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Abstract

In this paper we consider the Wald test statistic proposed by Watt (1979) for testing
equality between the sets of regression coefficients in two linear regression models when the
disturbance variances may possibly be unequal. This test can be also used as a test for a
structural break. As shown by Ohtani and Toyoda (1985) and Honda and Ohtani (1986), the
test based on the Wald test statistic suffers from severe size distortion in small sample when
the disturbance variances of the two regression models are unequal. Our simulation results
show that substantial improvements are made when the bootstrap methods are applied.

1 Introduction

The test proposed by Chow (1960) has been widely used to test equality between sets of co-

efficients in two linear regression models, or to test the existence of a structural break in a

regression model. However, it is well known that the Chow test suffers from poor performance if

the regression model is heteroscedastic, or the disturbance variances of the two linear regression

models are unequal. [See Toyoda (1974) and Schmidt and Sickles (1977).]

To tackle this drawback of the Chow test, several authors proposed alternative testing proce-

dures which are applicable when the disturbance terms are heteroscedastic. Some examples are

∗The author is grateful to Kazuhiro Ohtani for his helpful comments and suggestions. He also would like to
thank an anonymous referee who provided various comments which greatly improve the previous version of the
paper. This work was supported by JSPS KAKENHI Grant Number 23243038, 26780136.
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Watt (1979), Jayatissa (1977) and Rothenberg (1984). See also Thursby (1992) for comparisons

of several testing methods and their performances. In particular, Watt (1979) proposed the test

based on the Wald test statistic. According to Ohtani and Kobayashi (1986) and Thursby (1992),

Watt’s (1979) test is more powerful than Jayatissa’s (1977) test.

Though the test statistic proposed by Watt (1979) is easy to compute, its exact distribution

is very complex [See Kobayashi (1986) and Phillips (1986)]. Thus, Watt (1979) proposed to use

critical values of a chi-squared distribution based on its asymptotic distribution. However, if we

use the critical values of a chi-squared distribution, the test proposed by Watt (1979) suffers

from size distortion when the sample size is small. See, e.g., Ohtani and Toyoda (1985) and

Honda and Ohtani (1986). In order to avoid this size distortion, Ohtani and Kobayashi (1986)

and Kobayashi (1986) proposed bounds test based on the Wald test statistic. Since their test

is based on the upper and lower bounds of the Wald test statistic proposed by Watt (1979),

there inherently exists an inconclusive region for the test statistic. Also, Weerahandi (1987)

proposed a test which is exact under the normality assumption of disturbances. Though Weer-

ahandi’s (1987) test is exact, it requires a numerical integration when calculating the p-value of

the test statistic and is not easy to implement.

The above procedures are required since the exact distribution of the Wald test statistic

proposed by Watt (1979) is complex when the sample size is small. When the exact distri-

bution of a statistic is complex or unknown, the bootstrap method proposed by Efron (1979)

is sometimes useful. In particular, as shown by Beran (1987, 1988) [see also Hall (1992)], the

procedure based on the bootstrap methods yields more accurate results than the conventional

asymptotic procedure when the statistic is asymptotically pivotal, i.e., the asymptotic distri-

bution of the statistic does not depend on unknown parameters. Since the Wald test statistic

is asymptotically distributed as a chi-squared distribution with known degrees of freedom, it

is asymptotically pivotal. Therefore, an improvement is expected if the bootstrap method is

applied to the Wald test statistic proposed by Watt (1979). Also, Liu (1988) proposed the wild

bootstrap method which is second-order correct under heteroscedasticity and Mammen (1993)

proposed a procedure which satisfies Liu’s (1988) condition.

Recent literature includes models which permit multiple structural breaks and unknown

break points and the methods to investigate them. See, e.g., Andrews (1993,) Bai and Per-

ron (1998), Perron (2006), Boldea et al. (2012), Hall et al. (2012), Perron and Yamamoto (2014)

and references therein. However, to examine the validity of the proposed methods and for sim-

2



plicity, we focus on the model with one possible structural break and a known break point. Thus,

in this paper, we apply the bootstrap methods to the test statistic proposed by Watt (1979).

We examine the size and the power of the bootstrap test by Monte Carlo simulations. The

organization of the paper is as follows. In the next section, we introduce the model and the

test statistic. Also the ways to apply the bootstrap methods to the test statistic are explained.

It turns out that the bootstrap procedure gets simplified because of the structure of the test

statistic. In section 3, we examine the performance of the bootstrap test by simulations. The

simulation results show that the size distortion and of Watt’s (1979) test is substantially im-

proved by the bootstrap methods. It is also shown that the power of the test can be improved

by the wild bootstrap methods. Finally, some concluding remarks are given in section 4.

2 Model, test statistic and the bootstrap methods

Consider two linear regression models

yi = Xi βi + ϵi, i = 1, 2, (1)

where yi is an ni × 1 vector of observations on a dependent variable, Xi is an ni × k matrix of

observations on nonstochastic explanatory variables, βi is a k × 1 vector of coefficients, and ϵ is

an ni × 1 vector of error terms and ϵi ∼ N(0, σ2
i Ini). Also, we assume that Xi is of full column

rank.

The task considered in this paper is to test the null hypothesis H0 : β1 = β2 against the

alternative H1 : β1 ̸= β2. If i denotes the regime, accepting H0 implies that there is no structural

break.

If σ2
1 = σ2

2, i.e., the disturbance variances of the two regression models are equal, we can easily

test the null hypothesis using the Chow test proposed by Chow (1960). However, as shown by

Toyoda (1974) and Schmidt and Sickles (1977), the Chow test has a very poor performance when

σ2
1 ̸= σ2

2. Thus, Watt (1979) proposed the Wald test statistic which takes the heteroscedasticity

into consideration:

W = (b1 − b2)
′ [s21(X ′

1X1)
−1 + s22(X

′
2X2)

−1
]−1

(b1 − b2), (2)

where bi and s2i are the least squares estimator of βi and σ2
i . Though this Wald test statistic is

asymptotically valid, as shown by Ohtani and Toyoda (1985) and Honda and Ohtani (1986), the

test based on this statistic suffers from size distortion in small samples if the critical values of a

chi-squared distribution are used. One way of coping with the size distortion is executing the test
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based on the the upper and lower bounds of the Wald test statistic as proposed by Ohtani and

Kobayashi (1986) and Kobayashi (1986). However, this testing procedure inherently includes the

inconclusive region. Also, Weerahandi (1987) proposed a test which is exact under normality

of the disturbance. However, Weerahandi’s (1987) test requires numerical integration when

calculating the p-value of the test statistic and is not easy to implement.

