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Abstract For the classical Erdds-Fortet sequence nj = 2% — 1 we show that the law
of the iterated logarithm for star discrepancy of {njz} has non-constant limsup, while
the law for discrepancy has constant limsup.
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1 Introduction

After Kac [9] proved the central limit theorem

Hx €[0,1] ’ \/% ém%) < a}‘ - \/;7 /; /2 gy (1)

1 S 1
2 2 k
o _/0 f (t)dt+2k§_1:/0 F)£25) dt (2)

for an f of bounded variation with period 1 satisfying fol f =0, anatural question arose
asking if it is possible to replace the sequence {Zk } by a general sequence {nj } diverging
rapidly. Although Kac [11] proved that it is valid with o2 = fol f2 under the large
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gap condition nyy1/n; — oo, Erdés-Fortet [10,16,11] presented a counterexample
satisfying the Hadamard’s gap condition ng11/ng > q > 1.

The example is very simple. For ng = 2% _1 and f(x) = cos 2wz + cos 4z, it holds
that

N 1 a/V/2cos Tz
HxE[O,l]‘\/—INZf(nkx)Sa}‘ﬂ/o d—;r e /2 gy, (3)
k=1 >

The contrast among the binary sequence {2k} and the Erdds-Fortet sequence {Zk -
1} revealed a very delicate nature of sequences from the probabilistic point of view.

The aim of this paper is to give metric discrepancy results for the Erddés-Fortet
sequence and its family. We first recall the definitions of discrepancies Dy{z} and
Di{zy} of sequence {zj} of real numbers:

N N
1 ~ * 1 ~
Dy{zr} = sup |= I.p(zk)|; Dny{ar}= sup |—= Io.a(ak)l;
0<a<b<1| NV kZ:; “ 0<a<1|NV 1; ¢
where T(Lb is the centered periodic extension
fos@) = (X (e +n)) ~ 0= o)

neEZ

of the indicator function 1, ) of [a,b).
For {n;} satisfying Hadamard’s gap condition, Philipp [14,15] proved the bounded
law of the iterated logarithm 1/4v/2 < X*{niz} < T{nz} < C < oo, a.e., where

— « —  NDxj;
S{ngz} = lim _NDn{ngr} and Y*{ngz} = lim M
N—oo /2N loglog N N—oo /2N loglog N

Recently it became possible to compute the exact value of X{nyz}. Actually we
can find the following results in [6].
For any real number 6 > 1, there exists a constant Xy such that

SHo% 2} = X{0F 2} = 5,5, ae. (5)
We have Xy = 1/2 if 0 satisfies the condition
0" ¢ Q forall reN. (6)
Otherwise let us express 6 by
0= <3/p/q where r=min{fneN|0" €Q}, and gcd(p,q)=1. (7

In this case Xy does not depend on 7. It is evaluated in the following cases:

V(pg+1)/(pg —1)/2 if p and ¢ are odd,
Vip+Dplp—2)/(p—1)3/2 if p>4isevenand g =1,
V/42/9 ifp=2and ¢g=1,
V22/9 ifp=5and ¢ =2,




Aistleitner [1] gave a nearly optimal Diophantine condition on the sequence {nj} to
have X*{niz} = Y{niz} = 1/2, a.e., the result which corresponds to Chung-Smirnov
law of the iterated logarithm for the uniformly distributed i.i.d.

It was a long standing problem whether X*{nyz} and X{nyz} are always constant
a.e. or not. The problem was negatively solved by a randomly constructed example
with bounded gaps nyy1 —ng <5 (Cf. [7]) and celebrated examples by Aistleitner [2,
3] below. Aistleitner’s examples can be considered as a modification of Erdds-Fortet
sequence. Aistleitner [2] introduced the example nop_1 = 2% and nagp = ok*+1 _q
and proved that X*{n.z} is not constant a.e. and that Y'{nyz} = 1/2, a.e. This is the
first example of the Hadamard’s gap sequence such that X*{ngz} is not a.e. constant
as well as the deviation X*{ngz} < X{ngx} occurs with positive measure. In [3],
Aistleitner gave another example such that X{ngz} is not constant a.e.

There is strong dependence among noj_1 and ngy, which is a nature of original
Erdés-Fortet sequence. The next block nog1, nog+2 is very far from the block nag_1,
nop and hence they are almost independent. This is a reason why the Erddés-Fortet
nature of this sequence can be extracted easily and the concrete evaluation is possible.

Although the original Erdds-Fortet sequence has more complicated dependence
structure, it is still possible to study because it is almost stationary. Now we are in a
position to state our results.

Theorem 1 For 6 > 1, we have
S{(0* — 1)z} =%y, ace., and (8)
SO - Da} = Tg (@), ace, (9)

where Xy 1s a constant given by (5) and X3 (x) is a continuous function on torus.

If 0 satisfies (6), then X5 (x) = 1/2 = Xy. If 6 is given by (7) and satisfies one of
the following conditions, then X (x) is not constant and Xj (z) < Xy except for finitely
many x: (i) p and q are odd; (i) g =1; (i) p="5 and ¢ = 2.

As the graph of X5 (x) drawn in figure 1 shows, limsup functions appearing here seem
to be irregular when 0 is a power root of integers.

Before closing this section, we mention the central limit theorem and the law of
the iterated logarithm for Erdés-Fortet sequence.

