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Abstract: This paper investigates conditions under which the law of the

iterated logarithm holds.
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Introduction.

It has been a long standing problem to study the relation between the central

limit theorem and the law of the iterated logarithm. As to this problem, Petrov

(1971) proved the following result. Let {Xn} be a sequence of independent

random variables and put Sn = X1 + · · · + Xn. Let Bn be a sequence of real

numbers satisfying Bn → ∞ and Bn+1/Bn → 1. If

sup
x

∣∣P{Sn < B1/2
n x} − Φ(x)

∣∣ = O
(
(log Bn)−1−δ

)
(1)

for some δ > 0 where Φ(x) =
∫ x

−∞ e−t2/2 dt/
√

2π, then

lim sup
n→∞

Sn

/√
2Bn log log Bn = 1 a.s. (2)

Without assuming the condition Bn+1/Bn → 1 , one still has the upper bound

part. Actually, Petrov (2003) dropped that condition and proved

lim sup
n→∞

Sn

/√
2Bn log log Bn ≤ 1 a.s.
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In the above results, δ > 0 is necessary. Indeed, Egorov (1969) relaxed the

condition to δ = 0 and constructed an example such that

lim sup
n→∞

Sn

/√
2Bn log log Bn = ∞.

Prior to these results, Petrov (1966, 2002) proved the same conclusions by

assuming extra conditions EXn = 0 and Bn = EX2
1 + · · · + EX2

n. Assuming

further that {Xn} is an independent centered gaussian sequence with Bn =

EX2
1 +· · ·+EX2

n → ∞, Kôno (1974) proved the generalised law of the iterated

logarithm below: Let n1 < n2 < · · · be a sequence of integers defined by

Bn1 > 0 = Bn1−1 and Bnk
≥ eBnk−1 > Bnk−1. (3)

Then for any increasing function ϕ satisfying

ϕ(Bnk
) = log k (4)

one has the generalised law of the iterated logarithm:

lim sup
n→∞

Sn

/√
2Bnϕ(Bn) = 1 a.s. (5)

By (4), one can prove that ϕ satisfies the condition

ϕ−1(log(n + 1))/ϕ−1(log n) ≥ e (6)

and the asymptotics lim supx→∞ ϕ(x)/ log log x ≤ 1.

Conversely, for any ϕ satisfying (6) we can construct the sequence {Bn}

by Bn = ϕ−1(log n), for which Bn+1/Bn ≥ e holds. Hence by taking an

independent centered gaussian sequence with EX2
1 + · · ·+ EX2

n = Bn, we can

apply the result of Kôno to have (5). Therefore we see that any increasing
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function ϕ with (6) can appear in the generalised law of the iterated logarithm

(5).

Here, we mention that the condition (6) is mild to include the typi-

cal example ϕ(x) = α log log x (0 < α ≤ 1), ϕ(x) = log log log x, ϕ(x) =

log log log log x, and so on.

The other important point is that the condition sup Bn+1/Bn < ∞ implies

ϕ(x) ∼ log log x as x → ∞, and we have the ordinary law of the iterated

logarithm in this case.

As the extension of above results, we prove the following theorem.

Theorem 1. Let {Xn}be a sequence of independent random variables and

put Sn = X1 + · · · + Xn. Let 0 = B0 ≤ B1 ≤ B2 ≤ · · · satisfy Bn → ∞ .

Define a sequence {nk} and increasing function ϕ by (3) and (4). If

sup
x

∣∣P{Sn < B1/2
n x} − Φ(x)

∣∣ = O(e−(1+δ)ϕ(Bn)) (7)

for some δ > 0, then the generalised law of the iterated logarithm (5) holds.

By lim sup ϕ(x)/ log log x ≤ 1, the condition (7) appears to be weaker

than the condition (1). This asymptotic also explains why one always has the

upper bound estimate.

Since supBn+1/Bn < ∞ implies ϕ(x) ∼ log log x, we have the following

extension of the Petrov’s law of the iterated logarithm.

