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THE CONCRETE UPPER BOUND IN
THE UNIFORM LAW OF THE ITERATED LOGARITHM

K. FUKUYAMA (Kobe)

Abstract. Kaufman and Philipp [6] and Dhompongsa [3]
proved a uniform law of the iterated logarithm for

∑
f(nkt). In this

paper, we give the concrete upper bound for these results. Our bound
is best possible in some cases.

1. Introduction
Let L2

0 be the class of measurable functions f satisfying

f(x + 1) = f(x),
∫ 1

0

f(x)2 dx < ∞, and
∫ 1

0

f(x) dx = 0.

In this paper, we give the concrete upper bound for

Ψ[X; {nk}](t) = lim
K→∞

sup
f∈X

∑K
k=1 f(nkt)√
K log log K

,

where X is a subclass of L2
0 and {nk} is an increasing sequence of integers.

We give here a simple survey of studies of this type. When f ∈ Lipα∩L2
0

(α > 0) where Lip α is the class of functions satisfying Lipschitz condition
of order α, Takahashi [7, 8] proved Ψ[{f}; {nk}] =

√
2 ‖f‖2 a.e. when {nk}

satisfies the large gap condition:

nk+1/nk → ∞ (k → ∞),

and Ψ[{f}; {nk}] ≤ C < ∞ a.e. when {nk} satisfies Hadamard’s gap condi-
tion:

nk+1/nk ≥ 1 + ρ (ρ > 0).

For Λα = {f ∈ L2
0 | |f(t + h) − f(t)| ≤ |h|α} ⊂ Lipα (α > 1/2), the estimate

Ψ[Λα; {nk}] ≤ C < ∞ a.e. was proved by Kaufman and Philipp [6] when
{nk} satisfies Hadamard’s gap condition, and by Dhompongsa [3] when {nk}
satisfies Takahashi’s gap condition:

nk+1/nk ≥ 1 + c/kβ (c > 0, β < 1/2).

Keywords: Gap series, law of the iterated logarithm. Subject class:
60F15, 42A55
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Assuming the same gap condition and f ∈ Lipα (α > 1/2), Takahashi [11]
gave the concrete upper bound Ψ[{f}; {nk}] ≤ ‖f‖A a.e. where ‖f‖A denotes∑ √

a2
ν + b2

ν for functions f(t) ∼
∑

(aν cos 2πνt + bν sin 2πνt) ∈ L2
0. The

author [4] proved that this bound is best possible when {aν , bν} is ‘parallel ’ in
the following sense:

There exists (a, b) such that (aν , bν) =
√

a2
ν + b2

ν (a, b) for all ν ∈ N.

In view of these results, it is very natural to expect that we can give the con-
crete bound for Ψ[X; {nk}] under Takahashi’s gap condition. In this context,
we prove the following. Here we emphasize that the bound is independent of c
and β in Takahashi’s gap condition. Let ψ = {ψ(ν)} be a sequence of positive
numbers satisfying

∑
1/ψ(ν) < ∞, and denote

Xψ,M =
{∑

(aν cos 2πνt + bν sin 2πνt) ∈ L2
0

∣∣ ∑
(a2

ν + b2
ν)ψ(ν) ≤ M

}
.

Theorem. Let X ⊂ Xψ,M for some M > 0 and ψ = {ψ(ν)} with
∑

1/ψ(ν) <
∞. Then, for any sequence {nk} of positive integers satisfying Takahashi’s gap
condition, we have the uniform law of the iterated logarithm below:

Ψ[X; {nk}] ≤ sup
f∈X

‖f‖A a.e.

Let us suppose that for all
∑

(aν cos 2πνt + bν sin 2πνt) ∈ X, there exists
a parallel {a′

ν , b′ν} such that a2
ν + b2

ν = (a′
ν)2 + (b′ν)2 and

∑
(a′

ν cos 2πνt +
b′ν sin 2πνt) ∈ X. Then the above upper bound is best possible in the following
sense:
(1) For all ε > 0, there exists a sequence {nk} of positive integers satisfying
Hadamard’s gap condition such that Ψ[X; {nk}] > supf∈X ‖f‖A − ε a.e.
(2) For all 0 < ρk → 0, there exists a sequence {nk} of positive integers such
that nk+1/nk ≥ 1 + ρk and Ψ[X; {nk}] = supf∈X ‖f‖A a.e.

In Section 3, we discuss applications of our theorem to some examples.
We will see that for α > 1/2 we have Λα ⊂ Xψ,M for some M > 0 and
ψ = {ψ(ν)} with

∑
1/ψ(ν) < ∞, and apply our Theorem. However, we can

not prove the best possibility of this bound. On the other hand if we measure
the modulus of continuity by L2-norm, we can verify the conditions in our
theorem for ΛL2

α = {f ∈ L2
0 | ‖f( · + h) − f( · )‖2 ≤ |h|α}, and can prove the

best possibility.