Theorem 2 Let f be a real valued function with period 1 which is locally square inte-
grable and satisfies fol f =0. Suppose that f satisfies the L%-Dini condition below:

/01 WQT(?J)dy< o where ws(8) = sup </01|f(x+h) —f(a:)|2dm)1/2.

|h| <8

Then for any E C [0,1] with positive measure, we have

N
1 1 k 1 /
— |z e F| — 0" —zx)<arp| — — Ny o —00,a]dy,
ailfze = | g 2 - v <= g [ Mol
where Ny ,, denotes the gaussian distribution with mean 0 and variance v, and

2(a) = {fol () dy if 0 satisfies (6),
Jo PP dy+25°32 [y F0*y — o) f(d"y — 2)dy if 0 is given by (7).
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Fig. 1 Graph of X (x).

Moreover, if f is of bounded variation or Holder continuous, we have

— 1 N k

ngnoo iNTosloa ;f((& z) =¢(z), a.e.
The special case when § = 2 was stated in the famous survey by Kac [11] without any
proof. The form of ¢2 (z) is given there by means of the Fourier expansion when f is
an even function.

The central theorem can be proved for a trigonometric polynomial f by martingale
approximation given in the next section. The proof for general case is completed by
approximating f by a subsum of the Fourier series of f, which is done in the same way
as the proof given in [5].

The proof of the law of the iterated logarithm is completly same as that is given
in the next section.

It is, however, worth giving a heuristic derivation of ¢(x) for the original Erdds-
Fortet sequence. The proof of (1) by Kac based on the property that 2%2 and z are
asymptotically independent. Let us try to apply this property to

Fla) = Hm €[0,1) ‘ \;ﬁkﬁjf@’“x:ﬂ) € (foo,a)}‘.
=1

Since 2¥z is almost independent of x, it is asymptotically identical if we replace 2k g
by Qky using another independent variable as below:

F ~|{@a e 0.0y

&émkyw) € (e}



By applying Fubini’s theorem and the central limit theorem (1) for f(- — x), we have

F(a)~/01

1
— /0 Novaz(f(,_x))(—oo, CL) dx.

dx

{veron ] ijZN;f@ky—x) € (o)}
=1

2 Proof of Theorem 1

It is proved in [10], [12], and [5] that the law of ﬁ Zé\;l f(6%z) converges weakly
to the centered normal distribution with variance 02( f,0) for a function f of bounded
variation with period 1 satisfying fol f = 0. Here o(f,0)% > 0 equals to fol 2(y) dy if
0 satisfies (6). If 6 is given by (7),

a*(f,0) = / 1f2(y) dy+2§j / 1 F0" ) f(d"y) dy (10)
7 0 k=170
[es) [N . 2
2 > X FUp*d™®)| ifg>1,
_ JEPpq i=015=0 ) (11)
2 ¥ | X fupY) if g =1,
JEP,|s=0

where P, = {n € N | n # 0,ged(n,v) = 1}.
Since I, is defined by (4), it is naturally extended for a and b satisfying 0 <
b — a < 1. By this extension, we naturally have

Ia,b(y —x) = Ta-&-x,b-&-a: (y) and ia,b;d(y —x) = ia+x,b+x;d(y) (12)

where Ta’b;d(y) denotes the d-th subsum of the Fourier series of FIia’b(y). Note that

Toy(o) = {T<a>,(b) (z) if (a) i (b), (13)

— I(b),{a) (ZE) if (a

<

Because of 0 < b —a < 1, there exists an integer m satisfying m < a <b<m+1 or
m—1<a <m <b< m+1.In the first case we have (a) < (b) and Tayb(:r) = T(a>7(b> ().
In the second case we have (a) > (b) and }°,, 7 Ljq p)(+n) = 1=, c7 1 aq1)(z+7)
which yields Ta,b(x) = _Tb,a+l(x) = _i(b>,(a> (32) bym<b<a+1l<m+1.

The next lemma proves that the limit distribution of the central limit theorem for
Zia,b never degenerates. This result has its own interest.

Lemma 1 For any 0 < a <b <1 we have o(I,,0) > 0.

Proof Denote U(FIva,b7 6) by 04,0, and FIia,b by f. By putting e(z) = 627”/?19”, we have
f(n) = —(e(=nb) — e(—na))/(2m/—1n) for n # 0.

When 6 satisfies (6), we have Ug,b,e =0—-a)(1—(b—a)) >0.

We consider the case (7). When ¢ > 1, if we have 0439 = 0, by (11) we have
Zi:o J/‘\(jpS =S)foralli=0,1,...,and j € Ppq. If we put s = 0 and j = 1, we have
f(l) =0, i.e., e(—a) = e(—b) which is a contradiction.



When g = 1, if we have 0,4 9 = 0, by (11) we have > 02 f(jp®) = 0 for all j € Pp.
It proves

i e(_jfsa) — i 6(—j§)sb) (14)
s=0 p s=0 p
for all j € Pp.

Consider the case p > 2. Since |> 02 e(—jp°z)/p® — e(—jz)| < 1/(p—1) < 1/2,
the relation (14) can not hold if |e(—ja) — e(—jb)| > 1. If there exists j € Pp such that
(j(b—a)) € (1/6,5/6), then we have |e(—ja) — e(—jb)| = 2|sinm(b— a)| > 1 and have
Oa,b,0 > 0. Suppose the contrary case, i.e. there is no non-negative integer I such that
((pl + 1)(b — a)) € (1/6,5/6). It proves p(b — a) = 0 mod 1, otherwise the sequence
{{(pl +1)(b—a))}; is uniformly or periodically distributed on the torus and cannot be
contained in (1/6,5/6)°. Thus we have b=a+n/p (n =1, ..., p—1). In this case it
holds e(—p°b) = e(—p®a) for s > 0 and e(—b) # e(—a). Hence (14) does not hold for
j=1,and o439 > 0 holds.