Corollary. Let {Xn}be a sequence of independent random variables and put

Sn = X1 + · · · + Xn. Let 0 = B0 ≤ B1 ≤ B2 ≤ · · · satisfy Bn → ∞ and

supBn+1/Bn < ∞. If (1) is satisfied for some δ > 0, then the law of the

iterated logarithm (2) holds.
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We therefore succeeded in weakening the condition Bn+1/Bn → 1 of

Petrov’s result. As to the necessity of the condition on δ in Theorem 1, we

have the result below:

Theorem 2. Let ϕ be a non-negative increasing function satisfying (6) and

ϕ(x2) = ϕ(x) + O(1) as x → ∞. Then there exist a sequence of independent

random variables {Xn}, an increasing sequence of real numbers 0 = B0 ≤ B1 ≤

B2 ≤ . . ., and a increasing sequence of integers {nk}, satisfying conditions (3),

(4), and (7) with δ = 0 such that

lim sup
n→∞

Sn

/√
2Bnϕ(Bn) = ∞, a.s.

Proof of the law of the iterated logarithm

We use the following lemma due to Petrov (1971).

Lemma. Let Y1, Y2, . . . be a sequence of independent random variables and

0 = B0 ≤ B1 ≤ B2 ≤ · · · be a sequence of real numbers.

(1) If P{Yk + · · · + Yn ≥ −C} ≥ 1/2 (k < n) holds for some C ≥ 0, then we

have

P
{

max
1≤k≤n

(Y1 + · · · + Yk) ≥ x
}
≤ 2P{Y1 + · · · + Yn ≥ x − C}

for every x.

(2) If P
{
Y1 + · · · + Yn < xB

1/2
n

}
→ Φ(x) for any x, then

P
{
Yk + · · · + Yn ≥ −b

√
Bn

}
≥ 1/2 (k < n)

for large enough b and n.

Put Mn = max{S1, . . . , Sn} and Cn =
√

2Bnϕ(Bn). Let p and q be

positive integers. Take {mk} as below:

m1 = n1 and Bmk
≥ e1/pBmk−1 > Bmk−1.
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Then we have mqp+1 ≥ nq+1 and mq ≤ nq for any q. Put αk = e1/pCmk−1

and βk = e1/2pCmk−1. By applying Lemma and αk −b
√

Bmk−1 ≥ βk for large

k, we have

ak = P
{
Mmk−1 ≥ αk

}
≤ 2P

{
Smk−1 ≥ βk

}
.

By this and (7), we have

ak = O
(
exp[(−1 − δ)ϕ(Bmk−1)]

)
+ 1 − Φ

(√
2e1/pϕ(Bmk−1)

)
.

By qp < k ≤ (q + 1)p, we have mk − 1 ≥ nq+1 − 1 ≥ nq. Hence we

have Bmk−1 ≥ Bnq
and ϕ(Bmk−1) ≥ ϕ(Bnq

) = log q. Thus we have ak =

O(q−1−δ) + Cq−e1/p

and
∑

k ak < ∞. By the Borel Cantelli Lemma, we have

P{Mmk−1 < αk for all large k} = 1 and P{Sn < e1/pCn for all large n} = 1.

By letting p → ∞, we have the upperbound estimate.

Put {m′
k} as below:

m′
1 = n1 and Bm′

k
≥ epBm′

k−1
> Bm′

k
−1.

We have nqp+1 ≥ m′
q+1. Put ρk = (1 − e−p)Cm′

k
and µk = (1 + e−p)Cm′

k−1
.

Then we have

bk = P{Sm′
k
− Sm′

k−1
≥ ρk − µk} ≥ P{Sm′

k
≥ ρk, Sm′

k−1
< µk}

≥ P{Sm′
k
≥ ρk} − P{Sm′

k−1
≥ µk} = ck − dk

As before, we have

∑
dk < ∞ and

∑
ck =

∑
O((pk)−1−δ) + (pk)1−ε/ log(pk) = ∞.

Thus we have
∑

bk = ∞. By Borel-Cantelli Lemma, we have

P{Sm′
k
− Sm′

k−1
≥ ρk − µk i.o.} = 1.
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On the other hand, we have P{Sm′
k−1

≥ −µk for all large k} = 1. Thus

we have P{Sm′
k

≥ ρk − 2µk i.o.} = 1. Since ρk − 2µk ≥ DpCm′
k
, where

Dp =
(
(1 − e−p) − 2(1 + e−p)/ep/2

)
, we have P{Sn ≥ DpCn i.o.} = 1. By

letting p → ∞, we have the lower bound estimate.