Thus, in this paper, we consider a more direct method, i.e., the bootstrap method proposed

by Efron (1979). As shown by Beran (1987, 1988), inferences based on asymptotic distributions

can be improved by applying the bootstrap if the statistic considered is asymptotically pivotal,

i.e., the asymptotic distribution of the statistic does not depend on unknown parameters. Since

the asymptotic distribution of the Wald test statistic given in (2) is a chi-squared distribution

with k degrees of freedom, it is asymptotically pivotal. Thus, by applying the bootstrap method

to W , a reduction in the size distortion of the test is expected.

The application of the bootstrap method to W is summarized as follows:

1. Estimate βi and σ2
i by the ordinary least squares (OLS) method and obtain bi and s2i .

Calculate the value of the Wald test statistic W given in (2).

2. Let ei = yi −Xibi be the residual vector for i = 1, 2. Following Wu (1986), we first rescale

the residual vector as ẽi =
√

ni/(ni − k) ei . Drawing a sample of size ni from the elements

of the rescaled residual with replacement and stacking them as an ni×1 vector, we obtain

a bootstrap sample vector e∗i for i = 1, 2.

3. Regressing e∗i on Xi, obtain bootstrap estimates b∗i and s2∗i for i = 1, 2. Using these

estimates, calculate the bootstrap version of the Wald test statistic:

W ∗ = (b∗1 − b∗2)
′ [s2∗1 (X ′

1X1)
−1 + s2∗2 (X ′

2X2)
−1
]−1

(b∗1 − b∗2). (3)

4. Repeating the steps 2 and 3 above B times, and calculating the ratio that W ∗ exceeds W ,

we obtain the p-value of the test based on the bootstrap method. Thus, if the obtained

p-value is less than the assigned significance level, H0 : β1 = β2 is rejected.

We call the above procedure the ordinary bootstrap method. In order to cope with the het-

eroscedasticity, the bootstrap sample vector is e∗i is constructed from the residuals obtained by

regressing subsample yi on Xi in step 2 above. Note that, in step 3 above, we simply regress e∗i

on Xi in order to obtain bootstrap estimates. In the ordinary bootstrap procedure for a regres-

sion model, we usually calculate a bootstrap sample of the dependent variable y∗i = Xi β̄i + e∗i
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where β̄i is any estimator of βi, and obtain bootstrap estimates by regressing y∗i on Xi. Since,

when testing a null hypothesis, a bootstrap sample must be drawn from a model such that the

null hypothesis is hold, we need to use an estimator which satisfies β̄1 = β̄2 = β̄. However, if we

regress y∗i instead of e∗i under the condition β̄1 = β̄2 = β̄, we obtain

b∗1 − b∗2 = (X ′
1X1)

−1X ′
1y

∗
1 − (X ′

2X2)
−1X ′

2y
∗
2

= (X ′
1X1)

−1X ′
1e

∗
1 − (X ′

2X2)
−1X ′

2e
∗
2. (4)

This implies that the bootstrap version of the Wald test statistic W ∗ given in (3) is independent

of the choice of β̄ and that the value ofW ∗ is unchanged whatever estimate β̄ may be used. Thus,

by using the zero vector as β̄, we can simply regress e∗i on Xi, and the bootstrap resampling

gets simplified because of the structure of the Wald test statistic W .

We also consider to apply the wild bootstrap method proposed by Liu (1988) since the

wild bootstrap is second-order correct under heteroscedasticity1. In the wild bootstrap method,

step 2 in the ordinary bootstrap procedure explained above is modified as follows.

2′ Similar to the case of ordinary bootstrap, we first rescale the residuals as ẽij =
√

ni/(ni − k) eij ,

where ẽij and eij are the jth elements of ei and ẽi. Drawing random samples zj (j =

1, 2, . . . , ni) from a pick distribution defined below, and let e∗ij = zj ẽij where e∗ij is the jth

element of e∗i .

In the wild bootstrap methods, residuals can be calculated from either restricted or unrestricted

estimator. In the above procedure, the residuals are calculated based on unrestricted estimator

(i.e., b1 ̸= b2). When we use the restricted estimator, ei and ni in step 2′ are replaced by e

and n = n1 + n2, where e = y −Xb, b = (X ′X)−1X ′y, y = [y′1, y
′
2]
′ and X = [X ′

1, X
′
2]
′. Thus,

the wild bootstrap resampling based on the unrestricted estimator can be considered as the

method based on the subsamples, while the resampling based on the restricted estimator can be

considered as the one based on the whole sample.

Liu (1988) showed that the wild bootstrap is second-order correct under heteroscedasticity if

the random draw zi from a pick distribution satisfies E[zi] = 0, E[z2i ] = 1 and E[z3i ] = 1. Thus,

Mammen (1993) proposed to use the following distribution as a pick distribution in the wild

bootstrap:

P

(
zi =

1−
√
5

2

)
=

√
5 + 1

2
√
5

and P

(
zi =

1 +
√
5

2

)
= 1−

√
5 + 1

2
√
5

. (5)

1The author is grateful to an anonymous referee who proposed to apply the wild bootstrap method.
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It is easy to show that zi satisfies the condition in Liu (1988). Also, Davidson and Flachaire (2008)

proposed to use the following pick distribution:

P(zi = 1) = P(zi = −1) =
1

2
. (6)

A random sample from this distribution does not satisfy the condition in Liu (1988) since

E[z3i ] = 0. However, Flachaire’s (2005) simulation results show that this pick distribution yields

better performance than the pick distribution proposed by Mammen (1993).

3 Simulation results

In this section, we examine the performance of the bootstrap tests introduced in section 2 by

Monte Carlo simulations. As for the pick distribution in the wild bootstrap, we use both of

the distributions proposed by Mammen (1993) and Davidson and Flachaire (2008). Also, as

stated in the previous section, the residuals based on both unrestricted estimator (i.e., b1 and

b2) and restricted estimator (i.e., b) can be utilized in the wild bootstrap. To see the effect of the

restriction, we executed simulations for both cases. The design of the simulation is as follows:

1. For simplicity, we assume k = 2 and xij = [1, uj ], where xij is the jth element of Xi and

uj is a random sample drawn from U[0, 1]. Thus, the regression model has an intercept

and one explanatory variable.