Let us consider the case p = 2. First we consider special cases.

Case 1: The case b —a = 1/2. We have e(—2°b) = e(—2%a) for s > 1, and e(—b) #
e(—a). Hence (14) does not hold for j = 1, and 04,59 > 0 holds.

Case 2: The case b—a = 1/4, 3/4. We prove e(—b) +e(—2b)/2 # e(—a) +e(—2a)/2.
Actually, if the equality holds, by denoting A = e(—a), we have e(—2a) = A2, e(=b) =
+y/—TA, and e(—2b) = —A?, and therefore A + A%2/2 = +/—1A — A%/2 which
yields A = 0, £y/—1 — 1. It contradicts with |A| = 1. On the other hand we have
e(—2°b) = e(—2°a) for s > 2. Hence (14) does not hold for j = 1, and o4 4 9 > 0 holds.

Case 3: The case b—a = 1/6, 5/6. We have e(—3-2°b) = e(—3-2%a) for s > 1, and
e(—3b) # e(—3a). Hence (14) does not hold for j = 3, and 7459 > 0 holds.

Case 4: The case a = 1/3 and b = 2/3. Since 2 = —1 mod 3, we have e(—2°/3) =
e(—(~1)*/3) and 320 e(~2°/3)/2° = (2e(3) +4e(FH)) /3 # (2e(Fh) +4e(}))/3 =
Yoo e(—2°2/3)/2°. Hence (14) does not hold for j =1, and 0,49 > 0 holds.

Since we have |Y 02 e(—j2°2)/2° — (e(—jz) + e(—2jz)/2)| < 1/2, if there exists
an odd j such that

W0 = | (e(=ja) + %e(—Zja)) ~ (et + %e(—?jb))’ > 1, (15)
then (14) does not hold, and o, ¢ > 0 holds. Note that we have a convenient formula
Ujap = le(—ja) — e(—jb)||1 + 5(e(—ja) + e(—3b))]-

We here prove o, ¢ > 0 if there exists an odd j such that (j(b—a)) € [3/8,5/8].
We see |e(—ja) — e(—jb)| = |e(—j(a —b)/2) — e(j(a = b)/2)| = 2[sin2mj(b—a)/2| =
25in27r% and |e(—ja) 4+ e(—jb)| = 2|cos2mj(b — a)/2| < 2cos QW%. Hence ¥j . >
2sin27rl%(1 — c0527r13—6) =4/24+v2 —+/2/2>1, and Oa,b,0 > 0 holds.

We have 0,59 > 0 if there exists an [ such that (2(b —a)l + (b—a)) € [3/8,5/8].
This sequence distributed uniformly or periodically on the torus. Since the length of
[3/8,5/8] is 1/4, such [ exists except for the case when 2(b — a) is an integer multiple
of 1,1/2,0or 1/3. i.e., b—a =1/2 (Case 1), 1/4, 3/4 (Case 2), 1/6, 5/6 (Case 3), 1/3
and 2/3.

We only have to consider the case b — a = 1/3, 2/3. We can take ¢ such that
a = cp—i—% and b = ¢ — % mod 1. For j = 6l + 1, we have |e(—ja) — e(—jb)| =
le(=3) — e(})] = 2sin2rk = V3 and e(ja) + e(—jb) = e(—j)(e(—3) + (L)
e(—jy). Hence we have &Dj%a,b -1 = 3(% + cos2mjp) and see that oqp9 > 0 i

=

cos 2mjp > —%. In the case when cos2mjp < —% is satisfied, we have |sin 2mjp| =



V1 —cos?2mjp < /23/12 and R(e(—ja)), R(e(—jb)) equals to cos2r(jp + ) =
%(cosijgo:F V3sin2mjp) < (=11 + \/>)/24 < 0. In other words, if R(e(—ja)) > 0
or R(e(—4b)) > 0 then cos2mjp > — 45 L and Oab,0 > 0. Therefore we can conclude
Oapo > 0if b—a =1/3,2/3 and there exists [ such that R(e(—(6] + 1)a)) > 0 or
R(e(—(61 + 1)b)) > 0.

Since the sequence {e(—(6l+ 1)a)}; is uniformly or periodically distributed on the
torus, such [ exists except for the case when a is an integer multiple of 1/6. Such a
satisfying R(e(—a)) < 0 are a = 1/3, 1/2, 2/3. In the same way, we have b =1/3, 1/2,
2/3. By b—a=1/3, 2/3, we have a = 1/3 and b = 2/3, which is the Case 4. O

The next lemma is proved in [6] (just after the proof of Lemma 1 in [6].)

Lemma 2 As a function of (a,b) defined on 2-dimensional torus, O'(Ia b, 0) is uni-
formly continuous.

Lemma 3 If0<a <b< 1, we have ming a'(FIVaer’ber;d, 0) > 0 for large enough d.

Proof We prove that there exists Cy depending only on 6 such that
0% (T, 0) = 0 (Lo ea, 0)| < Co(log d) /d. (16)

Because of Lemma 1 and Lemma 2, we have ming o2 (FIVaJrI’bH,G) > 0, and by (16),
we have the conclugion of Lemma.
Denote c(k) =1, (k). We have |c(k)| < 1/|k|r. When 6 satisfies (6), it holds that

|0 (T, 0) = 0° (T s 0)| = Xjpyma B> < Xjpjma 157 < 1/d.