Remark. When we assume a stronger gap condition, say, the large gap con-
dition, the situation changes drastically. Actually, we can prove

Ψ[X; {nk}] =
√

2 sup
f∈X

‖f‖2 a.e.

for X ⊂ Xψ,M . We easily have

Ψ[Xψ,M ; {nk}] =
√

2M/ min
ν

ψ(ν) a.e.
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2. Proof of the Theorem
Set X̂ =

{
{aµ, bµ}

∣∣ ∑
ν(aν cos 2πνt + bν sin 2πνt) ∈ X

}
, e1 = (1, 0), e2 =

(0, 1),

S
(a,b)
K (t) =

∑
k≤K

(a cos 2πnkt + b sin 2πnkt) and T(a,b) = sup
K∈N

|S(a,b)
K |√

K log log K
.

Lemma 4 of Berkes [2] claims that∣∣∣∣∣
{

t ∈ [ 0, 1 ]
∣∣∣∣ sup

K≥Kp

|Ser

K (t)|√
K log log K

> c

}∣∣∣∣∣ ≤ 1
cp

(c ≥ cp, r = 1, 2, p > 1),

where |A| denotes the Lebesgue measure of A, and Kp, cp are positive absolute
constants. In [2], it is claimed only for p = 2, but the proof is valid for all
p > 1. From this, we can derive

Cq,er =
∫ 1

0

(
Ter (t)

)q
dt < ∞ (r = 1, 2, q > 1).

Lemma 1. For any N , we have

UN (t) = lim
K→∞

sup
{aµ,bµ}∈X̂

N∑
ν=1

S
(aν ,bν)
K (νt)√
K log log K

≤ sup
{aµ,bµ}∈X̂

N∑
ν=1

√
a2

ν + b2
ν a.e. t.

Proof: Let ∆ be a countable dense set in R2 containing e1 and e2. For
(a, b) ∈ R2, Takahashi’s law of the iterated logarithm [9, 10] claims that

lim
K→∞

|S(a,b)
K (t)|√

K log log K
=

√
a2 + b2 a.e. t.

Thus we can see that there exists E0 ⊂ [ 0, 1 ] such that |E0| = 1 and

lim
K→∞

|S(a,b)
K (νt)|√

K log log K
=

√
a2 + b2 for all t ∈ E0, (a, b) ∈ ∆, and ν ∈ N.

Let us take ε > 0 arbitrary. Since X̂N = {(a1, b1, . . . , aN , bN ) | {aµ, bµ} ∈ X̂}
is bounded, we can take finitely many points (a(λ)

1 , b
(λ)
1 , . . . , a

(λ)
N , b

(λ)
N ) ∈ ∆N

(λ = 1, . . . , Λ) such that the union of ε-neighborhoods of these points covers

X̂N . By using S
(aν ,bν)
K = S

(a(λ)
ν ,b(λ)

ν )
K + (aν − a

(λ)
ν )Se1

K + (bν − b
(λ)
ν )Se2

K , we have

sup
{aµ,bµ}∈X̂

N∑
ν=1

S
(aν ,bν)
K (νt)√
K log log K

≤ Λ
max
λ=1

N∑
ν=1

(
S

(a(λ)
ν ,b(λ)

ν )
K√

K log log K
+ ε

|Se1
K | + |Se2

K |√
K log log K

)
(νt).
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Hence for t ∈ E0, we have

UN (t) ≤ Λ
max
λ=1

N∑
ν=1

√
(a(λ)

ν )2 + (b(λ)
ν )2 + 2Nε ≤ sup

{aµ,bµ}∈X̂

N∑
ν=1

√
a2

ν + b2
ν + 3Nε.

Since ε > 0 is arbitrary, we have the conclusion.

Lemma 2. As N → ∞, we have

VN (t) = sup
K∈N

sup
{aµ,bµ}∈X̂

∑
ν>N

S
(aν ,bν)
K (νt)√
K log log K

→ 0 a.e. t.

Proof: Clearly |VN (t)| is bounded from above by

WN (t) = sup
{aµ,bµ}∈X̂

∑
ν>N

(
|aν |Te1(νt) + |bν |Te2(νt)

)
.

By noting ∑
|aν |Te1(νt) ≤

(∑
a2

νψ(ν)
)1/2(∑

T 2
e1

(νt)/ψ(ν)
)1/2

and analogous inequality for Te2 , we have the estimate

W 2
N ≤ M

[ ∑
r=1,2

( ∑
ν>N

T 2
er

(νt)
ψ(ν)

)1/2]2

≤ 2M
∑

r=1,2

∑
ν>N

T 2
er

(νt)
ψ(ν)

.

Therefore, by
∫ 1

0
T 2

er
(νt) dt =

∫ 1

0
T 2

er
(t) dt = C2,er , we have∫ 1

0

W 2
N (t) dt ≤ 2M(C2,e1 + C2,e2)

∑
ν>N

1
ψ(ν)

→ 0 (N → ∞).