2. Using the number of iteration of resampling in bootstrap B = 1000, and letting β11 =

β12 = σ1 = 1, and β21, β22, σ2, n1, n2 = several values, where βij is the jth element of

βi, we iterated the procedure explained in the previous section M = 100000 times and

test the null hypothesis at α = 0.10 (10%), 0.05 (5%) and 0.01 (1%) significance levels.

Calculating the ratio when the null hypothesis is rejected out of M = 100000 times, we

obtain the empirical power of the test.

Through our simulations, we found that the size distortion of the Wald test which utilized critical

values is severe when the differences between σ1, n1 and σ2, n2 are large. This coincides with

the results in Ohtani and Toyoda (1985). Though we do not show all the results, the results

shown here are typical ones obtained by our experiments.

Table 1a shows the empirical sizes (i.e., the empirical power for β11 = β21 and β12 = β22) of

the ordinary bootstrap test and the Wald test based on asymptotic critical values (i.e., critical

values from a chi-squared distribution) for the case of n1 = 10 and n2 = 50. Hereafter, we call
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the latter asymptotic test for simplicity. To evaluate the accuracy of the tests, we test the null

hypothesis H′
0 that the size of the test is equal to the assigned significance level α by means of

the normal approximation of a binomial distribution. ∗, † and ‡ denote that the null hypothesis

is rejected at the 10%, 5% and 1% significance levels, respectively.

We can also see from Table 1a that the size distortion of asymptotic test is very severe. H′
0 is

rejected at 0.01% significance level in all cases considered here. Note that severe size distortion

exists even when the disturbance variance is not heteroscedastic (i.e., σ2 = 1.0). We can also

see that the bootstrap test yields more reliable results than the asymptotic test. There are cases

where H′
0 can not be rejected. Though H′

0 is rejected in some cases, the bootstrap test yield

empirical sizes much closer to the nominal significance level than the asymptotic test even in

such cases.

Table 1b and Table 1c show the results for the wild bootstrap when the pick distributions

proposed by Mammen (1993) and Davidson and Flachaire (2008) are used, respectively. From

these tables, we can see that the choice of the pick distribution does not affect the sizes of the

wild bootstrap tests considered in this paper. Also, we can see that the results based on the

restricted estimator are preferable than the ones based on unrestricted estimator. This may be

caused by the fact that the restricted estimator is calculated using the whole sample while the

unrestricted estimator is calculated using the subsample. These tables indicates that the sizes

of the wild bootstrap tests are not so accurate as the ordinary bootstrap test even when the

restricted estimator is used in wild bootstrap tests.

Tables 2a–2c show the empirical sizes for n1 = 20 and n2 = 50. Comparing Tables 1a-1c

and 2a–2c, we can see that the size distortions of both tests decrease as n1 increases. Similar

to the results in Tables 1a–1c, we can see that the size of the ordinary bootstrap test is most

accurate among the proposed tests, and that the effect of the choice of the pick distribution in

the wild bootstrap tests is small. Also, wild bootstrap tests based on the restricted estimator

yield preferable sizes than the ones based on the unrestricted estimator. Though we do not

show other results, we obtained the similar results for the other cases. Also, all our simulation

results show that the size distortions of all the tests decrease as n1 and n2 increase and that the

ordinary bootstrap test is most reliable when n1 and n2 is small.

Also, through our simulations, we found that the changes in β21 and β22 have similar effects

on the empirical power of the tests. Thus, to investigate the power of the tests, we calculate

the empirical power of the tests for various values of β21, while fixing the other parameters
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Table 1a: Empirical sizes of asymptotic and bootstrap tests
at 10%, 5% and 1% significance levels for n1 = 10 and n2 = 50.