Let 6 be given by (7). Note that fo a7b(pky)ia7b(qky) dy = Z#O c(lqk)é(lpk). By
noting p > g, we have [y To p:a(0*9)Tabia(6"0) dy = 3y <g/pr c(lg")E(Ip*). Thereby
o Tan ") Tap(d"y) dy—fy Ta a0 v)Tapia(d"y) dy| < s aypr 1/05 0512
the left hand side of (16) is bounded by 332 375 4/pr 4/"¢ 1?7*. We divide the

sum into Zk<logd/ logp 2oi>d/pr a0d D psi0e d/log p > ;>1- The first sum is bounded
by > k<logd/log p 1/¢"d < (log d)/dlogp. The second is bounded by 1/(1 — 1/p)d. O

7%, Hence

For a bounded measurable function g, we define the mean value [g g(x) pr(dz) by

T
[ s@ i) = Jim o [ gla) ds

if the limit on the right hand side exists. For a trigonometric polynomial g with
period 1 satisfying folg = 0, we have [g g(Oz)g(x )/LR(dLZ’) =0 for © ¢ Q, and

Jr 9((P/Q)x)g(x) pr(dx) = [g 9(Px)g(Qx) pur(dx) fo (Pz)g(Qz) dz for non-zero
integers P and Q.

Lemma 4 Let g be a trigonometric polynomial with period 1 and degree d satisfying
fol g = 0. There exists a constant Cy 4 depending only on 0 and d such that

AR>S

M+N

2
y>> pr(dy) — No*(9,0)] < Co.allgl3.
k= M+1



2 .
Proof Put I' = fR(Zg[v+1 g(6%y )) pr(dy) = [g (Ek 1 9( (6* y))” pr(dy). If 0 satis-
fies (6). we have I' = N||g||3 = NU’ (9,0). Assume that 0 is given by (7). We have I' =
N [g 9* W) nr(dy)+2>;(N—j) ng 07y)9(y) kr(dy). Note [ g(67y ) ( )uR(dy) =

0if j > G = loggd or k ¢ rN, and ngerk)( ) g (dy) fo g(q"y) dy.
Thereby fol g*y)g(dy) dy = 0 if k > G . Hence I' = Nfo y)dy + ZZG/T(N -
G
* [y 9" y)g(d"y) dy and o*(g,0) = 92+22 " "o 9 y) (¢"y) dy. These im-
G
bly 1T~ No®(,0)) < 2527 kg3 by | I 9 0ol ) dy| < ol ©

Lemma 5 If g is a bounded measurable function with period 1 satisfying fol g =0,
then for all a < b and A\ > 0, we have

Proof By changing variable y = Ax, the integral equals to

1 b 1 Ab=a)l Ngtk+1 1 [
N 9(y)dy = < E / dy + < 9(y) dy.
AJra ®) A= Srak 9v) A Jrat[Ab—a)] ®)

Ab
The proof ends by ‘f/\a+[)\(b7a)] 9(y) dy| < (A(b—a) — [AMb—a)])lgllec <lglloc. B
Lemma 6 For0<a<b<1, we have ||ia7b;d\|oo <2.

Proof Let o4 be the d-th Cesaro sum of the Fourler series of Ia b- We have ||ogllec <

La,bllo0 < 1. Hence [Ty pyql < |0d|+Z|J|<d(J/d)\Iab( e(ia)| < 2 by [Tap ()] < 1/7lil.
O

Lemma 7 Let g be a trigonometric polynomial with period 1 and degree d satisfying
fol g = 0. There exists a constant Cy depending only on 6 such that, for a sequence
{Ar} of real numbers satisfying the Hadamard’s gap condition A\gy1/A, > 6 > 1 and
)\1 > 17

/ 1 (:%i g(Akx>>4 dx < Cy <|Vz<:d §<v>|)4zv2.

Proof The left hand side is bounded by (Z‘ |<a 19| 4f01( Dok M+1 /\kym))4d:v
Hence by applying the following inequality (Lemma 1 (1) of [5]), we have the conclusion:

2

1,0 4 oo
/(g (cjc0527r)\jm+djsin27r)\x) dw<Cg(E cj—l—dz) .0
0

J=1

J=1

Let 0 > 1 and denote ny, = 0¥ — 1. Since (fz —1)/(z —1) > 1 holds for = > 1, {n;}
satisfies the Hadamard’s gap condition ng41/n, > 0.

Let 0 < a < b < 1 and take d € N such that the conclusion of Lemma 3 holds. Put
f :Ffaﬁb;d. Then fol f=01is clear and || f|lcoc < 2 by Lemma 6.

We follow the method of the martingale approximation given in [2], which originated
with Berkes and Philipp [4,13].



Let us divide N into consecutive blocks A}, Ay, A, Ao, ... satisfying # A} = [1+
9logy i] and #Ai = 4. Denote i~ = min A; and i* = max A;. We have

ni-/ng_1y+ = goloset > ;7

Put p(i) = [long ni+ |+1and F; = o{[j27D, i+ 127Dy | j=0,...,2¢0) — 1}
Note that i*n, i+ < (i) < 2i4n, i+ Put

z)= > flwz), Ti(@)= Y flnx), Yi=ET|F)-E(T;|Fi1).

keA; kEA;

Then {Y;, F;} forms a martingale difference sequence. Here let us prove

Vi = Tilloo < (I1f lloo + 2l fllo) /3°, (17)
1Y = T lloo < 301f oo (I1f oo + 211 flls0) /32, (18)
1V = T loo < 150136 (11F oo + 211 flloo)- (19)

If k € A and z e I =270 (j + 1)27#®)) ¢ F then we have |f(njz)
B(f(n - | Ol = 117" [ (£ () = flney)) dy| < maxyer [f(nne) — f(nry))]
1/ loome2™ ”() < IS lloonk/Z ni+ < ||f'lloc/i". Hence we have |T; — E(T; | )l
171 Aifi* = | loe /i Put 7 = [327 P60 (1 1)27#07Y) '€ Fiy. Then by
applying Lemma 5, |E(7(ni-) | Fin)l = (1917 f; (o) dy] < 10200 <
£ lloo2(=1)*n(i—1y+ /ni- < 2| flloo/i®. Hence we have | E(T; | Fi—1)| < 2||fl|oc™ A;/i° =
2] flloo/i* and (17).

