

PDF issue: 2025-12-05

The law of the iterated logarithm for subsequences: a simple proof

Fukuyama, Katusi Takeuchi, Yukihiro

(Citation)

Lobachevskii Journal of Mathematics, 29(3):130-132

(Issue Date)

2008-07

(Resource Type)

journal article

(Version)

Accepted Manuscript

(Rights)

This a preprint of the Work accepted for publication in Lobachevskii Journal of Mathematics, ©Pleiades Publishing 2008.

(URL)

https://hdl.handle.net/20.500.14094/90003863

K. Fukuyama and Y. Takeuchi

THE LAW OF THE ITERATED LOGARITHM FOR SUBSEQUENCES: A SIMPLE PROOF

ABSTRACT. We give a simple proof for the law of the iterated logarithm for subsequence of sums of i.i.d.

2000 Mathematical Subject Classification. 60F15. Key words and phrases. Law of the iterated logarithm.

1. Result

There are various studies [2, 3] on the asymptotic behavior of subsequences of sums of i.i.d. The following result given by Weber [4] determined the speed of divergence of every subsequences.

Theorem 1. Let $\nu_1 < \nu_2 < \cdots$ be an increasing sequence of natural numbers and $\{X_n\}$ be an i.i.d. with $EX_n = 0$ and $EX_n = 1$. We have

$$\limsup_{j\to\infty} (X_1 + \dots + X_{\nu_j}) / \sqrt{2\nu_j \Lambda(\nu_j)} = 1 \quad a.s.$$

where $p_n = {}^{\#}\{m \leq n \mid \{\nu_j\} \cap (2^{m-1}, 2^m] \neq \emptyset\}$ and $\Lambda(k) = \log p_n$ if $k \in (2^{n-1}, 2^n]$.

Although Weber's proof consists of intricate and delicate long chaining arguments, we show that it can be proved very easily by modifying the short proof for Hartman-Wintner theorem given by de Acosta [1].

2. Proof

Put $S_n = X_1 + \cdots + X_n$. For $k \in (2^{n-1}, 2^n]$, put $\Phi(k) = ((2^n - k)\Lambda(2^{n-1}) + (k - 2^{n-1})\Lambda(2^n))/2^{n-1}$. Then $\Phi(2^n) = \Lambda(2^n)$ and $|\Phi(k) - \Lambda(k)| \leq |\Lambda(2^n) - \Lambda(2^{n-1})|$, and hence by $\Lambda(2^n)/\Lambda(2^{n-1}) \to 1$, we have

$$1 \geq \Phi(k)/\Lambda(2^n) = \Phi(k)/\Lambda(k) \geq \Lambda(2^{n-1})/\Lambda(2^n) \to 1.$$

Put $a_n = \sqrt{2n\Phi(n)}$, $b_n = \sqrt{n/\Phi(n)}$. We prove $\limsup_{j\to\infty} S_{\nu_j}/a_{\nu_j} = 1$ a.s.

 $\{b_n\}$ is increasing for large n. Actually, for $k \in (2^{n-1}, 2^n]$, we have $0 \le k(\Phi(k) - \Phi(k-1)) \le 2^n(\log p_n - \log p_{n-1})/2^{n-1} \le 2/\log p_{n-1}$, and

hence

$$(b_k - b_{k-1})\Phi(k)\Phi(k-1) = \Phi(k) - k(\Phi(k) - \Phi(k-1))$$

$$\geq \log p_n - 2/p_{n-1} > 0.$$

We can prove the next two lemmas by replacing LL j by $\Phi(j)$ and rewriting the proofs of lemmas 2.2 and 2.3 of de Acosta [1]. The original proof uses the fact that $\sqrt{j/\text{LL }j}$ is increasing, and in our case b_j plays its role.

Lemma 2. Let $\{Y_n\}$ be a sequence of independent random variables with $EY_n = 0$, $V = \sup EY_n^2 < \infty$, $|Y_n| \le \tau b_n$ for all n and some $\tau > 0$. Put $T_n = Y_1 + \cdots + Y_n$. Then for all $a \ge \sqrt{V}$, t > 0 and $n \in \mathbb{N}$,

$$P(T_n/a_n > t) \le \exp(-(t/a)^2(2 - \exp(\sqrt{t}a^{-2}\tau))\Phi(n)).$$

Lemma 3. Let $\{X_n\}$ be an i.i.d. with $EX_n = 0$ and $EX_n = 1$. Let $\tau > 0$ and put $Z_j = X_j \mathbf{1}_{|X_j| \ge \tau b_j}$. Then $\sum E|Z_j|/a_j < \infty$ and $(Z_1 + \cdots + Z_n)/a_n \to 0$, a.s.

In the proof of Lemma 2, the estimate $1/a_1 + \cdots + 1/a_n = O(b_n)$ is used. In our case, we can verify it as follows. First take m(n) as $p_{m(n)-1} < \frac{1}{2}p_n \le p_{m(n)}$. For $k \in (2^{n-1}, 2^n]$, by $p_{n+1} - p_n = 0$, 1, we have $n - m(n) \ge p_n - p_{m(n)-1} - 1 \ge p_n/2 - 1$ and hence $m(n) \le n - p_n/2 + 1$. We divide $\sum_{j=1}^k 1/a_j$ into two parts and estimate as follows:

$$\sum_{j=1}^{2^{m(k)-1}} \frac{1}{a_j} \le \sum_{j=1}^{2^{m(k)-1}} \frac{1}{\sqrt{2j}} = O(2^{m(k)/2}) = O(2^{k/2}2^{-p_k/4}) = O(b_k),$$

$$\sum_{j=2^{m(n)-1}+1}^{k} \frac{1}{a_j} \le \frac{1}{\sqrt{2\log(p_k/2)}} \sum_{j=2^{m(n)-1}+1}^{k} \frac{1}{\sqrt{j}} \le \frac{O(\sqrt{k})}{\sqrt{2\log(p_k/2)}} = O(b_k).$$

Put $Y_j = X_j - Z_j - E(X_j - Z_j)$ and $T_n = Y_1 + \cdots + Y_n$. By $\sum E|Z_j|/a_j < \infty$ and $EX_n = 0$, we have $\sum |E(X_j - Z_j)|/a_j < \infty$ and $\sum_{j=1}^k E(X_j - Z_j) = o(a_k)$, and hence we have $S_n - T_n = o(a_n)$.

