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THE CONCRETE UPPER BOUND IN
THE UNIFORM LAW OF THE ITERATED LOGARITHM

K. FUKUYAMA (Kobe)
Abstract. Kaufman and Philipp [6] and Dhompongsa [3]
proved a uniform law of the iterated logarithm for > f(nxt). In this

paper, we give the concrete upper bound for these results. Our bound
is best possible in some cases.

1. Introduction

Let L3 be the class of measurable functions f satisfying

flx+1) = f(x), /Of(:c)2d:v<oo, and /Of(x)d:v:Q

In this paper, we give the concrete upper bound for

K
. t
U[X;{ni}](t) = lim sup 2p=1 f(t) ,
K—oo rex \/KloglogK

where X is a subclass of LZ and {n} is an increasing sequence of integers.
We give here a simple survey of studies of this type. When f € Lipan L
(a > 0) where Lipa is the class of functions satisfying Lipschitz condition

of order «, Takahashi [7, 8] proved W[{f};{ni}] = V2| fl|2 a.e. when {n;}
satisfies the large gap condition:

Ni41/Nk — 00 (k — 00),

and W[{f};{nr}] < C < o a.e. when {n;} satisfies Hadamard’s gap condi-
tion:

ng1/ng > 1+p  (p>0).
For A, ={f € LZ | |f(t+h)— f(t)] <|h|*} C Lipa (a > 1/2), the estimate
UlAy; {nr}] < C < oo a.e. was proved by Kaufman and Philipp [6] when
{ny} satisfies Hadamard’s gap condition, and by Dhompongsa [3] when {n}
satisfies Takahashi’s gap condition:

nk+1/nk21—|—c/kﬁ (C>0,5<1/2).
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Assuming the same gap condition and f € Lipa (a > 1/2), Takahashi [11]
gave the concrete upper bound V[{f};{ni}] < || f|la a.e. where ||f||4 denotes
S +/aZ + b2 for functions f(t) ~ >.(a,cos2wvt + b, sin2nvt) € LZ. The
author [4] proved that this bound is best possible when {a,,b,} is ‘parallel’ in
the following sense:

There exists (a,b) such that (a,,b,) =+/a2+ b2 (a,b) forall veN.

In view of these results, it is very natural to expect that we can give the con-
crete bound for W[X; {ny}] under Takahashi’s gap condition. In this context,
we prove the following. Here we emphasize that the bound is independent of ¢
and 3 in Takahashi’s gap condition. Let ¢ = {1)(v)} be a sequence of positive
numbers satisfying > 1/9(v) < oo, and denote

Xy.m = {D (ay cos2mvt + by, sin2mvt) € LE | (a2 + b2)yp(v) < M}

Theorem. Let X C X s for some M > 0 and ) = {¢(v)} with > 1/¢(v) <
oo. Then, for any sequence {ny} of positive integers satisfying Takahashi’s gap
condition, we have the uniform law of the iterated logarithm below:

VX {ne}] < sup [[flla  ae
fex

Let us suppose that for all > (a, cos2mvt + b, sin2nvt) € X, there exists
a parallel {a’, b} such that a? + b2 = (a!,)? + (b),)? and > (a’, cos2nvt +
b!,sin 2wvt) € X. Then the above upper bound is best possible in the following
sense:

(1) For all € > 0, there exists a sequence {ny} of positive integers satisfying
Hadamard’s gap condition such that W[X;{ny}] > sup;cx [[flla — ¢ a.e.

(2) For all 0 < pi — 0, there exists a sequence {ny} of positive integers such
that nyy1/ng > 1+ p, and W[X; {ny}] = supscx || fla ae.

In Section 3, we discuss applications of our theorem to some examples.
We will see that for « > 1/2 we have A, C Xy p for some M > 0 and
Y = {(v)} with > 1/ (r) < oo, and apply our Theorem. However, we can
not prove the best possibility of this bound. On the other hand if we measure
the modulus of continuity by L?-norm, we can verify the conditions in our
theorem for AL" = {f € L2 | |f(- +h)— f(-)|2 < |h|*}, and can prove the
best possibility.

Remark. When we assume a stronger gap condition, say, the large gap con-
dition, the situation changes drastically. Actually, we can prove

VX {n,}] = V2sup || fl]l2 a.e.
fex

for X C Xy v We easily have
U[Xy s {nk}] = \/QM/ mym@b(l/) a.e.




2. Proof of the Theorem

Set X = {{au b} | X, (ay cos2muvt + by sin2mvt) € X}, er = (1,0), e
(0,1),

S(aab)|
S0 4y = mnpt + bsin 2mnyt d Typ = |
(1) k;{(a,cos TN sin27ngt) an (a,b) = IS(I;I;I Kloglos &

Lemma 4 of Berkes [2] claims that

[SK ()]
te|0,1 >
{ [ ) ‘ KS;EP v Kloglog K ¢

where | A| denotes the Lebesgue measure of A, and K, ¢, are positive absolute
constants. In [2], it is claimed only for p = 2, but the proof is valid for all
p > 1. From this, we can derive

1
Sc—p (c>cp, r=1,2, p>1),

1
Che, = / (Ter(t))th <o (r=1,2, ¢>1).
0

Lemma 1. For any N, we have

N S(a,, b, )
Un(t)= lim  sup

N
T /2 12
K—o00 Z \/KloglogK = oup AZ a by

{an by, }EX {ap,bpreX v=1

Proof: Let A be a countable dense set in R? containing e; and es. For
(a,b) € R?, Takahashi’s law of the iterated logarithm [9, 10] claims that