By I Tilloo < illflloc, we have | B(T; | Fi)lloo, [ E(T; | Fi—1)l|oo < illfloc. Hence we
have [¥illoo < 2ilf oo, I1Yi+Tilloo < 3illfllocs V7 +T2lloo < 56%|L fI%. Applying these
0 V2 = T2lo0 < Vi~ Tilloo[¥; + Ty loc and [V~ Tlloo < V2= T2|oo Y2 + 72| oo,
we have (18) and (19).

Put C = min{[loggv — logg V' |* | v,v/ = 1,...,d,loggv — logyv' ¢ Z} € (0,1)
where [#]* = min,cz |z — n|. By denoting D = (0 — 1) A1 > 0, we prove

100 +0''| > DOF if k1> L, |v|,|V| <d, 0%v+6' #o0. (20)
If v/ > 0, then it is trivial. Assume v > 0 an v/ < 0 and put v” = —/. If logy v —
logy v"" ¢ Z, then we have |logg(0Fv) — logy(0'v")| = |(k — 1) + (logg v — logg v"")| >
[loggv — logg V"' ]* > C. If loggv — logg V" € Z, then by 0kv + 64", log9(0ku) —
logy(0'v"") is a non-zero integer and hence |logy(0¥1) — logy(8'v")| > 1 > C. Hence
0kv /6" > 0% if 0%v > 6'", and 0" /6F L > 0© otherwise. By 0Fv/0'v" > 0¢ we
have 0%v — 0! > (0 — 1)6'0" > DO* | which is (20). The rest is similar.

Put

y) = (Z f(9kyw))2 and (@) = [ Gy urldy)

keA;

Clearly we have T?(z) = (;(x, z). Expanding ¢;(z,y), we have
ZZZZf (—(w +)2)e((0%v + 0" )y).

Since &;(z) is a sum of above summands with 6% +6'" = 0, ¢i(x,y) — & () is a sum of
summands with 0%+ 60"y # 0, and hence |9ku+0l1/\ > D#' by (20). By regarding =
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as a constant, (;(x,y) — &;(z) is a sum of trigonometric functions of y with frequencies
greater than D@’ . Therefore the frequencies in Wj(z) = (;(x, ) — & (x) are greater
than DO° —2d > DO /2 =mn,—D/2.

Since f is a trigonometric polynomial with degree d, we see that T; can be expressed
by a sum of at most 2di many trigonometric functions. Hence TE as well as W; is a
sum of at most 8d%i?> many trigonometric functions. Therefore, by Lemma 5 again,
we have |E(W; | F;_1)| < 8d%i%(2/Dn;—)2#0~ 1) < i%(i — 1)*(324% /D)n;_1y+ /ni— <
32d2/Di3. By noting Ti2 — &, = W;, we have

=0(1). (21)

M M
STETE | Fic1) =D B | Fior)
i=1 =1

’ o0

By applying Lemma 4 to g(y) = fz(y) = f(y — x) and denoting Vy(z) = o (fx,0),
we have |£(2) — V()| < Co.all fu 2 = Co allfI3 and hence

|E(& | Fi—1) —iE(Vy | Fi—1)] < Coall 13-

Since f is a trigonometric polynomial, f01 Fe (") f2(¢*y) dy = 0 for large k, and Vi(x)
is also a trigonometric polynomial. Hence V¢ (z) has continuous derivative and

GE(Vy | Fim1) — iVi| < IVHlleoi2 07 < [Vllooi/ (i — 1) *ng_1y+ = o(1/i®).

By these we have ||S2M E(& | Fio1) — M, iVy|| . = O(M). By this, (21), and
M M M
35021 EQOF | Fica) = Sity B(TP | Fio1)|| oo < ity 1Y = TP oo = O(1), we have

M
> B0 | 7o) - v MR o), (22)
=1 [e%¢)

Now we use the next Lemma which can be found in [2], which is a modification of
corollary in [17].

Lemma 8 Let {Y;,F;} be a martingale difference sequence with finite 4-th moment
and Fo = {0, 2}. Suppose that

M
Vi =Y E(Y? | Fis1) = 0, as., (23)
=1

and that there exists a sequence {rps} of positive numbers satisfying rpy — oo and

Jim inf VM >1, as., (24)
M—oo T
o 10
(long) 4
> RSP EYjy < oo (25)
M=1 M

Then

=1, a.s.

. 1 M
lim ————— |3y}
M—oo /2Vjs loglog Vs =
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Denote ¢(N) = \/W Note fl(y) = Ia7b;d(y - -T) = Ia-‘ra:,b-&-;r;d(y) and Vf(.T) =
02(ia+m,b+x;d59)~ Thanks to Lemma 3, p = ming Vy(x) is positive. Putting lpr =
M(M+1)/2 and rp; = plps, by (22) we have lim Vs /ras = VJ(m)/p > 1, which proves
(24) and (23). (25) is clear from EYj3; = ET3;+0(1) = O(M?) = O(lp;) which follows
from (19) and Lemma 7. By applying the Lemma 8 we have

Im ¢ '@

= O(ia+x,b+x;d: 0), ae. (26)

M
DY

i=1

where Vy; ~ o2 (Ffa+z’b+m;d,0)lM is used. By (17), we can replace Y; in (26) by T;.