Asymptotic test Ordinary bootstrap

σ2 10% 5% 1% 10% 5% 1%

0.1 0.16074‡ 0.10576‡ 0.04583‡ 0.09065‡ 0.04187‡ 0.00822‡

0.2 0.16051‡ 0.10589‡ 0.04587‡ 0.09187‡ 0.04321‡ 0.00877‡

0.3 0.15943‡ 0.10352‡ 0.04440‡ 0.09249‡ 0.04492‡ 0.00954

0.4 0.15838‡ 0.10294‡ 0.04351‡ 0.09557‡ 0.04694‡ 0.01078†

0.5 0.15609‡ 0.10058‡ 0.04172‡ 0.09679‡ 0.04824† 0.01149‡

0.6 0.15226‡ 0.09681‡ 0.04000‡ 0.09604‡ 0.04863† 0.01170‡

0.7 0.14952‡ 0.09592‡ 0.03874‡ 0.09790† 0.05037 0.01163‡

0.8 0.14838‡ 0.09485‡ 0.03663‡ 0.09956 0.05028 0.01131‡

0.9 0.14940‡ 0.09366‡ 0.03599‡ 0.10059 0.05187‡ 0.01189‡

1.0 0.14785‡ 0.09327‡ 0.03566‡ 0.10218† 0.05228‡ 0.01205‡

1.1 0.14379‡ 0.08848‡ 0.03310‡ 0.09943 0.05037 0.01165‡

1.2 0.14342‡ 0.08834‡ 0.03233‡ 0.10024 0.05097 0.01187‡

1.3 0.14179‡ 0.08737‡ 0.03274‡ 0.10095 0.05209‡ 0.01215‡

1.4 0.14177‡ 0.08682‡ 0.03276‡ 0.10109 0.05244‡ 0.01261‡

1.5 0.14026‡ 0.08662‡ 0.03197‡ 0.10129 0.05274‡ 0.01194‡

1.6 0.13936‡ 0.08524‡ 0.03067‡ 0.10104 0.05150† 0.01190‡

1.7 0.14051‡ 0.08630‡ 0.03035‡ 0.10398‡ 0.05353‡ 0.01237‡

1.8 0.13818‡ 0.08312‡ 0.03006‡ 0.10178∗ 0.05182‡ 0.01231‡

1.9 0.13878‡ 0.08396‡ 0.02969‡ 0.10296‡ 0.05284‡ 0.01270‡

2.0 0.13607‡ 0.08193‡ 0.02927‡ 0.10119 0.05181‡ 0.01192‡

2.1 0.13601‡ 0.08135‡ 0.02893‡ 0.10068 0.05186‡ 0.01220‡

2.2 0.13689‡ 0.08137‡ 0.02886‡ 0.10116 0.05225‡ 0.01274‡

2.3 0.13521‡ 0.08029‡ 0.02708‡ 0.10043 0.05198‡ 0.01196‡

2.4 0.13476‡ 0.08064‡ 0.02739‡ 0.10216† 0.05200‡ 0.01215‡

2.5 0.13604‡ 0.08130‡ 0.02767‡ 0.10257‡ 0.05337‡ 0.01251‡

2.6 0.13569‡ 0.08111‡ 0.02843‡ 0.10300‡ 0.05356‡ 0.01315‡

2.7 0.13498‡ 0.07870‡ 0.02657‡ 0.10197† 0.05127∗ 0.01260‡

2.8 0.13288‡ 0.07799‡ 0.02689‡ 0.10031 0.05194‡ 0.01293‡

2.9 0.13428‡ 0.07992‡ 0.02702‡ 0.10308‡ 0.05287‡ 0.01244‡

3.0 0.13229‡ 0.07757‡ 0.02581‡ 0.10134 0.05133∗ 0.01233‡

3.1 0.13222‡ 0.07706‡ 0.02589‡ 0.10124 0.05155† 0.01236‡

3.2 0.13157‡ 0.07689‡ 0.02523‡ 0.10197† 0.05149† 0.01265‡

3.3 0.13093‡ 0.07709‡ 0.02580‡ 0.10066 0.05192‡ 0.01267‡

3.4 0.13103‡ 0.07594‡ 0.02424‡ 0.10154 0.05121∗ 0.01199‡

3.5 0.13118‡ 0.07655‡ 0.02434‡ 0.10141 0.05128∗ 0.01225‡

3.6 0.13118‡ 0.07683‡ 0.02486‡ 0.10185∗ 0.05174† 0.01282‡

3.7 0.13123‡ 0.07696‡ 0.02435‡ 0.10289‡ 0.05192‡ 0.01231‡

3.8 0.12994‡ 0.07597‡ 0.02442‡ 0.10259‡ 0.05232‡ 0.01251‡

3.9 0.12821‡ 0.07461‡ 0.02280‡ 0.10071 0.05108 0.01196‡
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Table 1b: Empirical sizes of Mammen’s (1993) wild bootstrap tests
at 10%, 5% and 1% significance levels for n1 = 10 and n2 = 50.

Wild bootstrap (unrestricted) Wild bootstrap (restricted)

