By gp < k (¢ + 1)p, we have mp — 1 > ngq — 1 > n,. Hence we

<
>

have By,,—1 > By, and ¢(B,,,—1) > ¢(By,) = logq. Thus we have a; =

O(q 179 + Cq="" and > . ar < o0o. By the Borel Cantelli Lemma, we have
P{M,,, 1 < oy for all large k} = 1 and P{S,, < e'/PC,, for all large n} = 1.
By letting p — oo, we have the upperbound estimate.

Put {m} } as below:

mjy=mn; and B, >ePB,, >Bm;€_1.

/
k k—1

We have ng,11 > mg, ;. Put pp = (1 - e_p)Cm;i and p, = (14 e7?)C,y

k-1

Then we have

by, = ]-:){Sm;c - Sm;e_l > Pk — ﬂk} > P{Sm > Pk, Smgc_l < :uk:}

/
k

> P{Sm; > prt —P{Sm; >} =cr—dy

/
k

As before, we have
d dp<oo and Y =Y O((pk)' %) + (pk)' =/ log(pk) = oo.
Thus we have ) by = co. By Borel-Cantelli Lemma, we have

P{Sm; — Sm;ﬂ_1 > pr — pg 1.0.} = 1.

5



On the other hand, we have P{S,,, > —puy for all large k} = 1. Thus

-1
we have P{S,,, > pr — 2u i.o.} = 1. Since pr — 2up > DypCpyy , where
D, = ((1 —e?) —2(1 +e7P)/eP/?), we have P{S,, > D,C, io.} = 1. By

letting p — oo, we have the lower bound estimate.

Construction of the counter example

We modify the method of Egorov (1969).

Let Ay = o~ t(logk), ny = [Ap+1/2], and ¢(z) = log(k+1) on [ Ak, Aky1).
By (6) we have A\pi1/Ar > e, by definition e‘;(“’)/e@(x) — 1, and @(2?) =
o(z) + O(1).

Put o, = 1ifn ¢ {ng} U {nk + 1}, an, = Ve —np+ 1, ap,+1 =
Vg + 1 — Ak,

Let {Y,,} be a sequence of independent random variables satisfying
P(Yn = Oénxn) = P(Yn = —Oznilfn) = Dn;
P(Y, = apV2) = P(Y, = —a,V2) = 1/4 — 22p,, /2,

P(Y, =0)=1/2—2p, + z2p,,

where x, = \/n@(n) logs @(n), pn = (2ne;(”) logtg e‘;(”))_l, logf z = 1V
log z, log’ = = log] (log_, x), and logf’3 r = (log z)(logg x)(logs z).

It is clear that EY, = 0 and EY,? = a2. By |z,| < n? and ¢(x,) =
¢(n) + C, we can verify and EY,2g(Y,,) = O(1), where g(z) = e (@) log] @(x).
Put T,, = Y1 +---+Y, and C,, = ET2. We have |C,, —n| <1 and C,, = \s.

We use Theorem 5.6 of Petrov (1995) below:

Theorem. Let g be a non-negative even function such that g(x) and x/g(x)
are both non-decreasing for x > 0. Let {Y,} be a sequence of independent

random variables such that EY,, = 0 and EY?g(Y,) < oo for all n. Put

6



T,=Y1+---+Y, and C,, = ET?. Then there exists an absolute constant A
such that
A n

x ngd (Ln

=1

Clearly ¢ is non-decreasing, and so is z/g(x) by

Ae1/9(Akr1) = Ae/9(Ak) = e/ (k + 1) log(k + 1) — Ax/klog k > 0.

Thus we can apply the above theorem and have
sup|P{T,, < C}/%x} — @(x)|= O (e~ #"") Nlog p(CL/2)) = o). (8)

Let us define a sequence {X;} of random variables by X; = Y; if n;, < i <

en;/2, X; = 0if en;/2 < i < njq1, and X, = > Y. Put

enj/2<k<n;ii

S, =X1+---4+X,, and Bn:ES?L. We have B, <--~<B[enj/2] = ... =

B, -1 = Clen, 21 = [en;/2] < e);, and B, ., = \j;1 > e)j = eB,;. Hence

{B,} and {n;} together with ¢ satisfy conditions (3)and (4). It is clear from

(8) that condition (7) is satisfied with § = 0. Moreover we have

> Y we iy =
Pk = e elog(i+1) logii_g elog(j+1) a

J=1n;<k<en;/2 Jj=1

by D, <h<en,j2 1/E = (en;/2 —nj)/(en;/2) = (e — 2)/e. Thus by Borel-
Cantelli Lemma, we see that X; > \/ngp(Bj) logg »(B;) i.0., and hence we

have the conclusion of Theorem 2.
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