Now we use the following Lemma which is Lemma 3.1 of [1]. In [1], it is proved
by assuming that Ay is an integer and applying method by Takahashi [18] and Philipp
[14]. We can remove this extra condition by applying modification of proof which is
used in [6].

Lemma 9 Let r(x) be a function of the form r(z) = E;’;d(aj cos 2mjx + b sin 2mjx),
where |aj|, |bj| < 1/j for j > d. If a sequence {\} of real numbers satisfies the
Hadamard’s condition Ag11/A, > 6 > 1, then
1 N

m <Cha V4 ae.,
N—oo 2NloglogNk 1

r(Arz)

where Cé is a positive constant depending on 0.

Applying Lemma 9 by putting r = Ffa’b;d, by Zf\il[l + 9loggi] = O(Mlog M),

we have |Zk 1 Ti| = O(y/Mlog Mloglog(Mlog M)) = o(v/Ipr). Thereby (26) is
valid if we replace Y; by T, and a(ia%bﬂ;d,e) by 0. Hence by noting M+ = I, +

S M [1491oggi] ~ Lar, we have Timps o0 o~ L (M) [N, Yrearua, J(0F=1)z)| =
0 (Tatapiad: 0) ae. By Ypear uay I1((0% = 1)a)lloc = o(¢(MT)), we have

lim ¢ ' Topa((0F = 1)2)| = 0(Tasopraar0),  ae. (27)

N—o00
By Lemma 9 we have limpy_ oo <Z>71(N)|Zg:1(ﬁfa’b a, b d)((Ok )| < Céd71/4,
a.e. This together with (16) and (27) implies limy _ o0 ¢~ |Zk 1Ta »((6F — )| €

[17;,77;' }L a.e., where nj[ = =+ Céclil/4 + (02(ia+z,b+z, 0) £ Cg(logd)/d)l/Q. Since
773: — 0(Lota,bta,0) as d — oo, we have

N
im ¢~ (V)3 T p((0° = Da)| = 0(Tasapiar0), ace.

N—o0

We use the fundamental relation below which can be found in [8].

Lemma 10 For any countable dense subset S of [0,1) and for any sequence {ny} of
real numbers (not necessarily integers) satisfying the Hadamard’s gap condition, we
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have
—  NDn{ngz} —
lim ——————— = sup lim o’ a(NET) a.e.,
N-ooo /2Nloglog N §5a/<aes N—oo 2N10g10gN
ND3{ngz}

=sup lim

. 1 ~
m o NAKTS - IS1
NSt V2NToglog N nel Netbo \ﬁZNloglogNLZl 0.0(n));

a.e.

Hence X{(0" — 1)a} = supgsqcpes 0Tatapia0) = UPg<ocict o(Tata bras ),
a.e., where the second equality is by continuity of U(ia b, 0) with respect to (a,b). In
the same way, we have X*{(6% — 1)z} = SUP)<q<1 O'(Im atz,0), a.e.

In [6], it is proved that Xy = supg<g<p<1 U(IaJ77 0) = supp<y<1 O'(Io a,0). By (13),
we have _

U(ia+z,b+ma 9) = {G(E(a+x>7<b+x) 7 9) ?f <a " x> = <b * x>
U(I<b+w),<a+x> s 0) if <b + .’L‘) < <a + J,'>

Hence we have supg<q<p<1 0(ia+x,b+x70) < Yy. On the other hand, for given 0 <
c<d<1, wecan find 0 < a < b < 1such that ¢ = (b+z) and d = (a + z) if
c <z <d, and ¢ = (a+ ) and d = (b + x) otherwise. Therefore we can conclude
suPo<g<b<1 Tatzbrar0) = Xy and (8).

We have (9) by putting X} (z) = supg<qcq 0(Lz,a+a,0). Clearly we have X (z) <
Yp. Continuity of X (x) is proved by using Lemma 2. To investigate 5 (), we use
some lemmas.

Lemma 11 Let § > 1, and let a, b € R satisfy 0 < b—a < 1. If 0 satisfies (6), then
02(Ia,b79) equals to |(b) — (a)|(1 — |(b) — (a)|). If O is given by (7), then

~ - 17 ka k kCL k
7T 0) = V(o) 0 o), () + 2 Vip“a), <ppi>q’,§q LB g
where V(z,y,€,m) = V(z,€) + V(y,n) — V(z,n) — V(y,€) and V(z,€) =z A€ — z€.