Since WN is decreasing in N , by monotone convergence theorem, we have∫ 1

0

lim
N→∞

W 2
N (t) dt = lim

N→∞

∫ 1

0

W 2
N (t) dt = 0

and hence WN → 0 a.e.

Proof of the Theorem: The Fourier series of any f ∈ X converges abso-
lutely, and hence we can change the order of summation as

K∑
k=1

f(nkt) =
N∑

ν=1

S
(aν ,bν)
K (νt) +

∑
ν>N

S
(aν ,bν)
K (νt),
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and therefore we have

Ψ[X; {nk}](t) ≤ UN (t)+VN (t) ≤ sup
{aµ,bµ}∈X̂

N∑
ν=1

√
a2

ν + b2
ν +VN (t) → sup

f∈X
‖f‖A

as N → ∞ for almost every t. Thus the upper bound estimate is verified.
We here prove the best possibility. Let P be a subclass of L2

0 consisting of
all functions with parallel Fourier coefficients. By the assumption of Theorem,
we have

sup
f∈X

‖f‖A = sup
f∈X∩P

‖f‖A.

Thus the assertion of our Theorem derived from the following results [4, 5]:
(1) Suppose that f ∈ L2

0 ∩ P and ‖f‖A < ∞. Then, for all ε > 0, there
exists {nk} satisfying Hadamard’s gap condition such that Ψ[{f}; {nk}] ≥
‖f‖A − ε a.e.

(2) For all 0 < ρk → 0, there exists a sequence {nk} of positive integers
such that nk+1/nk ≥ 1 + ρk and Ψ[{f}; {nk}] = ‖f‖A a.e. for all f ∈ L2

0 ∩ P
with ‖f‖A < ∞.

3. Estimate of the upper bound
In the book of Zygmund [(3.2) of Ch. 6; 12], we can find

‖f( · + h) − f( · )‖2
2 = ‖f( · + h/2) − f( · − h/2)‖2

2 = 2
∞∑

ν=1

(a2
ν + b2

ν) sin2 πνh.

We see that ΛL2

α is characterized only by
{√

a2
ν + b2

ν

}
and it satisfies the

conditions for best possibility in our theorem.
Let us suppose that f ∈ ΛL2

α and let γ ∈ (0, 2α − 1). By putting h =
1/2n+1 in the above formula, we have

2n−1∑
ν=2n−1

(a2
ν + b2

ν) ≤ 2
∞∑

ν=1

(a2
ν + b2

ν) sin2 πν

2n+1
≤ ‖f( · + h)− f( · )‖2

2 ≤ 2−2α(n+1).

Therefore, we can verify

∞∑
ν=1

ν2α−γ(a2
ν + b2

ν) ≤
∞∑

n=1

(2n)2α−γ
2n−1∑

ν=2n−1

(a2
ν + b2

ν) ≤
∞∑

n=1

2−γn

22α
=

1
22α(2γ − 1)

,

and hence ΛL2

α ⊂ Xψ,M (α > 1/2) for ψ = {ν2α−γ} and M = 1/22α(2γ − 1).
Clearly, we have

∑
1/ν2α−γ < ∞. Therefore we have the best possible upper

bound estimate for ΛL2

α .
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4. Proof of the Remark

Lemma 3. If {nk} has the large gap, then we have for any N,

lim
K→∞

sup
{aµ,bµ}∈X̂

N∑
ν=1

S
(aν ,bν)
K (νt)√
K log log K

≤
√

2 sup
{aµ,bµ}∈X̂

( N∑
ν=1

(a2
ν + b2

ν)
)1/2

a.e. t.

Proof: Take ε > 0 arbitrary, and take (a(λ)
1 , b

(λ)
1 , . . . , a

(λ)
N , b

(λ)
N ) as in the

proof of Lemma 1. Since the large gap condition is satisfied, we can apply
Ψ[{f}; {nk}] =

√
2 ‖f‖2 a.e. (Takahashi [8]) for the trigonometric polynomial

f(t) =
∑N

ν=1(a
(λ)
ν cos 2πνt + b

(λ)
ν sin 2πνt) and have

lim
K→∞

N∑
ν=1

S
(a(λ)

ν ,b(λ)
ν )

K (νt)√
K log log K

=
√

2
( N∑

ν=1

(
a(λ)

ν )2 + (b(λ)
ν )2

))1/2

a.e. t.

By applying this, we have the conclusion as the proof of Lemma 1.

By Lemma 2 and Lemma 3, we can prove Ψ[X; {nk}] ≤
√

2 supf∈X ‖f‖2

a.e. in the same way as before. Since Ψ[{f}; {nk}] =
√

2 ‖f‖2 a.e holds for all
f ∈ X, the reversed inequality is trivial.
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metric series, Tôhoku Math. J., 24 (1972) 319–329.
[10] S. Takahashi, On the law of the iterated logarithm for lacunary trigono-
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