σ2 10% 5% 1% 10% 5% 1%

0.1 0.15130‡ 0.09703‡ 0.04069‡ 0.11245‡ 0.05548‡ 0.01308‡

0.2 0.15217‡ 0.09765‡ 0.04168‡ 0.11103‡ 0.05543‡ 0.01253‡

0.3 0.15302‡ 0.09761‡ 0.04095‡ 0.11042‡ 0.05507‡ 0.01244‡

0.4 0.14962‡ 0.09552‡ 0.03953‡ 0.10714‡ 0.05286‡ 0.01028

0.5 0.14897‡ 0.09465‡ 0.03812‡ 0.10583‡ 0.05161† 0.00985

0.6 0.14944‡ 0.09302‡ 0.03722‡ 0.10531‡ 0.05098 0.00887‡

0.7 0.14462‡ 0.09042‡ 0.03632‡ 0.10213† 0.04892 0.00811‡

0.8 0.14362‡ 0.08926‡ 0.03497‡ 0.10110 0.04885∗ 0.00739‡

0.9 0.14277‡ 0.08720‡ 0.03320‡ 0.10078 0.04653‡ 0.00674‡

1.0 0.13985‡ 0.08471‡ 0.03121‡ 0.09850 0.04526‡ 0.00614‡

1.1 0.13727‡ 0.08229‡ 0.02944‡ 0.09712‡ 0.04527‡ 0.00590‡

1.2 0.13445‡ 0.08065‡ 0.02844‡ 0.09507‡ 0.04326‡ 0.00532‡

1.3 0.13256‡ 0.07800‡ 0.02702‡ 0.09382‡ 0.04212‡ 0.00496‡

1.4 0.13121‡ 0.07793‡ 0.02613‡ 0.09360‡ 0.04170‡ 0.00483‡

1.5 0.13039‡ 0.07693‡ 0.02526‡ 0.09356‡ 0.04146‡ 0.00457‡

1.6 0.12794‡ 0.07379‡ 0.02402‡ 0.09236‡ 0.04030‡ 0.00466‡

1.7 0.12576‡ 0.07295‡ 0.02321‡ 0.09097‡ 0.03891‡ 0.00411‡

1.8 0.12400‡ 0.07078‡ 0.02156‡ 0.08860‡ 0.03845‡ 0.00370‡

1.9 0.12154‡ 0.06796‡ 0.01969‡ 0.08662‡ 0.03603‡ 0.00360‡

2.0 0.12283‡ 0.06988‡ 0.02076‡ 0.08845‡ 0.03785‡ 0.00323‡

2.1 0.11864‡ 0.06716‡ 0.01961‡ 0.08640‡ 0.03706‡ 0.00325‡

2.2 0.11907‡ 0.06549‡ 0.01831‡ 0.08617‡ 0.03535‡ 0.00292‡

2.3 0.11925‡ 0.06664‡ 0.01879‡ 0.08753‡ 0.03631‡ 0.00316‡

2.4 0.11811‡ 0.06462‡ 0.01785‡ 0.08542‡ 0.03512‡ 0.00327‡

2.5 0.11354‡ 0.06346‡ 0.01775‡ 0.08304‡ 0.03504‡ 0.00275‡

2.6 0.11495‡ 0.06265‡ 0.01753‡ 0.08390‡ 0.03515‡ 0.00274‡

2.7 0.11637‡ 0.06380‡ 0.01755‡ 0.08583‡ 0.03518‡ 0.00301‡

2.8 0.11397‡ 0.06239‡ 0.01641‡ 0.08444‡ 0.03402‡ 0.00278‡

2.9 0.11344‡ 0.06100‡ 0.01677‡ 0.08400‡ 0.03409‡ 0.00275‡

3.0 0.11307‡ 0.06177‡ 0.01632‡ 0.08445‡ 0.03432‡ 0.00270‡

3.1 0.11105‡ 0.06042‡ 0.01660‡ 0.08215‡ 0.03360‡ 0.00271‡

3.2 0.11197‡ 0.05980‡ 0.01588‡ 0.08293‡ 0.03350‡ 0.00240‡

3.3 0.11049‡ 0.05967‡ 0.01531‡ 0.08235‡ 0.03247‡ 0.00245‡

3.4 0.11072‡ 0.05927‡ 0.01568‡ 0.08221‡ 0.03352‡ 0.00289‡

3.5 0.11087‡ 0.05877‡ 0.01491‡ 0.08278‡ 0.03294‡ 0.00239‡

3.6 0.11114‡ 0.05935‡ 0.01510‡ 0.08267‡ 0.03378‡ 0.00229‡

3.7 0.10934‡ 0.05709‡ 0.01464‡ 0.08059‡ 0.03122‡ 0.00223‡

3.8 0.11162‡ 0.06066‡ 0.01594‡ 0.08352‡ 0.03384‡ 0.00256‡

3.9 0.10902‡ 0.05904‡ 0.01531‡ 0.08202‡ 0.03336‡ 0.00254‡
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Table 1c: Empirical sizes of Davidson and Flachaire’s (2008) wild bootstrap tests
at 10%, 5% and 1% significance levels for n1 = 10 and n2 = 50.

Wild bootstrap (unrestricted) Wild bootstrap (restricted)

σ2 10% 5% 1% 10% 5% 1%

0.1 0.12597‡ 0.07243‡ 0.02563‡ 0.11190‡ 0.06058‡ 0.01833‡

0.2 0.12709‡ 0.07376‡ 0.02688‡ 0.11198‡ 0.06081‡ 0.01862‡

0.3 0.12831‡ 0.07453‡ 0.02770‡ 0.11207‡ 0.06209‡ 0.01854‡

0.4 0.12599‡ 0.07318‡ 0.02696‡ 0.11023‡ 0.06019‡ 0.01695‡

0.5 0.12711‡ 0.07446‡ 0.02663‡ 0.10981‡ 0.05923‡ 0.01655‡

0.6 0.12837‡ 0.07485‡ 0.02601‡ 0.10973‡ 0.05877‡ 0.01569‡

0.7 0.12618‡ 0.07389‡ 0.02628‡ 0.10680‡ 0.05697‡ 0.01432‡

0.8 0.12619‡ 0.07375‡ 0.02635‡ 0.10616‡ 0.05584‡ 0.01285‡

0.9 0.12631‡ 0.07342‡ 0.02477‡ 0.10513‡ 0.05339‡ 0.01226‡

1.0 0.12448‡ 0.07204‡ 0.02437‡ 0.10317‡ 0.05330‡ 0.01142‡

1.1 0.12487‡ 0.07193‡ 0.02398‡ 0.10258‡ 0.05210‡ 0.01089‡

1.2 0.12470‡ 0.07067‡ 0.02268‡ 0.10181∗ 0.05112 0.00987

1.3 0.12277‡ 0.06982‡ 0.02211‡ 0.09888 0.04928 0.00912‡

1.4 0.12203‡ 0.06858‡ 0.02121‡ 0.09760† 0.04805‡ 0.00844‡

1.5 0.12221‡ 0.06920‡ 0.02056‡ 0.09815∗ 0.04700‡ 0.00754‡

1.6 0.12244‡ 0.06921‡ 0.02090‡ 0.09676‡ 0.04643‡ 0.00772‡

1.7 0.12062‡ 0.06714‡ 0.01940‡ 0.09538‡ 0.04452‡ 0.00710‡

1.8 0.11938‡ 0.06693‡ 0.01896‡ 0.09452‡ 0.04241‡ 0.00657‡

1.9 0.11775‡ 0.06499‡ 0.01845‡ 0.09167‡ 0.04193‡ 0.00572‡

2.0 0.11610‡ 0.06273‡ 0.01676‡ 0.08912‡ 0.03943‡ 0.00518‡

2.1 0.11776‡ 0.06455‡ 0.01770‡ 0.09141‡ 0.04084‡ 0.00540‡

2.2 0.11441‡ 0.06255‡ 0.01676‡ 0.08870‡ 0.04003‡ 0.00487‡

2.3 0.11554‡ 0.06142‡ 0.01566‡ 0.08892‡ 0.03834‡ 0.00469‡

2.4 0.11472‡ 0.06287‡ 0.01611‡ 0.08951‡ 0.03835‡ 0.00480‡

2.5 0.11448‡ 0.06104‡ 0.01533‡ 0.08777‡ 0.03765‡ 0.00480‡

2.6 0.11042‡ 0.05987‡ 0.01543‡ 0.08482‡ 0.03705‡ 0.00401‡

2.7 0.11203‡ 0.05984‡ 0.01493‡ 0.08592‡ 0.03733‡ 0.00414‡

2.8 0.11355‡ 0.06088‡ 0.01538‡ 0.08777‡ 0.03686‡ 0.00409‡

2.9 0.11138‡ 0.05926‡ 0.01450‡ 0.08619‡ 0.03565‡ 0.00378‡

3.0 0.11097‡ 0.05811‡ 0.01448‡ 0.08457‡ 0.03551‡ 0.00369‡

3.1 0.11064‡ 0.05905‡ 0.01420‡ 0.08577‡ 0.03604‡ 0.00368‡

3.2 0.10864‡ 0.05767‡ 0.01435‡ 0.08330‡ 0.03479‡ 0.00356‡

3.3 0.11000‡ 0.05709‡ 0.01419‡ 0.08408‡ 0.03466‡ 0.00353‡

3.4 0.10859‡ 0.05639‡ 0.01370‡ 0.08323‡ 0.03379‡ 0.00324‡

3.5 0.10881‡ 0.05698‡ 0.01385‡ 0.08321‡ 0.03491‡ 0.00377‡

3.6 0.10922‡ 0.05653‡ 0.01286‡ 0.08353‡ 0.03421‡ 0.00295‡

3.7 0.10916‡ 0.05703‡ 0.01339‡ 0.08361‡ 0.03451‡ 0.00315‡

3.8 0.10708‡ 0.05470‡ 0.01283‡ 0.08170‡ 0.03242‡ 0.00310‡

3.9 0.10931‡ 0.05849‡ 0.01412‡ 0.08426‡ 0.03480‡ 0.00313‡
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Table 2a: Empirical sizes of asymptotic and bootstrap tests
at 10%, 5% and 1% significance levels for n1 = 20 and n2 = 50.