Proof We prove for 0 given by (7), since it is trivial otherwise. It is already proved
(Lemma 1 of [6]) that,

1_ ~ Vlna va), (v
[ sy = V0G0 . ) (26)

Nz

for 0 <a <b<1and p, v with ged(p,v) = 1. If (a) < (b), then (28) is trivial from
(10), (13), and (29). If (b) < {(a), then we have Ia b(/ﬂf)la p(vt) = I< b),(a) (:U‘t)I<b),<a> (vt)
by (13). Therefore we have (28) by noting V(m y,&,m) = V(y,x n,€). O

If 6 satisfies (6) and if 0 < a < 1, by noting

a if (z) < (a+ z),

a—1 otherwise,

<a+x><x>—{

we have 02(Tm7a+x,9) = a(1 — a). By taking supremum for 0 < a < 1, we have
(Z5(x)2 =1/4, ie. Xj(x) =1/2. B
Assume that 0 is given by (7). Note again that we have Xy = supp<,<1 0(Lo,a;0)-
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Lemma 12 When p and v are relatively prime each other and 0 < a < b < 1,

V ((ua), (ub), (va), (Vb)) < V((u(b — a)), (v(b — a))). (30)

We have o°(Io4,0) < 02(Top—a,0) for a, b with 0 < b —a < 1. Denote My = {0 <
a <1 ‘ UQ(TO’G,G) = 29}. We have My = {1/2} if both of p and q are odd, My =
{(p/2£1)/(p—1)} ifp>4isevenand q=1, My ={1/3,2/3} if p=2 and g =1,
and My ={1/3,2/3} if p=>5 and g = 2.
The inequality (30) and the determination of My are essentially proved in [6]. The
inequality (I (Iap,0) < (IO b—a,0) under 0 < b—a < 1 is proved by Lemma 11 and
(30).

‘We investigate the condition on z to have Yy(z) = Xy. If a ¢ My, we have
02(Iy,24a0,0) < 0*(T0.a,0) < Xp. Let a € My. We have

V((p"), (0" (z + ), (¢"2), (¢" (x + a))) < V((p"a), (¢"a)). (31)

If there exists an n such that the equality does not hold, then o (i;,;ym_y_a, 0) < 02(10@, 0).
Lemma 13 Let 0 <¢n<1and0<a<1. Then

V(. (E+a),m, (n+a) < V(a,a) = a(l —a) (32)
The equality holds if and only if £ = n.

Proof Suppose that 0 < a < 1. Recall that 0 < V(a, &) < V(a, @), and that V (e, &) =
V (e, ) if and only if £ = a. By symmetry, we may assume £ < 7. The left hand side
equals to

1 1
/0 It eta(O)Inn+alt) dt:/o Lo,0(W)ly—¢ n—gta(u) du.

Here we changed variable by ¢ = v + £ and used (12). The right hand side equals to
Via,n—&+ a) — V(a,n — &), which proves the conclusion. O

First consider the case p and ¢ are odd, and the case p > 4 is even and ¢ = 1. In
these cases we have p"a = a = ¢"a for all a € My and n € N. Thus (31) reduces to

V((p"a), (" + a), ("), (¢"x + a)) < V((p"a), (¢"a)). (33)

Applying Lemma 13 by putting & = (p"'z) and n = (¢"y), we see that the equality in
(33) holds if and only if (p"z) = (¢"z). By this we have (p" — ¢")z = 0 mod 1, i.e.,
z=1i/(p" —q"). Uweput n=1, we have x =i/(p—¢q) (i=0, ..., p—q—1). These
satisfy (p" — ¢")z = 0 mod 1 for all n and hence satisfy the equality in (33) for all n.
From this, we can conclude that o (Tw,x+a, 0) = o2 (i07a, 0) if and only if z =i/(p — q)
(¢=0,...,p—q—1). Therefore we have X (z) = Xy ifx = i/(p—q) (i =0, ..., p—qg—1)
and Y3 (x) < Xy otherwise. Since Xy (x) is continuous, by X*{(0¥ — 1)z} = Zy(z) ae.,
we can conclude that *{(8¥ — 1)z} is not constant a.e.

In case p = 5 and ¢ = 2, we have 52"(%) = % = 22"%), 52"+1(%) = % =
2241(3), 57 (3) = § =22"(3), and 52" (5) = § = 2°""1(3) mod L. For a € My,
(31) reduces to (33) again. It implies that 02 (T z+a,60) = 0%(To.4,0) = Xy if and only
if £ =0,1/3, 2/3. Hence Xj(z) = Xy if and only if z =0, 1/3, 2/3.

Lastly, consider the case p = 2 and ¢ = 1. In this case we have 22"(%) = %,
22"+1( ) = %, 22"( ) = g, 22"+1(3) = % mod 1. Hence for a € My and even n, (31)
reduces to (33) again. In the same way as above z = 0, 1/3 2/3.Ifa=1/3 and z = 2/3,
we have 12/3 1= -1 ,2/3 and hence o (12/3 1) ) = o2(I, 2/3> ) Yy. Ifa=2/3 and
x = 1/3, we have 11/3 1= -1, ,1/3 and hence o (11/3 1,0) =0 (1071/3,0) = XYy. Thus
X5(z) =Xy if and only if z =0, 1/3, 2/3.
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3 Aistleitner’s sequences and its variation

In both of Aistleitner’s papers [2,3], the limiting variance functions in the law of the
iterated logarithm was given by calculations of the Fourier series and it is difficult to
know the reason why we have these functions.

In this section we will give a simple derivation of these functions and try to reveal
the reason.

First let us consider the Aistleitner’s first sequence noj_1 = 2k2, Noj = 2]€2Jr1 -1,
(k=1, 2, ...). For this sequence, Aistleitner [2] proved that

lim ngz)| = o(z a.e. 34

N—oo \/2NloglogN ab k (@), (34)

2 1t
o <:c>=<b—a>(1—<b—a>>—5 | Tot-m0) O, oy @ —a =yt (39)

where I, ; coincides with our ia,b when 0 < a < b <1, and is defined by I, , = -1 ,
when 0 < b<a<1.