Construction of the counter example

We modify the method of Egorov (1969).

Let λk = ϕ−1(log k), nk = [ λk+1/2 ], and ϕ̃(x) = log(k+1) on [ λk, λk+1).

By (6) we have λk+1/λk ≥ e, by definition eϕ̃(x)/eϕ(x) → 1, and ϕ̃(x2) =

ϕ̃(x) + O(1).

Put αn = 1 if n /∈ {nk} ∪ {nk + 1}, αnk
=

√
λk − nk + 1, αnk+1 =

√
nk + 1 − λk,

Let {Yn} be a sequence of independent random variables satisfying

P (Yn = αnxn) = P (Yn = −αnxn) = pn,

P (Yn = αn

√
2) = P (Yn = −αn

√
2) = 1/4 − x2

npn/2,

P (Yn = 0) = 1/2 − 2pn + x2
npn,

where xn =
√

nϕ̃(n) log+
2 ϕ̃(n), pn = (2neϕ̃(n) log+

1,3 eϕ̃(n))−1, log+
1 x = 1 ∨

log x, log+
n x = log+

1 (log+
n−1 x), and log+

1,3 x = (log+
1 x)(log+

2 x)(log+
3 x).

It is clear that EYn = 0 and EY 2
n = α2

n. By |xn| ≤ n2 and ϕ̃(xn) =

ϕ(n) + C, we can verify and EY 2
n g(Yn) = O(1), where g(x) = eϕ̃(x) log+

1 ϕ̃(x).

Put Tn = Y1 + · · · + Yn and Cn = ET 2
n . We have |Cn − n| ≤ 1 and Cnk

= λk.

We use Theorem 5.6 of Petrov (1995) below:

Theorem. Let g be a non-negative even function such that g(x) and x/g(x)

are both non-decreasing for x > 0. Let {Yn} be a sequence of independent

random variables such that EYn = 0 and EY 2
n g(Yn) < ∞ for all n. Put
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Tn = Y1 + · · · + Yn and Cn = ET 2
n . Then there exists an absolute constant A

such that

sup
x

∣∣P{Tn < C1/2
n x} − Φ(x)

∣∣≤ A

Cng(C1/2
n )

n∑
j=1

EY 2
n g(Yn).

Clearly g is non-decreasing, and so is x/g(x) by

λk+1/g(λk+1) − λk/g(λk) ≥ eλk/(k + 1) log(k + 1) − λk/k log k > 0.

Thus we can apply the above theorem and have

sup
x

∣∣P{Tn < C1/2
n x} − Φ(x)

∣∣= O
(
e−ϕ̃(C1/2

n )/log+
1 ϕ(C1/2

n )
)

= o(e−ϕ(Cn)). (8)

Let us define a sequence {Xi} of random variables by Xi = Yi if nj < i ≤

enj/2, Xi = 0 if enj/2 < i < nj+1, and Xnj+1 =
∑

enj/2<k≤nj+1
Yk. Put

Sn = X1 + · · · + Xn, and Bn = ES2
n. We have Bni < · · · < B[enj/2] = · · · =

Bnj+1−1 = C[enj/2] = [enj/2] < eλj , and Bnj+1 = λj+1 ≥ eλj = eBnj . Hence

{Bn} and {nj} together with ϕ satisfy conditions (3)and (4). It is clear from

(8) that condition (7) is satisfied with δ = 0. Moreover we have

∞∑
j=1

∑
nj<k≤enj/2

pk ≥ e − 2
e

∞∑
j=1

1
elog(j+1) log+

1,3 elog(j+1)
= ∞

by
∑

nj<k≤enj/2 1/k ≥ (enj/2 − nj)/(enj/2) = (e − 2)/e. Thus by Borel-

Cantelli Lemma, we see that Xj ≥
√

Bjϕ(Bj) log+
2 ϕ(Bj) i.o., and hence we

have the conclusion of Theorem 2.
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