Asymptotic test Ordinary bootstrap

σ2 10% 5% 1% 10% 5% 1%

0.1 0.12725‡ 0.07468‡ 0.02378‡ 0.09751‡ 0.04806‡ 0.00905‡

0.2 0.12700‡ 0.07492‡ 0.02350‡ 0.09803† 0.04970 0.01018

0.3 0.12439‡ 0.07231‡ 0.02245‡ 0.09817∗ 0.04866∗ 0.00995

0.4 0.12532‡ 0.07121‡ 0.02229‡ 0.09896 0.04872∗ 0.01046

0.5 0.12401‡ 0.07086‡ 0.02140‡ 0.10035 0.05040 0.01082‡

0.6 0.12128‡ 0.06934‡ 0.02101‡ 0.09951 0.05023 0.01123‡

0.7 0.12178‡ 0.06907‡ 0.02037‡ 0.10096 0.05156† 0.01116‡

0.8 0.11983‡ 0.06693‡ 0.01936‡ 0.09945 0.04984 0.01105‡

0.9 0.11971‡ 0.06708‡ 0.01897‡ 0.09993 0.05034 0.01112‡

1.0 0.12312‡ 0.06852‡ 0.01958‡ 0.10304‡ 0.05223‡ 0.01104‡

1.1 0.11884‡ 0.06651‡ 0.01858‡ 0.10002 0.05062 0.01094‡

1.2 0.11785‡ 0.06542‡ 0.01823‡ 0.09986 0.05051 0.01098‡

1.3 0.12061‡ 0.06727‡ 0.01859‡ 0.10292‡ 0.05229‡ 0.01113‡

1.4 0.11742‡ 0.06548‡ 0.01812‡ 0.10026 0.05079 0.01109‡

1.5 0.12033‡ 0.06693‡ 0.01821‡ 0.10246‡ 0.05162† 0.01066†

1.6 0.11813‡ 0.06657‡ 0.01801‡ 0.10109 0.05257‡ 0.01096‡

1.7 0.11677‡ 0.06473‡ 0.01770‡ 0.09973 0.05034 0.01080†

1.8 0.11877‡ 0.06572‡ 0.01833‡ 0.10152 0.05111 0.01125‡

1.9 0.11964‡ 0.06536‡ 0.01772‡ 0.10164∗ 0.05088 0.01077†

2.0 0.11845‡ 0.06507‡ 0.01777‡ 0.10058 0.05055 0.01108‡

2.1 0.11820‡ 0.06600‡ 0.01780‡ 0.10055 0.05132∗ 0.01114‡

2.2 0.11702‡ 0.06475‡ 0.01804‡ 0.10056 0.05066 0.01140‡

2.3 0.11561‡ 0.06405‡ 0.01724‡ 0.09905 0.04987 0.01061∗

2.4 0.11817‡ 0.06459‡ 0.01720‡ 0.10040 0.05081 0.01075†

2.5 0.11839‡ 0.06535‡ 0.01801‡ 0.10148 0.05131∗ 0.01110‡

2.6 0.11704‡ 0.06481‡ 0.01704‡ 0.10010 0.05066 0.01072†

2.7 0.11762‡ 0.06461‡ 0.01801‡ 0.10036 0.05086 0.01107‡

2.8 0.11877‡ 0.06452‡ 0.01761‡ 0.10204† 0.05043 0.01088‡

2.9 0.11740‡ 0.06477‡ 0.01696‡ 0.10076 0.05073 0.01044

3.0 0.11671‡ 0.06388‡ 0.01681‡ 0.09984 0.05026 0.01052∗

3.1 0.11777‡ 0.06466‡ 0.01685‡ 0.10105 0.05063 0.01098‡

3.2 0.11552‡ 0.06361‡ 0.01740‡ 0.09926 0.04991 0.01082‡

3.3 0.11824‡ 0.06597‡ 0.01759‡ 0.10267‡ 0.05232‡ 0.01156‡

3.4 0.11639‡ 0.06466‡ 0.01751‡ 0.10092 0.05062 0.01143‡

3.5 0.11613‡ 0.06367‡ 0.01709‡ 0.09974 0.05036 0.01098‡

3.6 0.11499‡ 0.06374‡ 0.01564‡ 0.09931 0.04990 0.00999

3.7 0.11573‡ 0.06343‡ 0.01687‡ 0.10061 0.04994 0.01094‡

3.8 0.11711‡ 0.06446‡ 0.01737‡ 0.10144 0.05126∗ 0.01122‡

3.9 0.11700‡ 0.06433‡ 0.01745‡ 0.10167∗ 0.05140† 0.01090‡
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Table 2b: Empirical sizes of Mammen’s (1993) wild bootstrap tests
at 10%, 5% and 1% significance levels for n1 = 20 and n2 = 50.

Wild bootstrap (unrestricted) Wild bootstrap (restricted)