— SN @)
I — Va2 12 ae. L
Koo /K Toglog K ToToae

Thus we can see that there exists Fy C [0, 1] such that |Ey| =1 and

S )]

lim

K—oo /K loglog K

Let us take € > 0 arbitrary. Since Xy = {(a1,b1,...,an,bn) | {a,,b,} € )/f}

=+Va?2+ b2 forallte Ey, (a,b) €A, and v € N.

is bounded, we can take finitely many points (ag”\), bg’\), e g\’,\), b(/\ ) € AN
(A=1, ..., A) such that the union of e-neighborhoods of these points covers
v : (av,by) _ (a(A) b(A)) (M) qer (M) qez

Xn. By using Sy =S5 + (a, —al )S% + (b, — b)) S32, we have

2 ) .
N S(avabu)( v 7b1/ ) ‘S 1| + |S ‘

o
<
{ S;u;e)?g:l\/KloglogK maxz<\/KloglogK+ \/KloglogK>( £)-
au,by v




Hence for t € Ey, we have

N
SI}{%{(Z\/ (M2 M2 yaNe < sup AZ\/CL,%-FZ)?/-F?)NE.

{au,b,}eX v=1

Since € > 0 is arbitrary, we have the conclusion. m

Lemma 2. As N — oo, we have

(auabu)
t
Vn(t) = sup  sup E Sk (1) — 0 ae. t.
KENf, p 1eX oSN v K loglog K

Proof: Clearly |Vy(t)| is bounded from above by

Wy (t) = sup R Z (Jay|Te, (V1) + |by|Tey (V1))
{apbuteX v>N

By noting

Z|CLV|T(31 (vt) (Za Y(v > <ZT2 (vt)/ >1/2

and analogous inequality for T,,, we have the estimate

visu T (S5 ] -

r=1,2

r=1,2v>N

Therefore, by fo T2 vt)dt = fo T2 )dt = Ca.c,., we have

/WN )dt <2M(Ca.e, + Coe,) Z —0 (N — ).

v>N

zP()

Since Wy is decreasing in N, by monotone convergence theorem, we have

1
J, m WA de = J&Eﬂw/ Wal)
and hence Wy — 0 ae. =

Proof of the Theorem: The Fourier series of any f € X converges abso-
lutely, and hence we can change the order of summation as

K N
STty =D S ) + Y St (vt
k=1 v=1

v>N



and therefore we have

WX {np}(t) < Un(t)+Vy(t) < sup Z Va2 +b2+Vy(t) — sup (Kl

{a,,b M}EX v=1

as N — oo for almost every t. Thus the upper bound estimate is verified.

We here prove the best possibility. Let P be a subclass of L3 consisting of
all functions with parallel Fourier coefficients. By the assumption of Theorem,
we have

sup || flla= sup |[[flla.
fex fexXnpP

Thus the assertion of our Theorem derived from the following results [4, 5]:
(1) Suppose that f € L3N P and || f||a < oo. Then, for all € > 0, there
exists {ny} satisfying Hadamard’s gap condition such that U[{f};{nx}] >

| flla — € a.e.
(2) For all 0 < pr — 0, there exists a sequence {ny} of positive integers

such that ng1/ng > 1+ px and C[{f};{nx}] = [|flla ae. forall f € L3N P
with || f]la < o0.

3. Estimate of the upper bound
In the book of Zygmund [(3.2) of Ch. 6; 12], we can find

1FC+h) = FOOIE =10 +R/2) = f(- = 1/2)|I5 =2 Za +by) sin® 7vh.

We see that AL® is characterized only by {\/a2 + b2} and it satisfies the
conditions for best possibility in our theorem.

Let us suppose that f € ACLM2 and let v € (0,2a — 1). By putting h =
1/2"*1 in the above formula, we have

2" —1

S (a2+12) <2 Za FB2)sin® oL < £+ h) — F(-)[F < 272,

p=2n—1

Therefore, we can verify

o0 2" —1

2 VTR 3 T D () < ) = T

V:2n—1 n:]_

and hence AL® € Xy o (a0 > 1/2) for ¢ = {¥?*7} and M = 1/222(27 —1).
Clearly, we have > 1/v2%77 < co. Therefore we have the best possible upper
bound estimate for Ag.



4. Proof of the Remark

Lemma 3. If {n} has the large gap, then we have for any N,

- g: S(a/y,b )( t) \/_ g: ) ) 1/2
lim  sup <V2 sup ( (aZ + b,,)) a.e. t.
Koo baeX vzl V Kloglog K {au,b.1EX \um1

Proof: Take € > 0 arbitrary, and take (a?‘) b?‘), e g\?‘), b )) as in the

proof of Lemma 1. Since the large gap condition is satisfied, we can apply
U[{fY:{nx}] = V2||f|2 a.e. (Takahashi [8]) for the trigonometric polynomial

f@t) = Zi\f:l(aﬁ” cos 2rvt + b3 sin 27vt) and have

a® p)
NS( b)(t) N

1/2
(A2 (A2
Kh_I)nooZ JRToslon K \/§<Z(a,/ )=+ (b)) )> a.e. t.

v=1

By applying this, we have the conclusion as the proof of Lemma 1. m

By Lemma 2 and Lemma 3, we can prove U[X; {nx}] < v2 supscx || fll2

a.e. in the same way as before. Since W[{f}; {nz}] = v/2|/f||2 a.e holds for all
f € X, the reversed inequality is trivial.
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