Denoting F(z,y) = Ffawb;d(y) +Ta7b;d(2y—m), we have fol F(x,y)F(x, 2kl2*k2y) dy =
0if k% — k% > logy(2d). By k> — k% > k' + k, it is valid except for finitely many (k, k’).
Hence we have

ol (3
k=M+1
M+N
(3
k=M+1

1/, 1 klzikz
—5/0 F(w,y)dy + > /F:By y)dy

M<k<k'<M+N

M+N k241 2
abd(2 y)+1abd(2 +y—$))> dy

2
F(x, Zkzy)> dy

1 1~ _
- /O 2y dy + /0 T, .0 (0) e a(2 — 2) dy + O(1/N).

In the same way as the proof given in the last section, we can prove (34) for

—~ 1~ ~
o2(x) = /0 T2, (y) dy + /0 T, ()0 (20 — 2) dy.

We must prove that this o(x) coincides with o(x) given by (35). First we prove

~ 1~ ~
V({a), (B), (1), (0)) =/0 L), (o) +(8—a) OL(y) (y)+(5—) (£) dt. (36)

If {a) < (B) and () < (6), by (29) we have (36) thanks to (8) = (a) + (8 — a), etc. If
(o) > (B) and (’y) < (8), by the definition of V, we have

~ ~ 1 ~
V(<a>7<5>,<v>7<5>):—V(<B>7<a>7<7>7<5>):/0 L), (a) (D1 () () (£) dt

Here we have —T(5>7<a> = T<a>7<ﬁ>+1 = i<a>7<a>+<5_a> and hence we have (36). The
other cases can be proved in the same way.
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By changing variable y = z + z and z — (a — x) = —w in turn, we have

1 1
/0 o ()T (2y — ) dy = /O Ty oo (e o(22) d

- %\N/(<a — ), (b— ), (20 — 20), (2b — 22))

1 [t
= 5/0 Lia—a),(a—a)+(—a) (2)(2a—22), (2a—22) + (2(b—a)) (?) dZ

1 [t ~
= 5/0 o, (b—a) (W) (a2}, (a—z)+ (2(b—a)) (W) dw

1 s =
=-3 /0 TIo,1— (b—a) (W)Ip, (2(b—a)) (T — @ — w) dw,

(37)

where we used io’c(fw) = fio,l,c(w) a.e. Since fol Tg7b(y) dy=(b—a)1—(b—a))is

clear, we complete the proof.

Let us consider a modification of this example. That is the sequence given by

2 2
nok—1 = 2k —1and nok = Qk +1

By putting F(z,y) = ia,b;d(y —x) +Ta7b;d(2y — ), we have (34) with

1 1
P = [ Towdy+ | Loty —opy—z)dy
1~2 1~ _
- /0 T2, (y) dy + /0 T, ()T p(2 + ) dy.

Hence we have the same X*(z) function as Aistleitner’s case.
Let us consider the second example given by Aistleitner [3].

k2
2 k=1 mod 4,
oh=1)*+1 _ 4 k=2 mod 4,

ne = .
P gkt k=3 mod 4,

o(k=1)*+(k=1)+1 _9 }— (0 mod 4.

For this sequence, Aistleitner [3] proved (34) for

2 1 [t
() = =)= (=) + [ Tpro a0 o (e 1)

1 1
7 [ Db a0 ((20) — 1)t

In the same way as above, we can prove (34) for

—1, which is a subsequence of Erdés-Fortet sequence.

(39)

1 1 1
1t~ 1t~
P = [ Towdr+g [ Tuswlp@y ) o+ 5 [ Topwpy - 20y

We prove the coincidence of these two expressions. As to the second term, we see that

it equals to the half of (38) which can be written as

1=
Z/O Ia,b(7w)I<a7w>+a,<a7w>+<2(b7a))+a(7w) dw.
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By Ia7b(_w) = Il—b,l—a(w) = Il—b,l—a(w) and I(a—z>+a,(a—z>+(2(b—a)>+a(_w) =
T2a72b(1: —w) = Igq 95 (z — w), we see that it equals to the second term of Aistleitner’s
expression. Replacing = by 2z, we see that the third terms of both expressions are
identical.

4 M. Kac’s expression of limiting variance functions

As to Theorem 2, Kac [11] gave an expression of ¢(x) by mean of the Fourier coefficient
of f when 6 =2 and f is an even function. Here we give a full general expression ¢(z)
in the same manner.

We can easily see that ¢(z) = o(fz,0) where fz(t) = f(t — z). In case when (6) is
satisfied, we trivially have

1 1 ot
:/O F2(t) dt EEGVH’Q

where a,, and b, are the Fourier coefficients of f, i.e.,

o0

ft) = Z(au cos 2mvt + by sin 27vt).
v=1

Let us consider the case when 6 is given by (7). Because of

~ ~

fa(v) (v) exp(—ZW\/TI vr)

!
1 Vv—1
5(@ cos 2mvz — by sin 2nvx) — T(al, sin 2mvz + by cos 2mvx),

By applying (11), we have

o] 7 2
= Z Z{(Z(ajpsqia cos27rjpsq :cfb pogie s sin 27mjp® q S{E))

JEPq i=0 \ Ns=0

i 2
+ <Z(a‘jpsqi—s sin2mjp®q' Sz + bjps gi—s COS 2mipsqt™ S:c)) }
s=0

if ¢ > 1, and

%S 2
P 1
¢ (x) = 3 Z {(Z(ama cos 2mjp°r — bjpsgi—s Sin 27jp :r))

s=0

oS 2
+ (Z(ajps sin 2mjp°x + bjps cos 27rjpsm)) }
s=0

if ¢ = 1. The last expression coincides with Kac’s expression when p = 2 and b, = 0.
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