σ2 10% 5% 1% 10% 5% 1%

0.1 0.12517‡ 0.07191‡ 0.02347‡ 0.10738‡ 0.05498‡ 0.01197‡

0.2 0.12595‡ 0.07384‡ 0.02370‡ 0.10826‡ 0.05688‡ 0.01220‡

0.3 0.12507‡ 0.07196‡ 0.02364‡ 0.10769‡ 0.05540‡ 0.01179‡

0.4 0.12414‡ 0.07177‡ 0.02276‡ 0.10680‡ 0.05503‡ 0.01180‡

0.5 0.12195‡ 0.06953‡ 0.02214‡ 0.10527‡ 0.05394‡ 0.01114‡

0.6 0.12114‡ 0.06846‡ 0.02086‡ 0.10415‡ 0.05304‡ 0.01062†

0.7 0.11976‡ 0.06873‡ 0.02080‡ 0.10505‡ 0.05340‡ 0.01074†

0.8 0.11822‡ 0.06635‡ 0.01926‡ 0.10350‡ 0.05176† 0.00994

0.9 0.11592‡ 0.06393‡ 0.01868‡ 0.10089 0.05011 0.00971

1.0 0.11525‡ 0.06320‡ 0.01800‡ 0.10031 0.05009 0.00932†

1.1 0.11485‡ 0.06233‡ 0.01736‡ 0.10065 0.04930 0.00905‡

1.2 0.11435‡ 0.06324‡ 0.01684‡ 0.10025 0.05009 0.00893‡

1.3 0.11482‡ 0.06224‡ 0.01685‡ 0.10106 0.05010 0.00910‡

1.4 0.11246‡ 0.06096‡ 0.01604‡ 0.09991 0.04892 0.00867‡

1.5 0.11099‡ 0.06010‡ 0.01603‡ 0.09803† 0.04888 0.00884‡

1.6 0.10995‡ 0.05911‡ 0.01480‡ 0.09796† 0.04787‡ 0.00812‡

1.7 0.10877‡ 0.05872‡ 0.01499‡ 0.09668‡ 0.04762‡ 0.00829‡

1.8 0.10880‡ 0.05758‡ 0.01464‡ 0.09818∗ 0.04697‡ 0.00817‡

1.9 0.10889‡ 0.05723‡ 0.01466‡ 0.09728‡ 0.04665‡ 0.00830‡

2.0 0.10742‡ 0.05692‡ 0.01472‡ 0.09557‡ 0.04674‡ 0.00822‡

2.1 0.10848‡ 0.05729‡ 0.01415‡ 0.09699‡ 0.04682‡ 0.00816‡

2.2 0.10846‡ 0.05742‡ 0.01489‡ 0.09777† 0.04720‡ 0.00874‡

2.3 0.10703‡ 0.05559‡ 0.01416‡ 0.09579‡ 0.04566‡ 0.00795‡

2.4 0.10725‡ 0.05591‡ 0.01408‡ 0.09580‡ 0.04619‡ 0.00817‡

2.5 0.10658‡ 0.05580‡ 0.01346‡ 0.09576‡ 0.04622‡ 0.00771‡

2.6 0.10737‡ 0.05562‡ 0.01334‡ 0.09654‡ 0.04610‡ 0.00787‡

2.7 0.10696‡ 0.05643‡ 0.01343‡ 0.09594‡ 0.04633‡ 0.00785‡

2.8 0.10697‡ 0.05708‡ 0.01397‡ 0.09695‡ 0.04816‡ 0.00843‡

2.9 0.10676‡ 0.05653‡ 0.01348‡ 0.09672‡ 0.04685‡ 0.00814‡

3.0 0.10687‡ 0.05698‡ 0.01430‡ 0.09670‡ 0.04770‡ 0.00873‡

3.1 0.10657‡ 0.05685‡ 0.01360‡ 0.09721‡ 0.04761‡ 0.00849‡

3.2 0.10554‡ 0.05604‡ 0.01365‡ 0.09570‡ 0.04691‡ 0.00837‡

3.3 0.10594‡ 0.05563‡ 0.01389‡ 0.09725‡ 0.04611‡ 0.00820‡

3.4 0.10540‡ 0.05686‡ 0.01398‡ 0.09720‡ 0.04799‡ 0.00822‡

3.5 0.10857‡ 0.05737‡ 0.01430‡ 0.09840∗ 0.04812‡ 0.00847‡

3.6 0.10592‡ 0.05695‡ 0.01426‡ 0.09651‡ 0.04776‡ 0.00860‡

3.7 0.10599‡ 0.05639‡ 0.01387‡ 0.09676‡ 0.04721‡ 0.00816‡

3.8 0.10561‡ 0.05543‡ 0.01407‡ 0.09602‡ 0.04732‡ 0.00788‡

3.9 0.10620‡ 0.05746‡ 0.01337‡ 0.09695‡ 0.04820‡ 0.00858‡
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Table 2c: Empirical sizes of Davidson and Flachaire’s (2008) wild bootstrap tests
at 10%, 5% and 1% significance levels for n1 = 20 and n2 = 50.

Wild bootstrap (unrestricted) Wild bootstrap (restricted)