By the central limit theorem, T_n/a_n converges to 0 in probability, and hence $\min_{k< n} P(|T_n - T_k| \le \varepsilon a_n) \ge 1/2 > 0$ for large n. By Ottaviani's inequality we have $P(\max_{k=1}^n |T_k| \ge (1+2\varepsilon)a_n) \le 2P(|T_n| \ge (1+\varepsilon)a_n)$. By Lemma 1, the right hand side is bounded from above by $2\exp(-(1+\varepsilon)^2(2-\exp(\sqrt{1+\varepsilon}2\tau))\Phi(n))$. If we take τ small enough, it is less than $2e^{-\theta\Lambda(n)}$ where some $\theta > 1$. By this esitmate, denoting by

 $\sum_{n=0}^{\infty} n_n = \sum_{n=0}^{\infty} n_n = n_n = n_n$ the summation for all n satisfying $p_n = p_{n-1} + 1$, we have

$$\sum_{n}^{*} \sum_{j=0}^{l-1} P\left(\max_{k=1}^{[2^{n+j/l}]} |T_{k}| > (1+2\varepsilon) a_{[2^{n+j/l}]}\right) \le Cl \sum_{n}^{*} p_{n}^{-\theta} = Cl \sum_{n}^{\infty} n^{-\theta} < \infty.$$

By Borel-Cantelli Lemma, for large n and for $k \in ([2^{n+(j-1)/l}], [2^{n+j/l}]]$, we have $|T_k| \leq (1+2\varepsilon)a_{[2^{n+j/l}]} \leq (1+2\varepsilon)(1+o(1))2^{1/l}a_k$. Hence by letting $l \to \infty$ and $\varepsilon \downarrow 0$, we have $\limsup_{j\to\infty} T_{\nu_j}/a_{\nu_j} \leq 1$ a.s. This together with $S_n - T_n = o(a_n)$, we have the upper bound part of conclusion of our Theorem.

To have the lower bound part, we use the next lemma of [1].

Lemma 4. Let $\{X_n\}$ be an i.i.d. with $EX_n = 0$ and $EX_n = 1$. Put $S_n = X_1 + \cdots + X_n$. Let $m_k \in \mathbb{N}$, $\alpha_k > 0$, $\alpha_k/m_k \to 0$, and $\alpha_k^2/m_k \to \infty$. Then for every $b \in \mathbb{R}$, $\varepsilon > 0$,

$$\liminf_{k \to \infty} (m_k/\alpha_k^2) \log P(|S_{m_k}/\alpha_k - b| < \varepsilon) \ge -b^2/2.$$

For n satisfying $p_n = p_{n-1} + 1$, denote by μ_{p_n} the largest $\nu_j \in (2^{n-1}, 2^n]$. If $\mu_k \in (2^{i-1}, 2^i]$, then $p_i = k$ and $\Phi(\mu_k) \leq \Lambda(p_i) = \log k$. We see that $\mu_m/\mu_n \geq 2^{m-n-1}$. Putting

$$m_k = \mu_{lk} - \mu_{l(k-1)}, \quad \alpha_k = \sqrt{2(\mu_{lk} - \mu_{l(k-1)})\Phi(\mu_{lk})}, \quad \text{and} \quad b = 1 - 2\varepsilon,$$

and applying the above lemma, we have

$$P(S_{\mu_{lk}} - S_{\mu_{l(k-1)}} \ge (1 - 2\varepsilon)\alpha_k) \ge \exp(-(1 - \varepsilon)\Phi(\mu_{lk})) \ge (lk)^{-\theta},$$

where $\theta < 1$. Because of $\sum_{k} (lk)^{-\theta} = \infty$, by Borel-Cantelli Lemma and by upper bound estimate $|S_{\mu_{l(k-1)}}|/a_{\mu_{lk}} \leq (1+\varepsilon)\sqrt{1/2^{l-1}}$ f.e., we have

$$S_{\mu_{lk}}/a_{\mu_{lk}} \ge (1-2\varepsilon)\sqrt{1-1/2^{l-1}} - (1+\varepsilon)\sqrt{1/2^{l-1}}$$
 i.o.

By letting $l \to \infty$ and $\varepsilon \downarrow 0$, we have the lower bound part.

References

- [1] de Acosta, A., A new proof of the Hartman-Wintner law of the iterated logarithm, Ann. Probab., **11** (1983) 270-276.
- [2] Gut, A., Law of the iterated logarithm for subsequences, Prob. Math. Stat., 7 (1986) 27-58.
- [3] Schwabe, R. and Gut, A., On the law of the iterated logarithm for rapidly increasing subsequences Math. Nachr., 178 (1996) 309-320.
- [4] Weber, M., The law of the iterated logarithm on subsequences-characterizations, Nagoya Math. Jour., **118** (1990) 65-97.

Department of Mathematics, Kobe University, Rokko, Kobe, 657-8501, Japan

E-mail address: fukuyama@math.kobe-u.ac.jp