σ2 10% 5% 1% 10% 5% 1%

0.1 0.11369‡ 0.06088‡ 0.01641‡ 0.10585‡ 0.05537‡ 0.01377‡

0.2 0.11517‡ 0.06313‡ 0.01715‡ 0.10720‡ 0.05712‡ 0.01373‡

0.3 0.11459‡ 0.06155‡ 0.01736‡ 0.10679‡ 0.05565‡ 0.01370‡

0.4 0.11505‡ 0.06321‡ 0.01705‡ 0.10644‡ 0.05584‡ 0.01385‡

0.5 0.11362‡ 0.06131‡ 0.01666‡ 0.10517‡ 0.05426‡ 0.01318‡

0.6 0.11340‡ 0.06120‡ 0.01617‡ 0.10446‡ 0.05385‡ 0.01228‡

0.7 0.11380‡ 0.06213‡ 0.01657‡ 0.10520‡ 0.05436‡ 0.01289‡

0.8 0.11280‡ 0.06058‡ 0.01567‡ 0.10420‡ 0.05335‡ 0.01197‡

0.9 0.11073‡ 0.05876‡ 0.01537‡ 0.10182∗ 0.05117∗ 0.01139‡

1.0 0.10993‡ 0.05832‡ 0.01462‡ 0.10087 0.05068 0.01077†

1.1 0.11136‡ 0.05825‡ 0.01498‡ 0.10141 0.05000 0.01114‡

1.2 0.11102‡ 0.05951‡ 0.01406‡ 0.10133 0.05163† 0.01054∗

1.3 0.11188‡ 0.05898‡ 0.01477‡ 0.10206† 0.05165† 0.01094‡

1.4 0.11041‡ 0.05757‡ 0.01393‡ 0.10095 0.04933 0.01020

1.5 0.10891‡ 0.05760‡ 0.01480‡ 0.09910 0.04983 0.01027

1.6 0.10844‡ 0.05710‡ 0.01310‡ 0.09883 0.04867∗ 0.00918‡

1.7 0.10714‡ 0.05663‡ 0.01373‡ 0.09798† 0.04890 0.00956

1.8 0.10752‡ 0.05543‡ 0.01338‡ 0.09878 0.04791‡ 0.00943∗

1.9 0.10752‡ 0.05572‡ 0.01326‡ 0.09823∗ 0.04773‡ 0.00932†

2.0 0.10583‡ 0.05513‡ 0.01306‡ 0.09660‡ 0.04728‡ 0.00909‡

2.1 0.10722‡ 0.05583‡ 0.01252‡ 0.09799† 0.04761‡ 0.00904‡

2.2 0.10734‡ 0.05545‡ 0.01349‡ 0.09806† 0.04776‡ 0.00963

2.3 0.10543‡ 0.05346‡ 0.01256‡ 0.09662‡ 0.04599‡ 0.00880‡

2.4 0.10509‡ 0.05431‡ 0.01256‡ 0.09659‡ 0.04711‡ 0.00879‡

2.5 0.10481‡ 0.05414‡ 0.01210‡ 0.09581‡ 0.04675‡ 0.00858‡

2.6 0.10588‡ 0.05366‡ 0.01199‡ 0.09702‡ 0.04644‡ 0.00853‡

2.7 0.10520‡ 0.05457‡ 0.01210‡ 0.09672‡ 0.04693‡ 0.00837‡

2.8 0.10558‡ 0.05509‡ 0.01256‡ 0.09704‡ 0.04814‡ 0.00925†

2.9 0.10524‡ 0.05433‡ 0.01230‡ 0.09693‡ 0.04684‡ 0.00855‡

3.0 0.10501‡ 0.05464‡ 0.01297‡ 0.09733‡ 0.04746‡ 0.00915‡

3.1 0.10526‡ 0.05486‡ 0.01216‡ 0.09671‡ 0.04817‡ 0.00884‡

3.2 0.10428‡ 0.05364‡ 0.01189‡ 0.09545‡ 0.04720‡ 0.00857‡

3.3 0.10489‡ 0.05294‡ 0.01226‡ 0.09666‡ 0.04617‡ 0.00823‡

3.4 0.10452‡ 0.05454‡ 0.01211‡ 0.09657‡ 0.04771‡ 0.00887‡

3.5 0.10635‡ 0.05464‡ 0.01243‡ 0.09839∗ 0.04810‡ 0.00871‡

3.6 0.10429‡ 0.05483‡ 0.01251‡ 0.09634‡ 0.04714‡ 0.00899‡

3.7 0.10403‡ 0.05415‡ 0.01223‡ 0.09642‡ 0.04734‡ 0.00867‡

3.8 0.10383‡ 0.05296‡ 0.01203‡ 0.09618‡ 0.04677‡ 0.00853‡

3.9 0.10410‡ 0.05448‡ 0.01210‡ 0.09633‡ 0.04746‡ 0.00877‡
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Figure 1: Power of the tests for n1 = n2 = 15 at the 5% significance level.
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β11 = β12 = β22 = 1.0, σ1 = 1.0 and σ2 = 2.0. Since the size distortion of the asymptotic test

is very severe even when n1 = n2, we first execute simulations to find the correct critical value

of the asymptotic test, and calculated the size corrected power of the test. As for the bootstrap

tests, size correction was not executed because their size distortions are not so severe. Also,

the above tables indicate that the wild bootstrap tests based on the restricted estimator have

better size performance than the ones based on the unrestricted estimator. Therefore, as for

the wild bootstrap, we only show the powers obtained by the procedures based on the restricted

estimator.

Figure 1 shows the power of the tests for n1 = n2 = 15 when the tests are conducted at

the 5% significance level. From Figure 1, we observe that powers of the asymptotic test and

ordinary bootstrap test are almost comparable. Also, wild bootstrap tests have much higher

power than the asymptotic and ordinary bootstrap tests. The power of tests for n1 = n2 = 50

under the same parameter values are shown in Figure 2. From Figure 2, we can see that the

powers of all tests get larger as n1 and n2 increase. Figure 2 indicates that the difference in

the powers between asymptotic and ordinary bootstrap tests vanishes and these two tests have

almost equivalent powers. Also, the difference between powers of wild bootstrap tests vanishes.
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Figure 2: Power of the tests for n1 = n2 = 50 at the 5% significance level.
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From the above results, we conclude that the ordinary bootstrap test has most accurate

size than among the tests considered here, and the power of the ordinary bootstrap test is

comparable to the asymptotic test. Also, though the sizes of the wild bootstrap tests are not

so correct as the one obtained by the ordinary bootstrap test, the wild bootstrap tests based on

the restricted estimator have higher powers than the asymptotic and ordinary bootstrap tests.

4 Concluding remarks

In this paper, we consider to apply the bootstrap methods to the Wald test statistic proposed

by Watt (1979) for the equality of coefficients between two linear regressions under possible

heteroscedasticity. As discussed by Ohtani and Kobayashi (1986), Thursby (1992) and others,

tests based on the Wald test statistic proposed by Watt (1979) is more powerful than the one

proposed by Jayatissa (1977). However, as stated by Thursby (1992), the drawback of the Wald

test is either a requirement for numerical integration [Weerahandi (1987)] or the existence of the

inconclusive region [Ohtani and Kobayashi (1986) and Kobayashi (1986)]. On the other hand,

the bootstrap tests proposed in this paper is simple and easy to implement, and no inconclusive

region exists. Our simulation results show that the ordinary bootstrap test is more reliable in
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size than the asymptotic test and that both tests are comparable in power. Also, though their

sizes are not so correct as the ordinary bootstrap test, the wild bootstrap tests have much higher

power than the asymptotic and ordinary bootstrap tests. Because of the way of the resampling,

the ordinary bootstrap version of the test statistic can take nn1
1 · nn2

2 discrete values. However,

the wild bootstrap version of the test statistic can take only 2n1+n2 discrete values. Since 2n1+n2

is much smaller than nn1
1 · nn2

2 , the wild bootstrap method may not be able to mimic the tail

probabilities of the test statistic so well as the ordinary bootstrap method. This may be the

reason why the wild bootstrap test performs worse than the ordinary bootstrap test in terms

of size. Further, as discussed in section 2, the bootstrap resampling is simplified because of the

structure of the Wald test statistic. This suggests the usefulness of the bootstrap tests.

Also, in addition to the difficulty in implementation caused by the numerical integration,

Weerahandi’s (1987) test is valid only under the normality assumption of disturbances. In-

vestigating the effect of the departure from the normality assumption is beyond the scope of

this paper, however, the bootstrap test will be applicable under non-normality of disturbances

because of the nature of the bootstrap methods.

In this paper, in order to examine the validity of the bootstrap methods for the model with

structural breaks, we consider a simple model with a possible structural break and a known

break point. Of course, it is possible to apply the methods considered in this paper to more

general models. For example, as is discussed in introduction, some authors considered models

with multiple breaks and unknown break points. Also, what happens if the true model is an AR

model, or if the error terms are not independent? Further, what if the variance change occurs at

the different point from the one where the change in regression coefficients occurs2? However,

investigating such models are beyond the scope of this paper and a remaining problem for future

research.
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